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Abstract

We present a novel actor-critic algorithm for an environment with delayed feedback,
which addresses the state-space explosion problem of conventional approaches.
Conventional approaches use an augmented state constructed from the last ob-
served state and actions executed since visiting the last observed state Using the
augmented state space, the correct Markov decision process for delayed environ-
ments can be constructed; however, this causes the state space to explode as the
number of delayed timesteps increases, leading to slow convergence. Our pro-
posed algorithm, called Belief-Projection-Based Q-learning (BPQL), addresses
the state-space explosion problem by evaluating the values of the critic for which
the input state size is equal to the original state-space size rather than that of the
augmented one. We compare BPQL to traditional approaches in continuous control
tasks and demonstrate that it significantly outperforms other algorithms in terms of
asymptotic performance and sample efficiency. We also show that BPQL solves
long-delayed environments, which conventional approaches are unable to do.

1 Introduction

Deep reinforcement learning (RL) methods have been successfully applied to diverse domains, such
as decision-making tasks and robotic control problems [23, 2]. The deep RL framework has shown
its potential by mastering the highly complex board game Go and defeating the professional Go
player Lee [30]. It has also demonstrated superhuman performance, even in games where a perfect
model is not provided, such as Atari video games [24]. Furthermore, modern deep RL algorithms
have achieved significant performance improvements in continuous control domains, such as robotic
locomotion [28, 29, 14]. Recently, many attempts have been made to apply RL-based control in
not only simulations but also the real-world domain [13, 16, 22, 26]. Remarkable examples include
applying the RL method to a quadrupedal robot to learn walking gaits and plan the motion of robotic
manipulation in the real world [14, 17].

Despite recent progress in RL methods, adapting RL algorithms to the real world remains challenging
for many reasons. Delayed feedback from the environment is a particular challenge. For example,
latency may occur when the controller attempts to communicate with an agent if the agent is located far
from the controller or if a large quantity of data, such as high-resolution images, must be transmitted.
Furthermore, hardware issues can cause sensing or actuator delays. This delayed feedback may
hinder achieving the control objectives.
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Therefore, controlling signal delay is essential for applying RL algorithms to real-world domains.
In this study, we propose a novel approach called belief projection-based Q-learning (BPQL) to
overcome a constant delayed environment in which feedback is delayed by fixed timesteps. BPQL
addresses the state-space explosion problem, which commonly occurs in conventional approaches,
and achieves better performance than conventional approaches in terms of asymptotic performance
and sample efficiency.

2 Related Work

2.1 Standard Reinforcement Learning

A Markov decision process (MDP) is defined as a 5-tuple (X ,A, R, P, γ), where X is the state space,
A is the action space, R : X × A 7→ R is the reward function, P : X × A × X 7→ [0, 1] is the
transition kernel, and γ ∈ (0, 1) is a discount factor. The policy π(·|s) maps the state-to-action
distribution. In the standard RL framework, the agent chooses an action to maximize the discounted
cumulative rewards by interacting with an environment defined as an MDP.

Let the distribution of the initial state be ρ0. Then, the expected discounted cumulative reward from
policy π is given as:

η(π) = E[
∞∑
t=0

γtR(st, at)], (1)

where initial state s0 ∼ ρ0, at ∼ π(·|st), and st+1 ∼ P (·|st, at)
From the standard definitions, the value and Q-value functions are obtained as:

V π(st) = E[
∞∑
k=0

γkR(st+k, at+k)|st] (2)

Qπ(st, at) = E[
∞∑
k=0

γkR(st+k, at+k)|st, at], (3)

where ∀k ≥ 0, at+k ∼ π(·|st+k) and st+k+1 ∼ P (·|st+k, at+k).

Both value functions satisfy the Bellman equation [3]:

V π(st) = Eat∼π(·|st)
[
R(st, at) + γEst+1∼P (·|st,at) [V (st+1)]

]
(4)

Qπ(st, at) = R(st, at) + γEst+1∼P (·|st,at)[V (st+1)]. (5)

In the standard RL framework, we assume that the reward and next state only depend on the
immediately previous state and action based on the Markov assumption. However, in an environment
where the observation is delayed, the next state does not depend on the immediately previous state
but on an older state and action history. This delay property forces the environment to be a partially
observable MDP, not an MDP.

In this study, we consider the observation-delayed environment but not the action-delayed environ-
ment. However, observation and action delays are intrinsically linked [18, 34], which allows us to
control the action-delay problem in the same manner as the observation-delay problem.

2.2 Constant Observation-Delayed Environment

In a delayed feedback environment, the agent receives time-delayed feedback from the environment,
which makes it difficult to choose a timely and correct action at each timestep. In conventional control
theory, signal delay is often handled by augmenting the state as a combination of the last observed
state and history of actions for the delayed timesteps [20, 25].

This augmented state can also be used in RL frameworks. Considering a constant delayed feedback
system, an environment with delayed feedback can be formalized by a constant delayed MDP
(CDMDP) [34]. The CDMDP is defined as a 6-tuple (X ,A, R, P, γ, d), where d is the number of
timesteps between the execution of an action and receipt of feedback from that action (i.e., delayed
timesteps).
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Figure 1: In a constant delayed environment, the agent receives delayed state st+1−d and reward
rt−d after executing action at. These values are the actual feedback from previous action at−d and
state st−d, where d is the number of delayed timesteps.

The CDMDP is known to be reducible to an MDP (S,A, R̄, P̄ , γ), where S = X × Ad is an
augmented state space, R̄ : S × A 7→ R is the reward mapping, and P̄ : S × A × S 7→ [0, 1] is
the transition kernel [18, 34]. This makes it possible to treat the CDMDP as a regular MDP. From
this perspective, some model-free approaches, referred to as augmented state approaches, have been
proposed [4, 34, 27, 6]. These use the augmented state, which is constructed by concatenating the
last observed state and previous actions since visiting the observed state. However, the augmented
state space grows exponentially as the number of delayed timesteps d increases. The curse of
dimensionality makes the augmented state approach tractable for environments with only a relatively
short delay.

Model-based approaches have also been proposed for handling delayed environments [34, 15, 11, 8, 1].
In these approaches, the agent predicts the current state by simulating the environment model and
selects an action based on the predicted state. Increasing the accuracy of the transition model is key
to this approach. However, in a complex, stochastic environment with a long time delay, the rapid
growth of model error increases the difficulty of training the agent.

To the best of our knowledge, the closest work to ours is the study [1] that proposes a model-based
algorithm expectation maximization Q-learning (EMQL). This algorithm, however, can only be
used in discrete states and action spaces, whereas our proposed algorithm can be used in continuous
state-action spaces without constraints. Additionally, although EMQL can suffer from dynamic model
errors, our algorithm avoids this because it is a completely model-free approach.

As aforementioned, delayed environments have been mainly handled with two methods: the complete
information method (e.g., the augmented state method) and the state estimation methods (e.g., the
model-based method). As inherent drawbacks, the first one suffers from the curse of dimensionality
and the second requires accurate model-based state estimation. Therefore, the research objective of
this work is to resolve these two drawbacks together, i.e., find a model-free approach that is basically
free of dimensionality curses. This is why the proposed algorithm was born.

3 Dynamics in Augmented State Space

In this section, we analyze the augmented state approach for the constant delayed environment. Figure
1 illustrates the interaction between an agent and a delayed environment. At each time t, the agent
executes action at and receives the delayed state st+1−d and reward rt−d, where d is the number of
delayed timesteps. These feedback values are the response from action at−d. This misalignment of
state, action, and reward makes it difficult to find an optimal policy.

3.1 Notation

We have observed that the CDMDP can be treated as a regular MDP by replacing the state space in
the CDMDP with the augmented state space. The augmented state is constructed by concatenating
the last observed state and previous actions and is denoted by s̄.

More formally, in an environment delayed by d timesteps, the augmented state s̄t is constructed by
concatenating the last observed state and previous d actions:

s̄t = (st−d, at−d, at−d+1, · · · , at−1). (6)
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The policy that receives the augmented state as input is called the augmented state-based policy,
denoted as π̄(·|s̄). ρπ̄(s̄) is the agent’s steady-augmented state distribution for augmented state-based
policy π̄. Furthermore, we refer to the value of the augmented state as the augmented state-based
value, denoted as V̄ π̄(s̄t). Similarly, the Q-value of the augmented state is called the augmented
state-based Q-value, denoted as Q̄π̄(s̄t, at).

3.2 Augmented State Approach

Our objective is to train the agent in a constant delayed environment. In the augmented state approach,
a new augmented state is constructed by augmenting the last observed state and previous actions to
treat the CDMDP as a regular MDP.

We can apply a modified Bellman operator called the delay Bellman operator T̄ π̄ to determine the
augmented state-based value-function. The operator T̄ π̄ is given as:

T̄ π̄V̄ (s̄t) 7→ Eat∼π̄(·|s̄t)

[
EP(st|s̄t) [R(st, at)] + γEs̄t+1∼P̄ (·|s̄t,at)

[
V̄ (s̄t+1)

]]
,∀t > d, (7)

where d denotes the number of delayed timesteps in the environment. The expected reward is
used in the delay Bellman operator because we assume that all feedback is delayed in a constant
delayed environment, including the reward, which implies that the exact reward R(st, at) cannot be
determined at time t.

The augmented state-based values can be computed by repeatedly applying the delay Bellman
operator. After computing the augmented state-based values, the policy is updated to increase these
values for all augmented states in the policy-improvement stage.

Although the augmented state-based values can be computed using the delay Bellman operator, the
state-space explosion issue follows; the augmented state space grows exponentially as the number of
delayed timesteps d increases because the augmented state space S in the reduced MDP is a Cartesian
product of the original state space and d action space (i.e., S = X × Ad). This indicates that the
larger the state space, the larger the set of samples required to compute the value of the entire set of
states. This makes the augmented state approach impractical for a long-delayed environment.

3.3 Alternative Method to Represent the Augmented State-Based Value

Because calculating the value of the augmented state space by applying the delay Bellman operator
suffers from the state-space explosion issue, we propose an alternative method for representing the
augmented value.

The distribution of the probability of visiting the true current state st (which has not yet been
observed) depends on the augmented state s̄t. If two successive transition probabilities P(st|s̄1t ) and
P(st|s̄2t ) are similar, we can assume that the augmented states s̄1t and s̄2t have similar representative
meanings. Based on this assumption, we define the belief projection of the augmented values as
follows.

Definition 3.1. For a policy π̄, state space X = {s1, s2, · · · , si} and augmented state space S =
{s̄1, s̄2, · · · , s̄j}, let B, V̄ and D be:

B =


P(s1|s̄1) P(s2|s̄1) · · · P(si|s̄1)
P(s1|s̄2) P(s2|s̄2) · · · P(si|s̄2)

...
...

. . .
...

P(s1|s̄j) P(s2|s̄j) · · · P(si|s̄j)

 , V̄ =

V̄ π̄(s̄1)
...

V̄ π̄(s̄j)

 ,D = diag(W),

where W = [ρπ̄(s̄1), ρ
π̄(s̄2), ..., ρ

π̄(s̄j)] is steady-augmented state probability vector when the agent
follows the policy π̄. Then, the projected values Vproj. are defined as:

Vproj. = ΠwV̄, (8)

where the projection operator Πw is B(B⊤DB)−1B⊤D.

We refer to matrix B as the belief matrix. If the matrix B⊤DB is not invertible, then the inverse
operator can be replaced with the Moore–Penrose pseudoinverse operator. We refer to the outcome
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from the projection operator ΠW as the belief projection. The belief projection operator ΠW projects
a vector in Rj onto the column space of the belief matrix B with respect to the weighted Euclidean
norm || · ||W.

Because the belief projection lies in the column space of the belief matrix, we can use the vector Vβ

to decompose the projected values as follows:

Vproj. = BVβ = B

V π̄
β (s1)

...
V π̄
β (si)

 . (9)

We refer to the elements of Vβ as the beta values. The vector Vβ can also be defined as:

Vβ = argmin
V∈Ri

||BV− V̄||2,W. (10)

From Equation (9), the augmented state-based value can be decomposed into the sum of the expecta-
tion of the beta values over the original states and the residual:

V̄ π̄(s̄t) = EP(st|s̄t)
[
V π̄
β (st)

]
+∆π̄

residual(s̄t), (11)

where t > d. Similarly, we can extend Equation (9) to the belief projection for the augmented
Q-values (projected Q-values); the beta Q-values for a given action a satisfy the following:

Q̄π̄(s̄t, a) = EP(st|s̄t)
[
Qπ̄

β(st, a)
]
+ δπ̄residual(s̄t, a) (12)

3.4 Linear Function Approximation

The augmented state approach is impractical for a long-delayed environment because its state-space
size grows exponentially as the number of delayed timesteps increases. In a long-delayed environment,
this indicates that directly calculating the augmented state-based Q-values by applying the delay
Bellman operator requires a significantly large set of samples.

To avoid this issue, instead of calculating the augmented state-based values V̄ directly, we estimate
the belief projection ΠWV̄. Let T̄π̄ be a matrix form of the delay Bellman operator T̄ π̄ i.e., T̄π̄V̄
:= R̄ + γP̄V̄, where R̄ = [EP(st|s̄1),a∼π̄(·|s̄1)[R(s, a)], · · · ,EP(st|s̄j),a∼π̄(·|s̄j)[R(s, a)]]⊤ is a vector
consisting of expected rewards and P̄ is the transition matrix. In this setting, focusing on finding
a solution V∗

β = argminV∈Ri ||BV−ΠWT̄π̄
(BV)||W could be achieved very efficiently, especially

when |S| ≫ |X |.
Note that the values are approximated as linear combinations of the belief matrix and the beta-values.
In other words, the belief projection can be seen as a linear function approximator where the feature
vector for an augmented state s̄k ∈ S is [P(s1|s̄k),P(s2|s̄k), · · · ,P(si|s̄k)] and the corresponding
parameters are the beta values [V π̄

β (s1), V
π̄
β (s2), · · · , V π̄

β (si)]
⊤. In that sense, we can guarantee the

contraction of the combined operator ΠWT̄π̄ by using the well-known contraction property of linear
function approximation [32, 5].

Proposition 3.2. Let the projection operator onto the column-space of the belief matrix B with
respect to the weighted Euclidean norm || · ||W be ΠW, where W = [ρπ̄(s̄1), ρ

π̄(s̄2), ..., ρ
π̄(s̄j)] is a

steady-augmented state probability vector, and the Markov chain be irreducible i,e, ρπ̄(s̄k) > 0 for
all k ∈ {1, 2, ..., j}. Then the combined operator ΠWT̄π̄ is γ-contraction with respect to || · ||W.

Proof. See appendix B.

This contraction property of ΠWT̄π̄ guarantees to find a fixed unique solution V̂
∗
β =

[V̂ π̄
β (s1), · · · , V̂ π̄

β (si)] by repeatedly applying the combined operator ΠWT̄π̄. This V̂
∗
β can be

used as an estimator for the true beta values Vβ , providing a direction for policy update. For
example, a new policy π̄new can be obtained by greedily choosing an action, i.e., π̄new(s̄t) =

argmaxat∈A

(
EP(st|s̄t) [R(st, at)] + EP̄ (s̄t+1|s̄t,at)

[
EP(st+1|s̄t+1)

[
V̂ π̄old
β (st+1)

]])
, where the π̄old

is the policy before improved.
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4 Actor-Critic Algorithm for Constant Delayed Environment

In the previous section, we presented an iterative method that computes the value function in the
smaller state space created by belief projection, rather than in the larger augmented state space.
However, despite the favorable convergence property of value function approximation through belief
projection, explicitly calculating the belief matrix can be challenging, especially in cases where
the augmented space is large or continuous. To address this challenge, we introduce a practical
sampling-based reinforcement learning algorithm based on the theoretical insights from the previous
section. In this algorithm, the agent learns the beta values without the explicit computation of the
belief matrix.

First, we define the delay soft Bellman operator T̄ π̄
soft, which is the soft Bellman operator [14] for the

delayed environment setting:

T̄ π̄
softQ̄

π̄(s̄t, at) 7→ EP(st|s̄t)[R(st, at)] + γEs̄t+1∼P̄ ,at+1∼π̄

[
Q̄π̄(s̄t+1, at+1)− α log π̄(at+1|s̄t+1)

]
,

(13)

where α is the temperature parameter. We can compute the augmented state-based soft Q-values by
repeatedly applying the delay soft Bellman operator.

In the policy improvement stage, the policy is updated towards the exponential of the evaluated
augmented state-based soft Q-function. The improved policy π̄new can be obtained as [14]:

π̄new = argmin
π̄′

DKL

(
π̄′(·|s̄t)

∥∥∥∥exp( 1
α Q̄

π̄old(s̄t, ·))
Z̄ π̄old(s̄t)

)
, (14)

where Z̄ π̄old(st) is a normalizing function. This updated policy π̄new guarantees Q̄π̄new(s̄t, at) ≥
Q̄π̄old(s̄t, at) for all (s̄t, at) ∈ S ×A.

The beta Q-values are approximately computed by minimizing the average of weighted squared
residual error i.e, δπ̄residual in Equation (12) as:

JQβ
= Es̄t∼ρπ̄,at∼π̄

[
EP(st|s̄t)[Q

π̄
β(st, at)]− Q̄π̄(s̄t, at)

]2
. (15)

Let the augmented Q-value be a soft Q-value; then, substituting Q̄π̄(st, at) into (15) with the target
value in (13), Equation (15) can be expanded to the following equation:

JQβ
= Es̄t∼ρ(s̄),at∼π̄

[
EP(st|s̄t)[Q

π̄
β(st, at)−R(st, at)]− γEs̄t+1∼P̄ (·|s̄t,at),at+1∼π̄[Q̄

π̄(s̄t+1, at+1)

− α log π̄(at+1|s̄t+1)]
]2
.

(16)

Subsequently, we replace the augmented state-based soft Q-value with the expectation of beta
Q-values:

Q̄π̄(s̄t+1, at+1) ≈ EP(st+1|s̄t+1)

[
Qπ̄

β(st+1, at+1)
]

(17)

by fitting the augmented Q-value to the belief projection. Then, the objective can be rewritten as:

JQβ
= Es̄t∼ρ(s̄),at∼π̄(s̄t)

[
EP(st|s̄t)

[
Qπ̄

β(st, at)−R(st, at)
]

− γEs̄t+1∼P̄ ,at+1∼π̄

[
EP(st+1|s̄t+1)[Q

π̄
β(st+1, at+1)]− α log π̄(at+1|s̄t+1)

]]2
.

(18)

Now, our objective has changed to finding the beta Q-values, where their expectation best represents
the augmented state-based Q-values. We can also rewrite Equation (14) using the belief projection
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instead of using the augmented Q-values:

π̄new = argmin
π̄′

DKL

(
π̄′(·|s̄t)

∥∥∥∥∥exp( 1
αEP(st|s̄t)[Q

π̄old
β (st, ·)])

Z̄ π̄old(s̄t)

)
(19)

= argmin
π̄′

∑
at∈A

π̄′(at|s̄t)
(
log π̄(at|s̄t)−

1

α
EP(st|s̄t)[Q

π̄old
β (st, at)] + log Z̄ π̄old

(s̄t)
)

(20)

= argmin
π̄′

∑
at∈A

π̄′(at|s̄t)
(
log π̄(at|s̄t)−

1

α
EP(st|s̄t)[Q

π̄old
β (st, at)] + EP(st|s̄t)[logZ

π̄old
(st)]

)
(21)

= argmin
π̄′

EP(st|s̄t)

[ ∑
at∈A

π̄′(at|s̄t)
(
log π̄(at|s̄t)−

1

α
Qπ̄old

β (st, at) + logZ π̄old
(st)

)]
(22)

= argmin
π̄′

EP(st|s̄t)

[
DKL

(
π̄′(·|s̄t)

∥∥∥∥∥exp( 1
αQ

π̄old
β (st, ·))

Z π̄old(st)

)]
, (23)

where Z π̄old(st) is a normalizing function for the distribution Qπ̄old(st, ·). Equation (21) holds because
log Z̄ π̄old(s̄t) and EP(st|s̄t)[log Z̄

π̄old(st)] are independent of π̄′.

Using Equation (23), we can update the policy by minimizing the expectation of the Kullback
Leibler-divergence of the policy and exponential of the beta Q-value. Notably, we need not evaluate
the augmented state-based soft Q-value, which causes the state-space explosion problem when the
delayed timestep is large. By contrast, we evaluate the beta Q-values and improve the policy using
these values.

The beta Q-value is expected to converge more stably and quicker than the augmented state-based
Q-value because its input state space is considerably smaller than the augmented space, which also
helps to obtain an improved policy with higher quality.

In the continuous state setting, the parameterized beta Q-function Qπ̄
θ,β(st, at) can be approximately

computed by minimizing the squared-residual in Equation (18) denoted by JQβ
(θ) with the aid of

replay memory D [24]:

JQβ
(θ) =E(s̄t,st,at,rt,s̄t+1,st+1)∼D[

1

2
(Qπ̄

θ,β(st, at)− (rt + γEat+1∼π̄[Q
tar
θ,β(st+1, at+1)

− α log π̄ϕ(at+1|s̄t+1)]))
2],

(24)

where rt = R(st, at), Qtar
θ,β is a target network for Qπ̄

θ,β [24], and π̄ϕ is a parameterized policy.

In the policy improvement stage, the policy can be trained by minimizing the objective Jπ̄(ϕ), which
can be formalized from Equation (23) as:

Jπ̄(ϕ) = E(s̄t,st)∼D
[
Eat∼π̄ϕ

[
α log π̄ϕ(at|s̄t)−Qπ̄

θ,β(st, at)
]]
. (25)

By iteratively minimizing JQβ
(θ) and Jπ̄(ϕ), the actor and critic networks can be trained for a

delayed environment. This is the BPQL algorithm. Note that the first and second subscripts of Qθ,β

refer to the neural network weights and the beta Q-values, respectively. Actually, the beta Q-values
depend on the neural network weights. Nevertheless, θ and β are written together for clearer notation.
Only θ is the variable set to be optimally taken through learning.

In the BPQL algorithm, expanded transition tuples that include augmented states are stored in the
replay memory D. To construct the augmented state, we use a temporary buffer B in which the
original states and action history are stored. The details of BPQL are summarized in Appendix A.

5 Experiments

We compared the performance of the BPQL algorithm with the following three baselines4:

4Further details of the implementation of these algorithms are given in Appendix D.
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Figure 2: Performance curves of each algorithm for the Walker2d-v3 task. We repeated the test for
this task five times with different random seeds. The mean over the results is shown by the solid line,
and the shaded area represents the standard deviation. As the delay increases, the proposed algorithm
BPQL significantly outperforms other algorithms in terms of asymptotic performance and sample
efficiency.

Table 1: Results of MuJoCo benchmark tasks for one million interactions. Each task was evaluated in
the delayed environment setting for 3,6, and 9 delayed timesteps d. All tests were repeated with five
different random seeds. All results are shown with the standard deviation over the five trials denoted
by ±.

Environment
HalfCheetah-v3 Walker2d-v3 Hopper-v3 Swimmer-v3 InvertedPendulum-v2 Reacher-v2

d Algorithm

3

Normal SAC −276.2±93.1 672.2±518.8 290.9±86.7 32.8±3.7 16.9±13.7 −28.23±4.66

Delayed-SAC 4182.7±609.7 4463.2±434.0 2821.7±609.1 73.9±32.6 916.5±142.1 −3.95±0.53

Augmented SAC 6054.0±1045.5 3453.3±462.6 2732.6±858.9 47.6±2.1 983.6±32.6 −3.95±0.51

BPQL (ours) 8100.1±543.4 4538.5±271.3 2922.5±671.2 88.0±36.6 998.1±3.6 -3.80±0.51

6

Normal SAC −288.7±50.7 38.6±29.4 68.3±34.1 32.1±6.7 10.1±2.9 −38.2±3.18

Delayed-SAC 2660.9±492.3 1.0±4.0 1289.2±1071.7 58.2±14.6 929.1±141.7 −4.02±0.50

Augmented SAC 2012.6±835.0 3028.4±383.2 2100.0±752.7 43.4±3.8 1000.0±0.0 −4.05±0.48

BPQL (ours) 6334.6±245.3 4551.9±759.4 3336.0±200.3 93.0±31.8 983.4±33.1 -3.81±0.51

9

Normal SAC −294.0±46.7 26.4±8.5 69.0±12.5 26.3±3.6 16.1±5.9 −37.36±3.42

Delayed-SAC 1764.3±203.3 2.6±6.4 513.7±642.2 77.6±34.1 505.8±333.2 −4.01±0.51

Augmented SAC 1297.2±265.9 1562.9±1075.9 1497.8±747.7 38.3±4.0 1000.0±0.0 −4.39±0.54

BPQL (ours) 5887.5±270.5 4104.3±428.7 2993.4±566.7 93.5±34.6 985.6±28.6 -3.86±0.50

• Augmented approach: Augmented SAC

• Model-based approach: Delayed-SAC

• Normal SAC

In the augmented approach, we solve the control problem by adopting an augmented state space,
which facilitates treating the CDMDP as a regular MDP. This is a popular and widely used method
for an agent learning in a delayed environment [34, 27]. The policy and critic in the augmented state
approach are trained by minimizing the objectives J̄Q̄(θ) and J̄π̄(ϕ):

J̄Q̄(θ) = E(s̄t,at,rt,s̄t+1)∼D[
1

2
(Q̄π̄

θ (s̄t, at)− (rt + γEat+1∼π̄[Q̄
tar
θ (s̄t+1, at+1)

− α log π̄ϕ(at+1|s̄t+1)]))
2],

(26)

J̄π̄(ϕ) = E(s̄t)∼D[Eat∼π̄ϕ
[α log π̄ϕ(at|s̄t)− Q̄π̄

θ (s̄t, at)]. (27)

We named this augmented-based approach Augmented SAC.

In the model-based approach, we use the delayed-Q algorithm [10], which uses a forward model
to estimate the timely proper state. In this approach, the agent takes an action based on the pre-
dicted current state from the dynamic model using the last observed state and action history, i.e.,
(st−d, at−d, at−d+1, · · · , at−1). The model repeats the one-step transition prediction d times to
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Figure 3: (a) Result of tests on noisy version of InvertedPendulum-v2. The noises added to
the actuator are drawn from a normal distribution with a mean of zero and standard deviations
of 0.1 ((a)-left) and 0.15 ((a)-right), respectively. The range of action for the actuator is [-
3, 3]. (b) The performance curves of BPQL and Augmented SAC with different hidden sizes
∈ {(256, 256), (512, 512), (1024, 1024), (256, 256, 256)} of Q-network.

predict the current state. In the learning stage, we train the critic and policy using true transition
tuples, i.e., (st, at, rt, st+1). The original study used double deep Q-networks (DDQN) [33] as the
base learning algorithm. However, because DDQN is only applicable to discrete action spaces, we
have used SAC for our base learning algorithm, so named this model-based approach Delayed-SAC.

Lastly, in the Normal SAC approach, the agent naively uses delayed feedback for training without any
modification.

5.1 Performance Comparison

We tested the algorithms on several tasks using the MuJoCo benchmark [31] and evaluated their
performances in environments with different numbers of delayed timesteps.5 Figure 2 shows that the
augmented and model-based approaches are inappropriate for environments in which the delayed
timestep is large, whereas the proposed BPQL algorithm exhibits significantly better performance in
a long-delayed environment. Table 1 lists the overall experimental results, confirming that BPQL
outperforms the conventional approaches by a wide margin in environments ranging from a short
(d=3) to a long delay (d=9).

5.2 Stochastic Environment

We evaluated BPQL and other baselines on the noisy version of the InvertedPendulum-v2 environment,
where Gaussian noises were added to the actuator such that the acting becomes stochastic for the
same input for the actuator. The added noises to the actuator are sampled from normal distribution
with zero mean and standard deviations of 0.1 and 0.15. In this stochastic environment, BQPL has
also shown better performance than conventional algorithms, and the difference gap in performance
increased as the level of stochasticity grew.

5.3 Performance comparison of augmented approach with various capacity of Q-network

We conducted additional ablation study to investigate whether the size of Q-network was too small
to learn and extract important features from the augmented state. We tested the performance of
Augmented SAC with different hidden size of the Q-network, including (256,256), (512,512),
(1024,1024), and (256,256,256). The results of this additional experiment show that the size of the
Q-network does not significantly affect the performance of the augmented SAC as shown in Figure
3-(b). This confirms that addressing the state space explosion problem is a crucial factor in training
the agent in a delayed environment.

6 Conclusion

In this study, we proposed a novel model-free algorithm BPQL for a constant delayed environment.
BPQL evaluates the beta Q-function based on the original state-space size rather than evaluating the

5See Appendix C for the details of these environments.
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augmented Q-function, which helps the parameterized Q-function learn more stably and converge
faster. In regards to the MuJoCo benchmark for continuous control tasks, BPQL achieves significantly
better performance than the augmented state approach, which is a popular and widely used algorithm
for delayed environments. Our results show that BPQL provides a promising avenue for handling
delayed environments, such as real-world robot control environments where sensing and actuator
delay exist, or a communication system with a narrow bandwidth.

As BPQL cannot be applied to a random delayed environment, it would be meaningful to extend our
work to an environment with randomly delayed feedback. Ensemble learning of the beta Q-functions
and augmented state-based policies that cover the entire delay range could be one possible approach.
Furthermore, real-world applications using the proposed algorithm is an exciting direction for future
work.
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A Architecture and Pseudo Code of BPQL

Figure 4: BPQL architecture: The agent selects an action using an augmented state, which is obtained
from the temporary buffer, as an input of the policy. At every time t > 2d, a transition tuple
s̄t−d, st−d, at−d, rt−d, s̄t+1−d, st+1−d is stored in the replay memory, and the policy and beta critic
are trained by minimizing Jπ̄ and JQβ

, respectively.

Algorithm 1 Belief-Projection-Based Q-learning (BPQL)
1: initialize a policy π̄ϕ(a|s̄), beta critics Qθ,β(s, a), target beta critics Qtar

θ,β(s, a), an empty replay
memory D, a temporary buffer B, delayed timesteps d, learning rate for the beta critic λQβ

,
learning rate for the policy λπ̄ , and soft update ratio τ

2: for episode = 1 to E do
3: for t = 1 to H do
4: if t < d then
5: executes action at randomly or ‘No-Op’ action
6: put at to B
7: else if t = d then
8: choose action ad randomly or ‘No-Op’ action
9: s1 ←Env(ad)

10: put s1 and ad to B
11: else
12: get st−d, at−d, . . . , at−1 from B
13: s̄t ← (st−d, at−d, . . . , at−1)
14: at ← πϕ(s̄t)
15: st+1−d, rt−d ←Env(at)
16: put st+1−d and at to B
17: if t > 2d then
18: get st−2d, st−2d+1, st−d, at−2d, . . . , at−d from B
19: s̄t−d ← (st−2d, at−2d, . . . , at−d−1)
20: s̄t−d+1 ← (st−2d+1, at−2d+1, . . . , at−d)
21: store (s̄t−d, st−d, at−d, rt−d, s̄t+1−d, st+1−d) in D
22: pop st−2d, at−2d from B
23: end if
24: end if
25: end for
26: for each gradient step do
27: ω ← ω − λQβ

∇θJQβ
(ω)

28: ϕ← ϕ− λπ̄∇ϕJπ̄(ϕ)
29: ω̄ ← τω + (1− τ)ω̄
30: end for
31: end for
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B Proof of Proposition 3.2

Proposition 3.2 Let the projection operator on the column-space of the belief matrix B with respect
to the weighted Euclidean norm || · ||W be ΠW, where W = [ρπ̄(s̄1), ρ

π̄(s̄2), ..., ρ
π̄(s̄j)] is a steady-

augmented state probability vector, and the Markov chain be irreducible i,e, ρπ̄(s̄k) > 0 for all
k ∈ {1, 2, ..., j}. Then the combined operator ΠWT̄π̄ is γ-contraction with respect to || · ||W.

Proof. Let V1
proj. and V2

proj. be an arbitrary vector in Rj , P̄ π̄(s̄′|s̄) be a transition probability of s̄→ s̄′

when the agent follow the policy π̄, and V 1,proj.
k , V 2,proj.

k be the k-th element of the V1
proj. and V2

proj.
respectively.

||ΠWT̄ π̄V1
proj. −ΠWT̄ π̄V2

proj.||2W (28)

= ||ΠW(T̄ π̄V1
proj. − T̄ π̄V2

proj.)||2W (29)

≤ ||ΠW(T̄ π̄V1
proj. − T̄ π̄V2

proj.)||2W + ||(I−ΠW)(T̄ π̄V1
proj. − T̄ π̄V2

proj.)||2W (30)

= ||T̄ π̄V1
proj. − T̄ π̄V2

proj.||2W (31)

= ||R̄ + γP̄V1
proj. − (R̄ + γP̄V2

proj.)||2W (32)

= γΣj
k=1ρ

π̄(s̄k)
(
Σj

l=1P̄
π̄(s̄l|s̄k)

(
V 1,proj.
l − V 2,proj.

l

))2
(33)

≤ γΣj
k=1ρ

π̄(s̄k)Σ
j
l=1P̄

π̄(s̄l|s̄k)
(
V 1,proj.
l − V 2,proj.

l

)2
(34)

= γΣj
l=1Σ

j
k=1ρ

π̄(s̄k)P̄
π̄(s̄l|s̄k)

(
V 1,proj.
l − V 2,proj.

l

)2
(35)

= γΣj
l=1ρ

π̄(s̄l)
(
V 1,proj.
l − V 2,proj.

l

)2
(36)

∵ Σj
k=1ρ

π̄(s̄k)P̄
π̄(s̄l|s̄k) = ρπ̄(s̄l) by the definition of ρπ̄

= γ||V1
proj. − V2

proj.||2W, (37)

where Equality (31) holds by the Pythagorean Theorem, and Inequality (34) follows from the Jensen’s
inequality.
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C Environment Details

(a) (b) (c) (d) (e) (f)

Figure 5: MuJoCo continuous control environments in the experiment: (a) HalfCheetah-v3, (b)
Walker2d-v3, (c) Hopper-v3, (d) Swimmer-v3, (e) InvertedPendulum-v2, and (f) Reacher-v2.

Table 2: Details of the MuJoCo environment

Action dimension State dimension Timestep (s)

HalfCheetah-v3 6 17 0.05
Walker2d-v3 6 17 0.008
Hopper-v3 (s) 3 11 0.008
Swimmer-v3 2 6 0.04
InvertedPendulum-v2 1 4 0.04
Reacher-v2 2 11 0.02

D Implementation Details

In this section, we provide the implementation details of the algorithms used in this study. All
methods presented in the experiment used an SAC as their base learning algorithm with the following
characteristics:

• Stochastic Gaussian policy approaches.
• Automated entropy adjustment [14].
• Clipped-double Q-learning, which was introduced in the TD3 algorithm to prevent overesti-

mating the Q-value [12].
• Soft target update, which changes the target values slowly and improves the learning

stability[21].
• Adam optimizer, a variant of the stochastic gradient descent method [19].

The details of the hyperparameters are presented in Table 3.

Table 3: Hyperparameters for BPQL and the baselines.

Hyperparameters Values

Critic network 256, 256
Policy network 256, 256
Discount factor 0.99
Replay memory size 1 M
Minibatch size 256
Learning rate 0.0003
Target entropy -dim|A|
Target smoothing coefficient 0.995
Optimizer Adam
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E Plots of Performance Comparison

In this section, we present several plots of the performance curves of BPQL and other baselines in
the environments with delayed timesteps of 3, 6 and 9.

Figure 6: Performance curves for each algorithm in continuous tasks with three, six and nine delayed
timesteps.
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F Additional Experiments

F.1 Extremely Long Delayed Environment

We conducted additional experiments to determine how well BPQL could solve the control problem
even in very long delayed environments. Figure 7 shows that in BPQL, the policy is improved through
interaction with the environment in a very long delayed environment, but the conventional methods
find it difficult improve their policy.

Figure 7: HalfCheetah-v3 environment with 20 delayed timesteps (left) and InvertedPendulum-v2
environment with 25 delayed timesteps (right). Each timestep is 0.05 s and 0.04 s for HalfCheetah-v3
and InvertedPendulum-v2 environments, respectively. In the InvertedPendulum-v2 environment,
to prevent early failure, the agent uses a pretrained policy to determine the actions of the first 25
(=number of delayed timesteps) timesteps. We repeated the test for the tasks five times with different
random seeds.

F.2 Action delay

We also evaluated BPQL and other baselines in action delayed environments. Figure 8 illustrates the
interaction between an agent and action delayed environment.

Figure 8: In an action delayed environment, the environment takes the delayed action at−d instead of
the current action at, where d is the number of delayed timesteps.

F.2.1 Augmented State in an Action Delayed Environment

In an action delayed environment, the augmented state at time t+ d is defined as:

s̄t+d = (st, at−d, at−d+1, · · · , at−1), (38)

where the d is the number of delayed timesteps for an action. The CDMDP for an action delayed
environment is defined as a tuple (X ,A, R, P, γ, da), where X is the original state space, A is the
action space, R : X × A 7→ R is the reward function, P : X × A × X 7→ [0, 1] is the transition
kernel, γ ∈ (0, 1) is a discount factor, and da is the number of delayed timesteps for an action.
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This CDMDP can be reduced to a MDP (S,A, R̄, P̄ , γ), where S = X ×Ada is an augmented state
space, R̄ : S ×A 7→ R is the reward mapping, and P̄ : S ×A× S 7→ [0, 1] is the transition kernel
as in the case of observation delayed environments [18]. BPQL for action delayed environments uses
the augmented state defined in Equation (38) instead of the one defined in Equation (6).

F.2.2 Results

Figure 9: Performance curves for each algorithm in continuous tasks with 3 action delayed timesteps.
We repeated the test for the tasks five times with different random seeds.

Figure 10: Performance curves for each algorithm in continuous tasks with 6 action delayed timesteps.
We repeated the test for the tasks five times with different random seeds.

Figure 11: Performance curves for each algorithm in continuous tasks with 9 action delayed timesteps.
We repeated the test for the tasks five times with different random seeds.
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F.3 Discrete Domain

We conducted additional experiments on the classical discrete control OpenAI gym [7] tasks: CartPole-
v1 and LunarLander-v2. In the CartPole-v1 environment, there are two available actions, while in the
LunarLander-v2 environment, four actions are available. We compared the performance of BPQL
with the Delayed-Q algorithm [10] and Delayed-SAC in various action delay settings. To adapt BPQL
and Delayed-SAC to the discrete setting, we implemented a discrete version of SAC [9] for both of
them, instead of the original continuous version. We trained the agent for 1 million timesteps in all
environments (except for Delayed-SAC and BPQL in the CartPole-v1 task, which was trained for 0.5
million timesteps), and obtained results using 10 random seeds.

The results showed that all algorithms performed similarly in the CartPole-v1 environment, which is
considered relatively easier. However, in the LunarLander-v2 environment, as the delay increased,
both Delayed-Q and Delayed-SAC showed a notable deterioration in performance. They even failed
to control the agent in many episodes under the 10 timesteps delay setting. In contrast, the proposed
BPQL algorithm consistently maintained high performance across all tested delay settings (3,5, and
10).

Table 4: Results of OpenAI Gym’s discrete tasks. All results are shown with the standard deviation
over the ten trials denoted by ±. The scores of Delayed-Q in CartPole-v1 are sourced from the
original paper [10] and marked with *.

Environment Delayed-Q [10] Delayed-SAC (discrete ver.) BPQL (discrete ver.)

CartPole-v1 (d=15) 414±14* 411±75 464±60
CartPole-v1 (d=25) 324±7* 396±67 367±94
LunarLander-v2 (d=3) 247±23 285±3 275±10
LunarLander-v2 (d=5) 173±93 282±4 256±53
LunarLander-v2 (d=10) -84±67 -72±178 245±59
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