
AVIS: Autonomous Visual Information Seeking
with Large Language Model Agent

Ziniu Hu12∗ Ahmet Iscen2 Chen Sun2 Kai-Wei Chang1 Yizhou Sun1

David A Ross2 Cordelia Schmid2 Alireza Fathi2

1University of California, Los Angeles, 2Google Research

Abstract

In this paper, we propose an autonomous information seeking visual question an-
swering framework, AVIS. Our method leverages a Large Language Model (LLM)
to dynamically strategize the utilization of external tools and to investigate their
outputs via tree search, thereby acquiring the indispensable knowledge needed
to provide answers to the posed questions. Responding to visual questions that
necessitate external knowledge, such as "What event is commemorated by the
building depicted in this image?", is a complex task. This task presents a com-
binatorial search space that demands a sequence of actions, including invoking
APIs, analyzing their responses, and making informed decisions. We conduct
a user study to collect a variety of instances of human decision-making when
faced with this task. This data is then used to design a system comprised of three
components: an LLM-powered planner that dynamically determines which tool
to use next, an LLM-powered reasoner that analyzes and extracts key information
from the tool outputs, and a working memory component that retains the acquired
information throughout the process. The collected user behavior serves as a guide
for our system in two key ways. First, we create a transition graph by analyzing
the sequence of decisions made by users. This graph delineates distinct states and
confines the set of actions available at each state. Second, we use examples of user
decision-making to provide our LLM-powered planner and reasoner with relevant
contextual instances, enhancing their capacity to make informed decisions. We
show that AVIS achieves state-of-the-art results on knowledge-intensive visual
question answering benchmarks such as Infoseek [7] and OK-VQA [26].

1 Introduction

Large language models (LLMs), such as GPT3 [5], LaMDA [16], PALM [9], BLOOM [34] and
LLaMA [37], have showcased the capacity to memorize and utilize a significant amount of world
knowledge. They demonstrate emerging abilities [38] like in-context learning [5], code genera-
tion [19], and common sense reasoning [24]. Recently, there is a growing focus towards adapting
LLMs to handle multi-modal inputs and outputs involving both vision and language. Noteworthy
examples of such visual language models (VLMs) include GPT4 [29], Flamingo [4] and PALI [6].
They set the state of the art for several tasks, including image captioning, visual question answering,
and open vocabulary recognition.

While LLMs excel beyond human capabilities in tasks involving textual information retrieval, the
current state of the art VLMs perform inadequately on datasets designed for visual information

∗This work was done when Ziniu was an intern at Google.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: An example of AVIS’s generated workflow for answering a challenging visual question
using LLM with tree search to use tools. The input image is taken from the Infoseek dataset.

seeking such as Infoseek [7] and OK-VQA [26]. Many of the visual questions in these datasets are
designed in such a way that they pose a challenge even for humans, often requiring the assistance of
various APIs and web search to obtain the answer. Examples of such questions include "where is this
church located?", "what species of butterfly is this?", or "what is the brand of this dress?".

Current state-of-the-art vision-language models (VLMs) find it challenging to answer such questions
for several reasons. Firstly, they are not trained with objectives that encourage them to discern
fine-grained categories and details within images. Secondly, they utilize a relatively smaller language
model compared to state-of-the-art Large Language Models (LLMs), which constrains their reasoning
capabilities. Lastly, they do not compare the query image against a substantial corpus of images
associated with varying metadata, unlike systems that employ image search techniques.

To overcome these challenges, we introduce a novel method in this paper that achieves state-of-the-art
results on visual information seeking tasks by enabling a LLM Agent use tools via tree-search
decision-making. We use three types of tools: (i) computer vision tools such as object detection,
OCR, image captioning models, and VQA models, which aid in extracting visual information from
the image, (ii) a web search tool that assists in retrieving open world knowledge and facts, and (iii) an
image search tool that enables us to glean relevant information from metadata associated with visually
similar images. Our approach utilizes an LLM-powered planner to dynamically determine which tool
to use at each step and what query to send to it. Furthermore, we employ an LLM-powered reasoner
that scrutinizes the output returned by the tools and extracts the crucial information from them. To
retain the information throughout the process, we use a working memory component. Figure 1 shows
an example information seeking process performed by our method.

Several recent studies [13, 23, 36, 40, 42] have enhanced LLMs with APIs to handle multi-modal
vision-language inputs. These systems generally employ a two-stage strategy, namely plan and
execute. Initially, the LLM breaks down a question into a plan, typically represented as a structured

2



program or a sequence of instructions. Following this, the necessary APIs are activated to collect the
required information. While this method has shown potential in elementary visual-language tasks, it
frequently fails in more complex real-world situations. In such cases, a comprehensive plan cannot
be inferred merely from the initial question. Instead, it necessitates dynamic modifications based on
real-time feedback.

The primary innovation in our proposed method lies in its dynamic decision-making capability.
Answering visual information seeking questions is a highly complex task, requiring the planner
to take multiple steps. At each of these steps, the planner must determine which API to call and
what query to send. It is unable to predict the output of complex APIs, such as image search, or to
anticipate the usefulness of their responses prior to calling them. Therefore, unlike previous methods
that pre-plan the steps and API calls at the beginning of the process, we opt for a dynamic approach.
We make decisions at each step based on the information acquired from previous API calls, enhancing
the adaptability and effectiveness of our method.

We conduct a user study to gather a wide range of instances of human decision-making when using
APIs to answer questions related to visual information seeking. From this data, we formulate a
structured framework that directs the Large Language Model (LLM) to use these examples for making
informed decisions regarding API selection and query formulation. The collected user behavior
informs our system in two significant ways. First, by analyzing the sequence of user decisions, we
construct a transition graph. This graph delineates distinct states and constrains the set of actions
available at each state. Second, we use the examples of user decision-making to guide our planner
and reasoner with pertinent contextual instances. These contextual examples contribute to improving
the performance and effectiveness of our system.

The primary contributions of this paper can be summarized as follows:

• We propose a novel visual question answering framework that leverages a large language
model (LLM) to dynamically strategize the utilization of external tools and to investigate
their outputs, thereby acquiring the necessary knowledge needed to provide answers to the
posed questions.

• We leverage the human decision-making data collected from a user study to develop a
structured framework. This framework guides the Large Language Model (LLM) to utilize
examples of human decision-making in making informed choices concerning API selection
and query construction.

• Our method achieves state-of-the-art results on knowledge-based visual question answering
benchmarks such as Infoseek [7] and OK-VQA [26]. Notably, We achieve an accuracy of
50.7% on the Infoseek (unseen entity split) dataset which is significantly higher than the
results achieved by PALI [6] with accuracy of 16.0%.

2 Related Work

Augmenting LLMs with Tools. Large Language Models(LLMs) have shown impressive language
understanding [33], and even reasoning capabilities [39]. Nevertheless, certain limitations of LLMs
are evident, due to their intrinsic characteristics. Such limitations include providing up-to-date
answers based on external knowledge or performing mathematical reasoning. Consequently, a recent
surge of techniques have integrated LLMs with various external tools [27]. For example, TALM [31]
and ToolFormer [35] use in-context learning to teach the language model how to better leverage
various tools on benchmarks such as question answering and mathematical reasoning.

In the computer vision domain, LLMs also show significant improvements when combined with
external visual tools. For example, Visual ChatGPT [40] and MM-ReAct [42] enable LLMs to call
various vision foundation models as tools to understand visual inputs, and even better control the
image generation. VisProg [13] and ViperGPT [36] explore the decomposition of visual language
tasks into programs, where each line corresponds to general code or a visual API. Chameleon [23]
uses an LLM as a natural language planner to infer the appropriate sequence of tools to utilize, and
then executes these tools to generate the final response.

Most of these previous works follow a plan-then-execute paradigm, i.e., i) they pre-plan the sequence
of actions (API calls) that they will take (either hard coded or using code generation); and ii) they
execute the generated plan. One drawback of such an approach is that it cannot update and improve

3



its plan based on the output of the tools it calls. This is not a trivial problem, as it requires to predict
the output quality of each tools beforehand. In contrast, our proposed method allows the system to
dynamically decide its next steps based on the output it receives from the tools at each step.

Decision Making with LLM as an Agent. There has also been a surge of interest in applying
Large Language Models (LLMs) as autonomous agents. These agents are capable of interacting with
external environments, making dynamic decisions based on real-time feedback, and consequently
achieving specific goals. For example, WebGPT [28] enables an LLM to access real-time information
from the web search engines. ReAct [44] further improves external search engine usage via the self-
reasoning of LLM in an interleaved manner. Similar ideas have also been adopted for robotic action
planning. SayCan [3], for instance, uses LLMs to directly predict robot actions, and PALM-E [10]
further fine-tunes LLMs to make better decisions based on instructions and open web media.

When compared to works that follow a plan-then-execute paradigm, these AI agents exhibit increased
flexibility, adjusting their actions based on the feedback that they receive. However, many of these
methods do not restrict the potential tools that can be invoked at each stage, leading to an immense
search space. This becomes particularly critical for web search APIs [1, 2] that return extensive result
lists and span a combinatorial search space of multiple tools. Consequently, even the most advanced
LLMs today can fall into infinite loops or propagate errors. To alleviate this issue, we propose
restricting and guiding LLMs to mimic human behavior when solving complex visual questions with
APIs. This idea is similar to the AI alignment research [21, 30] that teaches LLMs to follow human
instructions. The difference is that our model only uses the human prior at the decision-making stage
via prompt guidance, instead of re-training the model.

One concurrent work Tree-Of-Thought (ToT) [43] also utilize tree search guided by a self-critic
reward model to find optimal path of problem solving. Compared with this concurrent work, our AVIS
further constrains the tree search via a human-defined transition graph, and guide the decision-making
via a dynamic prompt manager. In addition, though AVIS is designed for tool-use, the success of ToT
shows that such idea can be generally improve many LLM Reasoning tasks.

3 Method

3.1 General Framework

Our approach employs a dynamic decision-making strategy designed to respond to visual information-
seeking queries. Our system is comprised of three primary components. First, we have a planner P ,
whose responsibility is to determine the subsequent action, including the appropriate API call and
the query it needs to process. Second, we have a working memoryM that retains information about
the results obtained from API executions. Lastly, we have a reasonerR, whose role is to process the
outputs from the API calls. It determines whether the obtained information is sufficient to produce
the final response, or if additional data retrieval is required.

Figure 2: AVIS employs dynamic decision-making to
plan (find optimal tool and query), execute results, and
then reason (estimate whether continue or backtrack).

Algorithm 1 Planner P(state,G, E ,M)

1: As ← ϕ(state,G,M) ▷ Get the
list of feasible actions As given the
current state from transition graph and
the information in the working mem-
ory

2: Es ← θ(E ,As) ▷ Get a list of
in-context examples related to actions
As

3: ps ← ψ(Es,M) ▷ Build a prompt
based on the in-context examples Es
and the current working memoryM

4: ts, qs ← LLM(ps) ▷ Decide the next
tool ts to use and the query qs to pass
by feeding the prompt ps to LLM

4



LLM short QA

FINISH

START

Select Object

Captioning

VQAImage Search

Web Search

Figure 3: Transition graph G defines feasible ac-
tions the planner can take. This graph is induced
by our user study introduced in Sec. 3.3.

Algorithm 2 AVIS Decision Making Workflow
1: M← {input}, state← START
2: ts, qs ← P(state,G, E ,M) ▷ Call the

planner P to decide the next tool to use ts and
the query to pass to it qs

3: os ← Exec(ts, qs) ▷ Call tool ts with query
qs and get output os

4: ôs ← R(os,M) ▷ Process the output and
extract the key info ôs using the reasonerR

5: M.add(ôs) ▷ Update the working memory
6: switch ôs do
7: case ôs is not informative
8: goto(2) ▷ Go to line 2 to make

decision at the same state, excluding ts.
9: case ôs has useful information

10: state← ts ▷ Update state
11: goto(2) ▷ Go to line 2 to make

decision for the next state.
12: case ôs is ready as final answer
13: ans← ôs ▷ Output answer

Considering the potential intricacy of the task, we conduct a user study to gather a broad range of
examples of human decision-making process, when using tools to respond to visual information-
seeking queries (we introduce the details of data collection in Sec. 3.3). This helps us to establish a
structured framework for decision-making. We utilize the data collected from this study to construct
a transition graph G shown in Figure 3, which outlines all the possible actions at each given state.
Additionally, we employ real-life decision-making examples E , i.e., users choose which tool at
different states, to guide the planner in choosing the appropriate action at each stage of the process.

The Algorithm 1 presents the operations of the planner P . The planner undertakes a series of steps
each time a decision is required regarding which tool to employ and what query to send to it. Firstly,
based on the present state, the planner provides a range of potential subsequent actions As. The
potential action spaceAs may be large, making the search space intractable. To address this issue, the
planner refers to the human decisions from the transition graph G to eliminate irrelevant actions. The
planner also excludes the actions that have already been taken before and are stored in the working
memoryM. Formally, this procedure is As ← ϕ(state,G,M).

Next, it collects a set of relevant in-context examples Es that are assembled from the decisions
previously made by humans during the user study relevant to actionsAs, that is Es ← θ(E ,As). With
the gathered in-context examples Es and the working memoryM that holds data collected from past
tool interactions, the planner formulates a prompt, denoted by ps ← ψ(Es,M). The prompt ps is
then sent to the LLM which returns a structured answer, determining the next tool ts to be activated
and the query qs to be dispatched to it. We denote this action by ts, qs ← LLM(ps). This design
allows the planner to be invoked multiple times throughout the process, thereby facilitating dynamic
decision-making that gradually leads to answering the input query.

The Algorithm 2 shows the overall decision-making workflow of AVIS. The entire process repeats
until a satisfactory answer is produced. Initially, the working memory is populated only with the input
visual question I , and the initial state is set to START. At each iteration, we first invoke the planner
P to determine the next tool and the query to employ, as outlined in Algorithm 1. Subsequently, the
selected external tool executes and delivers its output os. The output from the tools can be quite
diverse, ranging from a list of identified objects, to a collection of similar images with their captions,
to snippets of search results or knowledge graph entities.

Therefore, we employ a reasonerR to analyze the output os, extract the useful information and decide
into which category the tool output falls: informative, uninformative, or final answer. Our method
utilizes the LLM with appropriate prompting and in-context examples to perform the reasoning. If
the reasoner concludes that it’s ready to provide an answer, it will output the final response, thus
concluding the task. If it determines that the tool output is uninformative, it will revert back to the

5



planner to select another action based on the current state. If it finds the tool output to be useful, it
will modify the state and transfer control back to the planner to make a new decision at the new state.

Our approach, which employs dynamic decision-making coupled with backtracking, differs from
previous methods [23, 36] that follow a plan-then-execute paradigm. Our system is structured to
make decisions grounded to the results of current executions and to conduct iterative searches for
tool combinations. This process eventually yields the most effective strategy to accomplish the task.

3.2 Tools and their APIs

To respond effectively to visual queries that necessitate in-depth information retrieval, it’s important
to equip AVIS with a comprehensive suite of tools. In this section, we describe these tools.

Image Captioning Model: We employ the PALI 17B [8] captioning model, which obtains state-of-
the-art results for image captioning. This tool has the capability to generate captions for either the
entire image or for a cropped image corresponding to the bounding box of a detected object.

Visual Question Answering Model: We utilize the PALI 17B [8] VQA model, which has been
fine-tuned on the VQA-v2 [11] dataset. This tool takes an image and a question as inputs and provides
a text-based answer as the output.

Object Detection: We use an object detector trained on a super-set of Open Images dataset [17]
categories that is provided by Google Lens API [1]. We use high confidence threshold to only keep
the top-ranked detected boxes for the input image.

Image Search: We utilize Google Image Search to obtain a broad range of information related to the
image crop of a detected box as provided in Google Lens API [1]. This information encompasses
various details, such as knowledge graph entities, titles of associated products, and captions of
analogous or identical images. The availability of these details can vary based on the image crop
input provided to Google Image Search. When it comes to decision-making, our planner considers
the utilization of each piece of information as a separate action. This is due to the fact that each
information could contain hundreds of tokens that necessitate complex processing and reasoning.

OCR: In some cases, images may include textual content such as street names or logos. To detect
and utilize this text, we take advantage of the Optical Character Recognition (OCR) feature available
in the Google Lens API [1].

Web Search: Web search enables our approach to acquire up-to-date world knowledge and retrieve
relevant documents on any topic of interest. For this objective, we employ the Google Web Search
API [2]. It accepts a text-based query as input and produces the following outputs: (i) related
document links and snippets, (ii) in certain instances, a knowledge panel providing a direct answer to
the query, and (iii) up to five questions that are related to the input query. If a knowledge panel is
available, we parse it into a sentence or a few sentences that summarize its information.

LLM short QA: We incorporate a Language Model (LLM) powered question-answering component
as another tool. This tool accepts a query in text form and produces an answer also in text form. It is
important to note that the use of the LLM here as a question-answering tool is distinct from its role in
the planner or reasoner as outlined in Alg. 1 and Alg. 2.

3.3 Gathering User Behavior to Inform LLM Decision Making

Many of the visual questions in datasets such as Infoseek [7], Oven [14] and OK-VQA [26] ask for
fine-grained answers, which poses a challenge even for humans, often requiring the assistance of
various APIs and web searches for answers. Figure 4(a) illustrates an example visual question taken
from the OK-VQA [26] dataset. In order to gather insights into human decision-making process, we
carried out a user study. More specifically, our goal is to understand how humans utilize external
tools to answer visual queries that involve seeking information.

The user is equipped with an identical set of tools as our method. They are presented with the
input image and question, along with image crops for each detected object. Additionally, tools like
PALI Caption, PALI VQA, PALM, and Web Search are made available to the user. Furthermore,
based on the information obtained through image search for each cropped image, the user is offered
one or multiple buttons associated with each box. These buttons provide the user with the ability

6



Question: In what year was this motorcycle built?

Box 1

Box 2

Box 3

Box 4

Box 5

(a) Input visual question 
and detected objects (b) Tools shown to user (c) Tool Output 

Outputs of “show entity of box2”

Figure 4: We conduct a user study to gather examples of user decision-making when responding to
visual information-seeking questions. Given a visual question as depicted in (a), the user makes a
series of tool calls using the available APIs shown in (b). Each tool call yields an output which the
user reviews whether it is useful and determines the subsequent action, illustrated in (c).

to access diverse information pertaining to the image crop of the box. This includes details such
as corresponding knowledge graph entities, captions of similar images, titles of associated related
products, and captions of identical images. An example set of tools and APIs are shown in Figure 4(b).

When the user initiates an action, such as clicking on a button or submitting a query to web search,
PALM, or PALI VQA, the corresponding tool is invoked, and the resulting output is displayed to the
user. We record the sequence of actions taken by the user and the outputs that they receive at each
step. For instance, in Figure 4, we show an example of how a user needs to perform four actions to
answer the question: i) display entities in box 2, ii) show the caption of similar images to box 2, iii)
conduct a search for "In what year was Harley-Davidson XA built?", and iv) utilize PALM using the
combination of the search output and the question "In what year was Harley-Davidson XA built?".
When the user is prepared to proceed to the next question, they click on either of the two buttons:
"Success! Found the Answer!" or "Couldn’t Find the Answer." Subsequently, a new visual question
is presented to them.

The collected user behavior serves as a guide for our system in two key ways. Firstly, we construct a
transition graph by analyzing the sequence of decisions made by users. This graph defines distinct
states and restricts the available set of actions at each state. For example, at the START state, the
system can take only one of these three actions: PALI caption, PALI VQA, or object detection.
Figure 3 illustrates the transition graph that has been constructed based on the decision-making
process of the users. Secondly, we utilize the examples of user decision-making to guide our planner
and reasoner with relevant contextual instances. These in-context examples aid in enhancing the
performance and effectiveness of our system.

We conducted a user study involving 10 participants who collectively answered a total of 644 visual
questions. During the study, we presented users with visual questions that were randomly selected
from both the Infoseek [7] and OK-VQA [26] datasets. This approach allowed us to provide the
participants with a varied and diverse set of visual questions to assess and respond to. We show the
details for this study as well as example prompts in the Appendix.

4 Experiments

We evaluate AVIS on two visual question answering datasets: i) OK-VQA [26], which requires
common-sense knowledge not observed in given image; and ii) Infoseekwikidata [7], which further
necessitates more fine-grained information that cannot be covered by common sense knowledge.

Experimental Setup. We follow the decision-making workflow in Alg. 2 to implement AVIS to solve
visual questions. For the Planner, we write the basic instructions for describing each tool, and keep a
pool of real user behavior when they select each tool, which we collected in the user study. At each

7



Model Unseen Entity Unseen Question

PALM [9] (Q-only, few-shot) 3.7 5,1
OFA [22] (fine-tune) 9.7 14.8
PALI [6] (VQA, zero-shot) 1.8 2.2
PALI [6] (fine-tune) 16.0 20.7
PALM [9] w/ CLIP [32] (few-shot + external knowledge) 21.9 18.6
FiD [45] w/ CLIP [32] (fine-tune + external knowledge) 20.7 18.1

(—baselines without dynamic decision making, sequentially execute the tools—)
baseline-PALM w/ (PALI∗, few-shot) 12.8 14.9
baseline-PALM w/ (PALI∗ + Object, few-shot) 31.3 36.1
baseline-PALM w/ (PALI∗ + Object + Search, few-shot) 36.1 38.2

AVIS (ours, few-shot) 50.7 56.4
w/o PALI∗ 47.9 54.2
w/o Object 41.2 48.4
w/o Search 42.5 49.6

Table 1: Visual Question Answering results (accuracy) on InfoseekWikidata. The first four rows are
results from their paper that do not use external knowledge, and the next two are from their paper
that use CLIP as knowledge source. The tool PALI∗ denotes the frozen multi-task PALI-17B model
for both visual question answering and image captioning. Object means object detection, and search
means image and text search.

step s, we prepare the prompt based on the feasible action lists As. For the Reasoner, we write the
prompt for all APIs that return a long list of results, including Object Detection, Product Detection,
Web Image Search and Web Text Search, that guides reasoner to extract the relevant information. Note
that we design the reasoner in a way such that the “uninformative” answers can be detected. In order
to support this, we manually prepare several bad examples that do not provide any useful information,
pass it to the reasoner as a part of the prompt. We show the detailed prompts for these two modules
in the Appendix.

We use the frozen PALM 540B language model [9] for both the planner and the reasoner, with
deterministic generation ensured by setting the temperature parameter to zero. We use 10 examples
as in-context prompts for each dataset, and report the VQA accuracy [11] as the evaluation metric.

Baselines. A significant novelty of AVIS is the ability to dynamically determine the relevant
tools according to different states. To show that this design choice is useful, we add a number of
baselines that do not contain a LLM-planner for dynamic decision making. Instead, they follow a
pre-determined sequence to call a list of tools. We propose the following baselines:

• baseline-PALM w/ PALI∗, which integrates the captions generated by PALI and the visual
answers from PALI VQA. PALI∗ denotes the combination of both VQA and captioning tool.

• baseline-PALM w/ (PALI∗ + Object), which in addition calls the object detection tool, and
then integrates all object data, including products and text detected by OCR.

• baseline-PALM w/ (PALI∗ + Object + Search), a model which first selects a relevant
object with the help of PALM, then sequentially executes the image search and Google
search with the object name. It then calls PALM again to answer the question.

For each of the three baselines, we prepare a few-shot Chain-Of-Thought (COT) prompting [39], in
which the COT prompt guides the model to explain why predictions are made based on the provided
information. Note that these baselines utilize a set of tools in a fixed order, without the capacity for
dynamic decision making.

We also evaluate the usefulness of each tool group (i.e., PALI∗, Object, and Search) through an
ablation study. This involves removing each tool group from our framework individually, and
assessing the impact on performance.

Experimental Results. Table 5 presents the results of AVIS and other baselines on the
Infoseekwikidata dataset. Infoseekwikidata is a challenging dataset that requires identifying highly
specific entities. Even robust visual-language models, such as OFA [22] and PALI [6], fail to yield

8



Model Accuracy (%)

Su
pe

rv
is

ed

KRISP [25] 38.4
KAT [12] 54.4
ReVIVE [20] 58.0
REVEAL [15] 59.1
PALI [6] (OK-VQA, finetune) 64.5

Z
er

o-
sh

ot PALI [6] (VQA, zero-shot) 41.6
PICa-Full [41] 48.0
Flamingo (zero-shot) [4] 50.6
BLIP-2 [18] 45.9

Fe
w

-s
ho

t

ViperGPT (one-shot) [36] 51.9
Flamingo (few-shot) [4] 57.8

(baselines without dynamic decision making, sequentially executing the tools)
baseline-PALM w/ (PALI∗) 44.3
baseline-PALM w/ (PALI∗+Object) 38.2
baseline-PALM w/ (PALI∗+Object + Search) 47.9

AVIS (ours) 60.2
w/o PALI∗ 47.1
w/o Object 58.3
w/o Search 55.0

Table 2: Visual Question Answering results (accuracy) on OK-VQA. The tool PALI∗ denotes the
frozen multi-task PALI-17B model for both visual question answering and image captioning. Object
means object detection, and search means image and text search.

Figure 5: Examples of AVIS’s dynamic planning and reasoning procedure for solving visual questions.

high accuracy when fine-tuned on this dataset. However, our AVIS, without fine-tuning and by
leveraging a complete set of tools guided by 10 in-context examples, achieves the accuracy of 50.7
and 56.4 on the unseen entity and question splits, respectively. This significantly outperforms the
fine-tuned results of PALI-17B, which are 16.0 and 20.7, as well as the PALM model augmented
with CLIP knowledge, which are 21.9 and 18.6, respectively.

Table 5 also illustrates that our improvements are not solely due to the additional information provided
by the external tools, but due to our dynamic decision-making pipeline. We compare the results of
AVIS with the three baselines that conduct sequential execution. While these baselines do improve
the performance, our AVIS framework outperforms the best baseline model by up to 17.3 accuracy.
Note that AVIS and the baselines use exactly the same set of tools. This considerable performance
gap clearly shows the clear advantage of our dynamic decision-making design. Furthermore, we
show the importance of each tool in the last block of Table 5. Removal of any of the tools degrades
the overall accuracy. Among the three tool groups, Object and Search are more important than PALI,
as they provide more fine-grained information crucial for the Infoseek dataset.

9



We report the OK-VQA experiments in Table 2. AVIS with few-shot in-context examples achieves
an accuracy of 60.2, higher than most of the existing methods tailored for this dataset, including
KAT [12], ReVIVE [20] and REVEAL [15] . AVIS achieves lower but comparable performance
compared to PALI model fine-tuned on OK-VQA. This difference, compared to Infoseek, may be
attributed to the fact that most QA examples in OK-VQA rely more on commonsense knowledge
than on fine-grained knowledge. Therefore, it is feasible to encode such generic knowledge in the
model parameters and requires less external knowledge. Note that PALI zero-shot VQA model itself
achieves 41.6 accuracy, which is significantly higher than in Infoseek, which supports this hypothesis.
Table 2 also shows that the object detection is less crucial as a tool on this data set, compared to PALI
captioning and VQA. Nonetheless, AVIS equipped with all tools achieves the best performance.

Case studies for dynamic decision making. One of the key features of AVIS is its ability to
dynamically make decisions instead of executing a fixed sequence. Figure 5 presents three examples
of AVIS’s dynamic planning and reasoning process. They demonstrate the flexibility of AVIS to use
different tools at various stages. It is also worth noting that our reasoner design enables AVIS to
identify irrelevant information, backtrack to a previous state, and repeat the search. For instance, in
the second example concerning the taxonomy of fungi, AVIS initially makes an incorrect decision
by selecting a leaf object. However, the reasoner identifies that this is not relevant to the question,
prompting AVIS to plan again. This time, it successfully selects the object related to false turkey-tail
fungi, leading to the correct answer, Stereum. Some detailed error analysis is shown in Appendix F.

5 Conclusion

In this paper, we propose a novel approach that equips the Large Language Models (LLM) with
the tree-search to use a variety of tools for answering knowledge-intensive visual questions. Our
methodology, anchored in human decision-making data collected from a user study, employs a
structured framework that uses an LLM-powered planner to dynamically decide on tool selection and
query formation. An LLM-powered reasoner is tasked with processing and extracting key information
from the output of the selected tool. Our method iteratively employs the planner and reasoner to
leverage different tools until all necessary information required to answer the visual question is
amassed.

Limitation Statement: Currently AVIS is specifically designed for visual question answering. We
aim to extend our LLM-powered dynamic decision-making framework to address other reasoning
tasks. Additionally, our current framework depends on a computationally intensive LLM, namely, the
PALM model. We are interested in investigating whether this decision-making framework can also
be performed by lighter weight language models.

References
[1] Google lens. Web interface available at https://images.google.com.

[2] Google search. Web interface available at https://www.google.com.

[3] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

[4] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716–23736, 2022.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[6] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni, P. Padlewski, D. Salz, S. Goodman, A. Grycner,
B. Mustafa, L. Beyer, et al. Pali: A jointly-scaled multilingual language-image model. arXiv preprint
arXiv:2209.06794, 2022.

[7] Y. Chen, H. Hu, Y. Luan, H. Sun, S. Changpinyo, A. Ritter, and M.-W. Chang. Can pre-trained vision and
language models answer visual information-seeking questions? In arXiv preprint arXiv:2302.11713, 2023.

[8] F. Chern, B. Hechtman, A. Davis, R. Guo, D. Majnemer, and S. Kumar. TPU-KNN: K nearest neighbor
search at peak flop/s. CoRR, abs/2206.14286, 2022.

10



[9] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

[10] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong,
T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[11] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA matter: Elevating
the role of image understanding in visual question answering. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 6325–6334.
IEEE Computer Society, 2017.

[12] L. Gui, B. Wang, Q. Huang, A. Hauptmann, Y. Bisk, and J. Gao. Kat: A knowledge augmented transformer
for vision-and-language. arXiv preprint arXiv:2112.08614, 2021.

[13] T. Gupta and A. Kembhavi. Visual programming: Compositional visual reasoning without training. In
arXiv preprint arXiv:2211.11559, 2022.

[14] H. Hu, Y. Luan, Y. Chen, U. Khandelwal, M. Joshi, K. Lee, K. Toutanova, and M.-W. Chang. Open-
domain visual entity recognition: Towards recognizing millions of wikipedia entities. In arXiv preprint
arXiv:2302.11154, 2023.

[15] Z. Hu, A. Iscen, C. Sun, Z. Wang, K.-W. Chang, Y. Sun, C. Schmid, D. A. Ross, and A. Fathi. Reveal:
Retrieval-augmented visual-language pre-training with multi-source multimodal knowledge memory. In
CVPR, 2023.

[16] A. Kulshreshtha, D. D. F. Adiwardana, D. R. So, G. Nemade, J. Hall, N. Fiedel, Q. V. Le, R. Thop-
pilan, T. Luong, Y. Lu, and Z. Yang. Towards a human-like open-domain chatbot. In arXiv preprint
arXiv:2001.09977, 2020.

[17] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci,
A. Kolesnikov, T. Duerig, and V. Ferrari. The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. IJCV, 2020.

[18] J. Li, D. Li, S. Savarese, and S. C. H. Hoi. BLIP-2: bootstrapping language-image pre-training with frozen
image encoders and large language models. CoRR, abs/2301.12597, 2023.

[19] Y. Li, D. H. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gi-
meno, A. D. Lago, T. Hubert, P. Choy, C. de Masson d’Autume, I. Babuschkin, X. Chen, P. Huang,
J. Welbl, S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson, P. Kohli, N. de Fre-
itas, K. Kavukcuoglu, and O. Vinyals. Competition-level code generation with alphacode. CoRR,
abs/2203.07814, 2022.

[20] Y. Lin, Y. Xie, D. Chen, Y. Xu, C. Zhu, and L. Yuan. Revive: Regional visual representation matters in
knowledge-based visual question answering. arXiv preprint arXiv:2206.01201, 2022.

[21] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. In arXiv preprint arXiv:2304.08485, 2023.

[22] J. Lu, C. Clark, R. Zellers, R. Mottaghi, and A. Kembhavi. Unified-io: A unified model for vision, language,
and multi-modal tasks. CoRR, abs/2206.08916, 2022.

[23] P. Lu, B. Peng, H. Cheng, M. Galley, K.-W. Chang, Y. N. Wu, S.-C. Zhu, and J. Gao. Chameleon:
Plug-and-play compositional reasoning with large language models. In arXiv preprint arXiv:2304.09842,
2023.

[24] A. Madaan, S. Zhou, U. Alon, Y. Yang, and G. Neubig. Language models of code are few-shot common-
sense learners. In Y. Goldberg, Z. Kozareva, and Y. Zhang, editors, Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 1384–1403. Association for Computational Linguistics, 2022.

[25] K. Marino, X. Chen, D. Parikh, A. Gupta, and M. Rohrbach. Krisp: Integrating implicit and symbolic
knowledge for open-domain knowledge-based vqa. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14111–14121, 2021.

[26] K. Marino, M. Rastegari, A. Farhadi, and R. Mottaghi. OK-VQA: A visual question answering benchmark
requiring external knowledge. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages 3195–3204. Computer Vision Foundation / IEEE,
2019.

[27] G. Mialon, R. Dessì, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu, B. Rozière, T. Schick,
J. Dwivedi-Yu, A. Celikyilmaz, E. Grave, Y. LeCun, and T. Scialom. Augmented language models: a
survey. In arXiv preprint arXiv:2302.07842, 2023.

[28] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders, et al.
Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332,
2021.

11



[29] OpenAI. Gpt-4 technical report. In arXiv preprint arXiv:2303.08774, 2023.

[30] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, et al. Training language models to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744, 2022.

[31] A. Parisi, Y. Zhao, and N. Fiedel. Talm: Tool augmented language models. In arXiv preprint
arXiv:2205.12255, 2022.

[32] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763.
PMLR, 2021.

[33] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[34] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilic, D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon,
M. Gallé, J. Tow, A. M. Rush, S. Biderman, A. Webson, P. S. Ammanamanchi, T. Wang, B. Sagot,
N. Muennighoff, A. V. del Moral, O. Ruwase, R. Bawden, S. Bekman, A. McMillan-Major, I. Beltagy,
H. Nguyen, L. Saulnier, S. Tan, P. O. Suarez, V. Sanh, H. Laurençon, Y. Jernite, J. Launay, M. Mitchell,
C. Raffel, A. Gokaslan, A. Simhi, A. Soroa, A. F. Aji, A. Alfassy, A. Rogers, A. K. Nitzav, C. Xu, C. Mou,
C. Emezue, C. Klamm, C. Leong, D. van Strien, D. I. Adelani, and et al. BLOOM: A 176b-parameter
open-access multilingual language model. CoRR, abs/2211.05100, 2022.

[35] T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and T. Scialom.
Toolformer: Language models can teach themselves to use tools. In arXiv preprint arXiv:2302.04761,
2023.

[36] D. Surís, S. Menon, and C. Vondrick. Vipergpt: Visual inference via python execution for reasoning. In
arXiv preprint arXiv:2303.08128, 2023.

[37] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

[38] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou,
D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus. Emergent abilities of
large language models. In arXiv preprint arXiv:2206.07682, 2022.

[39] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou.
Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS, 2022.

[40] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan. Visual chatgpt: Talking, drawing and editing with
visual foundation models. In arXiv preprint arXiv:2303.04671, 2023.

[41] Z. Yang, Z. Gan, J. Wang, X. Hu, Y. Lu, Z. Liu, and L. Wang. An empirical study of GPT-3 for few-shot
knowledge-based VQA. ArXiv preprint, abs/2109.05014, 2021.

[42] Z. Yang, L. Li, J. Wang, K. Lin, E. Azarnasab, F. Ahmed, Z. Liu, C. Liu, M. Zeng, and L. Wang. Mm-react:
Prompting chatgpt for multimodal reasoning and action. In arXiv preprint arXiv:2303.11381, 2023.

[43] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts: Deliberate
problem solving with large language models. CoRR, abs/2305.10601, 2023.

[44] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning and
acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[45] D. Yu, C. Zhu, Y. Fang, W. Yu, S. Wang, Y. Xu, X. Ren, Y. Yang, and M. Zeng. KG-FiD: Infusing
knowledge graph in fusion-in-decoder for open-domain question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4961–
4974, Dublin, Ireland, 2022. Association for Computational Linguistics.

12


	Introduction
	Related Work
	Method
	General Framework
	Tools and their APIs
	Gathering User Behavior to Inform LLM Decision Making

	Experiments
	Conclusion

