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Abstract

We present the largest and most comprehensive empirical study of pre-trained visual
representations (PVRs) or visual ‘foundation models’ for Embodied AI. First, we
curate CORTEXBENCH, consisting of 17 different tasks spanning locomotion,
navigation, dexterous, and mobile manipulation. Next, we systematically evaluate
existing PVRs and find that none are universally dominant. To study the effect of
pre-training data size and diversity, we combine over 4,000 hours of egocentric
videos from 7 different sources (over 4.3M images) and ImageNet to train different-
sized vision transformers using Masked Auto-Encoding (MAE) on slices of this
data. Contrary to inferences from prior work, we find that scaling dataset size and
diversity does not improve performance universally (but does so on average). Our
largest model, named VC-1, outperforms all prior PVRs on average but does not
universally dominate either. Next, we show that task- or domain-specific adaptation
of VC-1 leads to substantial gains, with VC-1 (adapted) achieving competitive
or superior performance than the best known results on all of the benchmarks in
CORTEXBENCH. Finally, we present real-world hardware experiments, in which
VC-1 and VC-1 (adapted) outperform the strongest pre-existing PVR. Overall, this
paper presents no new techniques but a rigorous systematic evaluation, a broad set
of findings about PVRs (that in some cases, refute those made in narrow domains
in prior work), and open-sourced code and models (that required over 10,000
GPU-hours to train) for the benefit of the research community.

1 Introduction
The visual cortex is a region of an organism’s brain, which together with the motor cortex, enables
sight to be converted into movement. In this work, we ask the same question that Fukushima [1,
2] asked nearly 50 years ago – how do we design an artificial visual cortex, the module in a
computational system that (together with a policy) enables an agent to convert camera input into
actions? In contemporary AI, this question has been operationalized as the design of pre-trained
visual representations (PVRs) or visual ‘foundation models’ for embodied AI (EAI).3 Indeed, recent
work has shown that PVRs can substantially improve performance and learning efficiency for
navigation [3–5] and manipulation tasks [6–9]. Unfortunately, prior studies are incommensurable –
using different self-supervised learning (SSL) algorithms on different pre-training datasets, designed
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for, and evaluated on different downstream EAI tasks. Naturally, one might ask: Does an artificial
visual cortex already exist?4

Figure 1: An artificial visual cortex for embodied in-
telligence must support a diverse range of sensorimotor
skills, environments, and embodiments; we curate COR-
TEXBENCH to systematically measure progress towards
this ambitious goal. Our strongest model, denoted VC-1
(adapted), is competitive with or outperforms the best
prior results (success rates) on all benchmarks in COR-
TEXBENCH. This comparison is particularly unforgiving
because best prior results are benchmark-specific and not
constrained to share any aspect of their design.

To answer this question, we conduct the most
comprehensive empirical study of visual foun-
dation models for EAI to-date. We curate
CORTEXBENCH, a benchmark for evaluating
PVRs, consisting of 17 tasks spanning low-
level locomotion [10], table-top manipula-
tion [11], dexterous manipulation [12], multi-
finger coordinated manipulation [13], indoor
visual navigation [14], and mobile manipu-
lation [15]. The visual environments span
from flat infinite planes to table-top settings
to photorealistic 3D scans of real-world in-
door spaces. The agent embodiments vary
from stationary arms to dexterous hands to
articulated mobile manipulators. The learn-
ing conditions vary from few-shot imitation
learning to large-scale reinforcement learning.
The exhaustiveness of this study enables us to
draw conclusions with unprecedented scope
and confidence.

Our first finding is a negative result. We dis-
cover that while existing PVRs generally out-
perform learning-from-scratch baselines, no
single PVR is universally dominant. Instead,
we find that PVRs tend to work best in the
domains (navigation, manipulation etc.) they
were originally designed for. We note that
no claims of universality were made in prior
work, so this finding is illustrative rather than refutative, but nonetheless a significant finding that was
not known a priori. Overall, serendipity did not come to pass – an artificial visual cortex does not
already exist.2 However, curiously, the kinds of PVRs that are locally-dominant in CORTEXBENCH
differ significantly in the size and type of pre-training datasets: CLIP [16] used 400M image-text
pairs from the web; MVP [8] used 4.5M frames from web-images and many egocentric-video datasets
– yet, each performs best on some subset of tasks in CORTEXBENCH. This leads to a natural question:
how does scaling model size, dataset size, or diversity affect performance on CORTEXBENCH?
Can we use scaling as a means to learn a single PVR that works for all of the diverse tasks in
CORTEXBENCH?

To study these questions, we combine over 4,000 hours of egocentric videos from 7 sources containing
humans manipulating objects and navigating indoor spaces, together with ImageNet. From this union,
we create 4 pre-training datasets of varying size and diversity, with the largest containing over 5.6M
images. We train vision transformers (ViT-B and ViT-L) [17] on these 4 datasets using Masked
Auto-Encoding (MAE) [18], and systematically analyze their performance on CORTEXBENCH. To
benefit the EAI community, we will open-source these models, which required over 10,000 GPU
hours to train.

We do find evidence supporting the scaling hypothesis, but the picture that emerges is more nuanced
than what a superficial reading might suggest. Our largest model trained on all data, named VC-1,
outperforms the best existing PVR by 1.2% on average. However, VC-1 does not universally dominate
either – i.e., there are PVRs trained on smaller amounts of data that outperform it on specific tasks. A
similar trend emerges for data diversity – more is better on average, but not universally. For instance,
the best performance on the Mobile-Pick task from Habitat 2.0 [15] is achieved by pre-training on
the subset of video data focused on manipulation; presumably because the mobility involved in the
task is fairly limited. Thus, our second key finding is: Naively scaling dataset size and diversity does

4To the degree of our ability to measure it. Moreover, we make no biological plausibility claims in this work.
We are simply motivated by the broad generalization capabilities of a biological visual cortex.
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not improve performance uniformly across benchmarks. We note that this broad evaluation refutes a
naive extrapolation of the positive scaling trends observed in prior work on robot manipulation [8].

Our findings reveal a challenge and opportunity for the community – the search for a PVR that
is universally dominant (or “foundational”) for EAI calls for innovations in architecture, learning
paradigm, data engineering, and more. As a first step towards this open problem, we study adapting
VC-1 with either task-specific training losses or datasets (via MAE [18]) to specialize VC-1 for each
domain. We find that adapting VC-1 results in it becoming competitive with or outperforming the
best prior results on all of the benchmarks in CORTEXBENCH. We highlight that this comparison
is particularly unforgiving, since best prior results are highly domain-specific and are not constrained
to share any aspect of their design. To our knowledge, VC-1 (adapted) is the first PVR that is
competitive with (or outperforms) state-of-art results on such a diverse set of EAI tasks (Figure 1).

Finally, we conduct proof-of-concept hardware experiments using VC-1 in a few-shot imitation
learning setting with two platforms: a TriFinger robot and a Franka Emika Panda arm. In this
real-world setting, we find that VC-1 and VC-1 (adapted) substantially outperform pre-existing
PVRs like MVP [8]. We will release code for CORTEXBENCH to enable the EAI, robotics, and CV
communities to benchmark their own models, and share our pre-trained models (including VC-1)
that we believe can serve as a starting point for all visuomotor tasks of interest today.

2 Related Work

Pre-trained visual representations (PVRs). The last few years have seen increasing interest
in the self-supervised learning (SSL) of visual representations [18–22]. These algorithms use
contrastive [21, 22], distillation-based [19, 20], or reconstructive [18, 23] objectives for training.
Recently, a flurry of works have proposed using the vision transformers (ViTs) [24] with masked
image modeling [18, 25, 26], which among other benefits reduces the computation time required for
pre-training. In this work, we use one such pre-training algorithm (MAE [18]) to explore scaling and
adapting pre-trained visual representations.

PVRs for embodied AI. Inspired by the advancements in self-supervised learning, recent work
has incorporated visual representation learning into the training pipelines for EAI agents [3–9].
Specifically, [6] evaluate several PVRs trained with supervised or self-supervised learning on a
range of EAI tasks, demonstrating promising results under a few-shot imitation learning evaluation
protocol. [7–9] introduce new methods for pre-training visual representations using egocentric video
data, targeting robot manipulation tasks. Similarly, [3–5] use pre-trained visual representations to
improve performance on multiple visual navigation tasks. Closely related, [8] demonstrate that MAE
pre-training on internet-scale video and image data can produce effective visual representations for
robot manipulation tasks. In contrast, our work studies a larger range of embodied AI tasks (collected
in CORTEXBENCH) to understand how PVRs can provide a general-purpose foundation for embodied
agents and explores in-domain model adaptation for various tasks.

Language guided foundation models in EAI. There has also been some recent works in the area
of language-guided representation learning for control. [27] trains a ViT with a masked encoding
objective on pairs of image frames and text. [28] focuses on self-supervised representation learning
for goal-conditioned value functions using language-aligned videos. Additionally, [29, 30] employ
open-vocabulary detectors and vision-language models to detect objects in tabletop views. These
detections, along with the image and vision-language model instructions, are then used to train a
policy. In [31], a multimodal transformer is pretrained on web-scale image-and-text data, and then
used with a transformer-based policy for table-top manipulation tasks.

Scaling model and dataset size. Several works show that scaling model and dataset size improves
performance on vision tasks like image classification [32–34]. In EAI, Radosavovic et al. [8] find
that scaling model and data sizes consistently improves downstream policy performance for robot
manipulation tasks. Our work is the first to study this question of scaling on a broad range of EAI
tasks and refutes a naive extrapolation of the positive scaling trends observed in [8].

Adapting PVRs. When and how to adapt PVRs for downstream applications remains an open
research question [35–39]. In the context of EAI, [6] and [40] show that naively fine-tuning PVRs
with behavior cloning can reduce performance in simulation, and [8] observe minimal gains in
real-world manipulation tasks. In large-scale RL settings, [4, 5] show that end-to-end finetuning
considerably improves performance for indoor visual navigation. By comparison, [41] find simple
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Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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Figure 1: Pre-Training Reusable Representations for Robot Manipulation (R3M): We pre-train a visual
representation using diverse human video datasets like Ego4D [16], and study its effectiveness for downstream
robot manipulation tasks. Our representation model, R3M, is trained using a combination of time-contrastive
learning, video-language alignment, and an L1 sparsity penalty. We find that R3M enables data efficient imitation
learning across several simulated and real-world robot manipulation tasks.

NLP tasks. In this backdrop, we ask the pertinent question: can visual representations pre-trained on
diverse human videos enable efficient downstream learning of robotic manipulation skills?

We hypothesize that a good representation for vision-based robotic manipulation consists of three
components. First, it should contain information necessary for physical interaction, and thus should
capture the temporal dynamics of the scene (i.e. how states might transition to other states). Second,
it should have a prior over semantic relevance, and should focus on task relevant features like objects
and their relationships. Finally, it should be compact, and not include features irrelevant to the above
criteria (e.g. backgrounds). Towards satisfying these three criteria, we study a representation learning
approach that combines (1) time contrastive learning [19] to learn a representation that captures
temporal dynamics, (2) video-language alignment to capture semantically relevant features of the
scene, and (3) L1 and L2 penalties to encourage sparsity. Our experimental evaluation in Section 4.4
finds that all three components are important for training highly performant representations.

In this work we empirically demonstrate that representations pre-trained on diverse human video
datasets like Ego4D [16] can enable efficient downstream policy learning for robotic manipulation.
Our core contribution is an artifact – the pre-trained vision model – that can be used readily in
other work. Concretely, we pre-train a reusable representation for robotic manipulation (R3M),
which can be used as a frozen perception module for downstream policy learning in simulated and
real robot manipulation tasks. We demonstrate this via extensive experimental results across three
existing benchmark simulation environments (Adroit [20], Franka-Kitchen [21], and MetaWorld
[22]) as well as real robot experiments in a cluttered apartment setting. R3M features outperform
a wide range of visual representations like CLIP [12], (supervised) ImageNet [2], MoCo [23, 24],
and learning from scratch by over 10% when evaluated across 12 tasks, 9 viewpoints, and 3 different
simulation environments. On a Franka Emika Panda robot, R3M enables learning challenging
tasks like putting lettuce in a pan and folding a towel with a 50+% average success rate, given
less than 10 minutes of human demonstrations (see Figure 1), which is nearly double the success
rate compared to CLIP features. Overall, on the basis of these results, we believe that R3M has
the potential to become a standard vision model for robot manipulation, which can be simply
downloaded and used off-the-shelf for any robot manipulation task or environment. See https:

//sites.google.com/view/.robot-r3m for pre-trained models and code.

2 Related Work
Representation Learning for Robotics. Our work is certainly not the first to study the problem of
learning general representations for robotics. One line of work focuses on learning representations
from in-domain data, that is, using data from the target environment and task for training the
representation. Such methods include contrastive learning with data augmentation [25, 26, 27, 28],
dynamics prediction [29, 30], bi-simulation [31], temporal or goal distance [32, 33], or domain
specific information [34]. However, because they are trained on data exclusively from the target
domain and task, the learned representations fail to generalize and cannot be re-used to enable faster
learning in unseen tasks and environments.
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Fig. 5. Sample visualization of the input image pair (le�), our inferred MPI representation (middle), where we show the alpha-multiplied color image at a
subset of the depth planes from near to far (top to bo�om, le� to right), and novel views rendered from the MPI (right). The predicted MPI is able to capture
the scene appearance in a layer-wise manner (near to far) respecting the scene geometry.

of 1.0 for PSNR, for example, would mean that this method always
had the highest PSNR score.

We �nd that 1) our network architecture is signi�cantly more ef-
fective than the simple 4-layer network used in the original Kalantari
paper; 2) the VGG perceptual loss helps improve the performance
over the pixel reconstruction loss (see Section 5.4 for discussion);
3) our model outperforms the better of the two Kalantari variants
(VGG with our network architecture), indicating the high-quality
of novel views rendered from the MPI representation.

We also observe that when rendering continuous view sequences
of the same scene, our results tend to be more spatially coherent
than Kalantari, and produce fewer frame-to-frame artifacts. We hy-
pothesize that this is because, unlike the Kalantari model, we infer
a single scene-level MPI representation that is shared for render-
ing all target views, which implicitly imposes a smoothness prior
when rendering nearby views. Please see the video for qualitative
comparisons of our method to Kalantari on rendered sequences.

ACM Trans. Graph., Vol. 37, No. 4, Article 65. Publication date: August 2018.
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Figure 2: CORTEXBENCH: We systematically evaluate pre-trained visual representations by varying datasets
and representation learning algorithms, coupled with reinforcement or imitation learning on diverse EAI tasks.

k-nearest-neighbor adaptation works well for real-world visual imitation tasks. Our work neither
aims nor expects to be the final word on this fertile topic.

3 Benchmarking Progress Towards an Artificial Visual Cortex
We curate CORTEXBENCH (as shown in Figure 1) to evaluate the ability of pre-trained visual
representations (PVRs) to support a wide variety of EAI applications. Specifically, we chose 17
diverse tasks drawn from 7 existing EAI benchmarks that have been deemed important by the
EAI community. For each task, we delineate a downstream policy learning paradigm (e.g., few-
shot imitation learning) and evaluation protocol that follows community standards in each domain
(Appendix A.2). By fixing the tasks and downstream learning methods (Figure 2), we are able to
focus evaluations on the contribution of PVRs, which in turn allows measuring progress towards
the development of an artificial visual cortex for embodied intelligence. We use CORTEXBENCH to
conduct the largest and most comprehensive empirical study to-date.

We recommend two evaluation metrics: Mean Success and Mean Rank. Mean Success: the average
success rate across all benchmarks. Mean Rank: for each benchmark, we rank PVRs based on their
success rate; then we average these rankings across all benchmarks.

3.1 Embodied AI Tasks in CORTEXBENCH

CORTEXBENCH includes the tasks listed in Table 1, illustrated in Figure 1, and described here:

Table 1: CORTEXBENCH includes tasks from 7 diverse
benchmarks with different combinations of observations,
actions, goals, and standard policy learning paradigms.

Benchmark
Suite

Observation
Space

Action
Space

Goal
Specification

Policy
Learning

Adroit (AD) RGB + proprio. Continuous - IL
Metaworld (MW) RGB + proprio. Continuous - IL
DMControl (DMC) RGB + proprio. Continuous - IL
TriFinger (TF) RGB + proprio. Continuous Goal Image/Position IL
ObjectNav (ON) RGB + proprio. Discrete Object Category IL
ImageNav (IN) RGB Discrete Goal Image RL
MobilePick (MP) RGB + proprio. Continuous Goal Position RL

Adroit (AD) [12] is a suite of dexterous ma-
nipulation tasks in which an agent must control
a 28-DoF anthropomorphic hand to perform a
variety of tasks. We study the two hardest tasks
from Adroit: Relocate and Reorient-Pen. In
these tasks, an agent must manipulate an object
into a goal position and orientation, where the
goal must be inferred from the scene.

MetaWorld (MW) [11] is a collection of tasks
in which agents command a Sawyer robot arm to manipulate objects in a tabletop environment.
We consider five tasks from MetaWorld: Assembly, Bin-Picking, Button-Press, Drawer-Open,
and Hammer, following the evaluations in [7].

DeepMind Control (DMC) [10] is a widely studied image-based continuous control benchmark,
in which agents perform locomotion and object manipulation tasks. We consider five DMC tasks:
Finger-Spin, Reacher-Hard, Cheetah-Run, Walker-Stand, and Walker-Walk, following [6].

TriFinger (TF) is a robot, introduced in [13], composed of a three-finger hand with 3-DoF per finger.
We focus on the Push-Cube task, which was a part of the Real Robot Challenge 2020 [42]. In this
tasks, the agent may use all three fingers to push the cube and move it to a goal location (Push-Cube).
Additionally, we consider the easier Reach-Cube task, which was also studied in [43].

Habitat [14] is a simulation platform that includes several visual navigation tasks in which agents
explore highly photo-realistic unseen 3D environments. We consider two tasks in Habitat: image-goal
navigation (ImageNav) [44] and object-goal navigation (ObjectNav) [45]. In both, the agent starts
at a random location in an unknown 3D environment and must find a goal location – specified with
an image from the goal location in ImageNav or the name of an object (e.g., ‘chair’) in ObjectNav.
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Habitat 2.0 [15] includes mobile manipulation tasks in which agents control a Fetch robot with
a 7-DoF arm, mobile base [46], and suction gripper to rearrange objects in apartment scenes. We
consider a challenging version of the Mobile-Pick (MP) task from Habitat 2.0, in which an agent
must pick up a target object from a cluttered receptacle (e.g., a counter) while starting from a position
in which the object is outside of the robot’s reach (thus, requiring navigation), using a relaxed dense
goal specification (described in Appendix A.3).

Discussion CORTEXBENCH encompasses a wide range of tasks, from navigation to manipulation
and locomotion. These tasks employ different policy learning methods, including low-level imitation
learning (MW, DMC, and TF) and large-scale reinforcement learning (ImageNav, ObjectNav,
and Habitat 2.0). Some tasks require a high-level understanding of semantic scene information
(ImageNav and ObjectNav), while others focus on minor changes in the agent’s pose for low-level
control (DMC). This diversity in CORTEXBENCH allows us to draw generalized new conclusions
about existing and new PVRs.

4 Do we already have a visual foundation model for EAI?
First, we evaluate several existing PVRs on CORTEXBENCH to study whether existing open-sourced
visual backbones can consistently perform well across all tasks. For all evaluations preceding
Section 6, we consider frozen visual representations to disentangle the effect of learned representations
from downstream task learning. Specifically, we include the following models:

– CLIP [16] Contrastive image-language pre-training objective; Trained on 400M images-text pairs
from the internet (WIT); ViT-B backbone.

– R3M [7] Time-Contrastive video-language alignment pre-training objective; Trained on 5M images
from a subset of Ego4D; ResNet-50 backbone.

– MVP [8]. Masked Auto Encoding (MAE) pre-training objective; Trained on 4.5M images from
egocentric videos and ImageNet; ViT-B and ViT-L backbones.

– VIP [9]. Goal-conditioned value function pre-training objective; Trained on 5M images from a
subset of Ego4D; ResNet-50 backbone.

These models form a representative set for comparisons, spanning different architectures, pre-training
objectives and datasets. Additionally, we include randomly initialized ViTs with frozen- and fine-
tuned weights to assess the necessity of pre-training and the limitations of pure in-domain learning.

Table 2: Performance of frozen pre-trained visual representations (PVRs) on CORTEXBENCH. Best prior results
are the best reported in literature prior to this work. Overall, we find that no single PVR consistently performs
the best across all benchmarks. However, we find that several of these pre-trained models often outperform a
random training from scratch baseline. Best prior results sources (row 1): Adroit and MetaWorld approximated
from [7], DMControl from [6], ImageNav from [4], ObjectNav from [47]. Frozen PVR Sources (row 2): Adroit,
MetaWorld, and DMControl are the same as SOTA, ImageNav from [4], ObjectNav from [48].

Imitation Learning Reinforcement Learning Mean

# Model Adroit MetaWorld DMControl TriFinger ObjectNav ImageNav Mobile Pick Rank Success

1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Best prior result (Frozen PVR) 75 80 77 - 54.4 61.8 -

3 Random (ViT-B) Frozen 2.0 ± 2.0 0.5 ± 0.5 10.1 ± 0.6 57.8 ± 0.5 19.2 ± 0.9 42.1 ± 0.8 10.8 ± 1.4 7.2 20.4
4 Random (ViT-L) Frozen 2.7 ± 1.8 0.5 ± 0.5 9.1 ± 0.2 57.2 ± 0.9 19.3 ± 0.9 45.2 ± 0.8 20.6 ± 1.8 6.9 22.1
5 Random (ViT-B) Fine-tuned 44.0 ± 2.0 49.9 ± 7.3 43.5 ± 2.4 56.1 ± 1.3 28.5 ± 1.0 62.5 ± 0.7 47.6 ± 2.2 5.3 47.4

6 MVP (ViT-B) 48.0 ± 3.3 91.2 ± 2.9 65.9 ± 2.4 59.7 ± 0.3 51.2 ± 1.1 64.7 ± 0.7 56.0 ± 2.2 3.1 62.4
7 MVP (ViT-L) 53.3 ± 4.1 87.5 ± 3.4 69.2 ± 1.5 74.1 ± 0.3 55.0 ± 1.1 68.1 ± 0.7 65.4 ± 2.1 2.1 67.5
8 CLIP (ViT-B) 47.3 ± 3.0 75.5 ± 3.4 55.5 ± 1.4 62.0 ± 0.5 56.6 ± 1.1 52.2 ± 0.8 49.8 ± 2.2 3.9 57.0
9 VIP (RN-50) 54.0 ± 4.8 90.1 ± 2.2 72.5 ± 2.7 66.7 ± 0.2 26.4 ± 1.0 48.8 ± 0.8 7.2 ± 1.2 4.0 52.3
10 R3M (RN-50) 73.3 ± 2.0 96.0 ± 1.1 81.1 ± 0.7 69.2 ± 0.8 22.7 ± 0.9 30.6 ± 0.7 33.2 ± 2.1 3.4 58.0

Table 2 shows the evaluation results aggregated by benchmark; no single model excels in all cases.
Among all of the models evaluated, R3M performs the best on Adroit, MetaWorld, and DMControl.
While MVP (ViT-L) performs best on TriFinger, ImageNav, and Mobile Pick. CLIP, on the other
hand, achieves the best results on ObjectNav. The variance in performance of existing PVRs on
CORTEXBENCH is further illustrated in Figure 5 in Appendix A.4 and highlights that we do not yet
have a single, strong performing artificial visual cortex for EAI.

5 Analyzing the Scaling Hypothesis for EAI
The previous section investigated models pre-trained on datasets of varying size and diversity. Inter-
estingly, while the model pre-trained on the largest dataset (CLIP) performs well on one benchmark
(ObjectNav) it does not perform well across all tasks. We now ask: how much does the relevance and
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Figure 3: Visualization of scaling hypothesis model performance averaged over CORTEXBENCH. We see modest
but positive scaling trends in both (a) scaling model size and (b) dataset diversity. (c) Average ranking of existing
PVRs (Table 2) and scaling models (Table 4); VC-1: Ego4D+MNI (ViT-L) has the highest average rank.

diversity of the pre-training dataset and the model size matter? To study this, we fix the pre-training
objective (MAE [18]) and vary the composition of the pre-training dataset and the size of the visual
backbone (ViT-B with 86M and ViT-L with 307M parameters). We measure the corresponding
changes in performance on CORTEXBENCH. MAE is selected for these experiments due to the strong
performance on CORTEXBENCH of MVP [8] (Table 2), which uses the MAE pre-training objective.

5.1 Constructing a Pre-training Dataset for EAI

Table 3: Datasets assembled to study effects of pre-
training dataset size, diversity, and relevance – the largest
(Ego4D+MNI) has 5.6M frames. More details in A.5.

Name Frames Used

Ego4D 2,790,520
Ego4D+M (Manip) 3,538,291
Ego4D+N (Nav) 3,593,049
Ego4D+MN (Manip, Nav) 4,340,820
Ego4D+MNI (Manip, Nav, ImageNet) 5,621,987

To evaluate the impact of dataset size and diver-
sity on CORTEXBENCH, which involve naviga-
tion and manipulation tasks, we employ a com-
bination of 7 datasets. One cluster of datasets –
Ego4D [49], 100 Days of Hands (100DOH) [50],
Something-Something v2 (SS-V2) [51], and
Epic Kitchens [52] – contains videos of people
manipulating objects and is comparable to the
datasets used in MVP [8]. A second cluster con-
sists of egocentric indoor navigation datasets:
the Real Estate 10K dataset [53] and the Open-
House24 dataset (described in Appendix A.5.1). Finally, we include ImageNet [54]. We strategically
select dataset combinations (shown in Table 3) to answer the following questions:

– What is the impact of scaling dataset size and diversity?
– How do less-relevant datasets influence the performance of PVRs on EAI tasks?

Ego4D [49] (our base dataset) includes a wide range of egocentric videos consisting of daily life
activities such as home, leisure, transportation, and workplace activities.

Ego4D+M extends Ego4D with videos from 100DOH, SS-v2, and Epic Kitchens, resulting in 3.5M
frames and making this dataset primarily focused on object manipulation scenarios.5

Ego4D+N extends Ego4D with two indoor navigation datasets: OpenHouse24 and RealEstate10K.
This dataset is similar in size to Ego4D+M (3.5M frames) but is more diverse because it contains a
larger proportion of navigation data than the manipulation-centric datasets Ego4D and Ego4D+M.

Ego4D+MN combines Ego4D with the three object manipulation-centric datasets and two indoor
navigation dataset, resulting a dataset with 4.3M frames. While larger than Ego4D+M and Ego4D+N,
it does not include any new types of data beyond the manipulation and navigation videos in the
previous subsets. Thus, it is no more diverse than Ego4D+N (which includes both types of data).

Ego4D+MNI includes Ego4D, all manipulation and navigation datasets, and ImageNet for a total of
5.6M frames. This dataset is used to study the role of internet images for our benchmark tasks.

5.2 Scaling Hypothesis Findings
We now turn to analyzing the effect of increasing model size, dataset size, and dataset diversity. The
full set of results is shown in Figure 3 and Table 4. The key takeaways are:

Model Size. We find that increasing model size positively impacts performance on CORTEXBENCH.
Specifically, in Figure 3a, we find that with all pre-training datasets, switching from ViT-B to ViT-L

5While Ego4D does contain navigation data, it is heavily skewed towards object manipulation.

6



Table 4: Performance of scaling hypothesis models on CORTEXBENCH. We find that on average the VC-1
EGO4D+MNI (VIT-L) model performs best, but is not the best for each benchmark.

# Model Adroit Meta-World DMControl TriFinger ObjectNav ImageNav Mobile Pick Mean Rank Mean Success

1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Rand (ViT-B) fine-tuned 44.0 49.9 34.2 55.0 28.5 65.0 47.6
3 Best result Table 2 (Frozen PVR) 73.3 96.0 81.1 74.1 56.6 68.1 65.4

4 Ego4D (VIT-B) 48.7 ± 1.3 86.1 ± 2.1 64.1 ± 2.3 68.3 ± 1.1 46.8 ± 1.1 64.0 ± 0.7 57.4 ± 2.2 8.6 62.2
5 Ego4D (VIT-L) 50.0 ± 1.2 92.9 ± 2.4 60.8 ± 3.3 69.7 ± 0.5 47.6 ± 1.1 55.8 ± 0.8 67.6 ± 2.1 5.9 63.5
6 Ego4D+N (VIT-B) 50.0 ± 2.4 86.4 ± 2.9 59.5 ± 2.4 67.8 ± 1.3 54.7 ± 1.1 68.7 ± 0.7 59.4 ± 2.2 7.2 63.8
7 Ego4D+N (VIT-L) 54.0 ± 1.2 89.1 ± 2.9 66.4 ± 1.7 66.9 ± 0.4 57.4 ± 1.1 70.5 ± 0.7 65.2 ± 2.1 3.5 67.1
8 Ego4D+M (VIT-B) 51.3 ± 2.4 83.5 ± 2.6 64.3 ± 1.8 69.1 ± 0.4 47.3 ± 1.1 65.8 ± 0.7 59.8 ± 2.2 7.0 63.0
9 Ego4D+M (VIT-L) 52.0 ± 1.3 88.3 ± 3.2 64.7 ± 2.4 64.7 ± 0.9 47.3 ± 1.1 65.5 ± 0.7 68.6 ± 2.1 6.0 64.4
10 Ego4D+MN (VIT-B) 48.7 ± 2.4 85.3 ± 5.2 64.2 ± 1.9 70.3 ± 0.5 52.8 ± 1.1 68.9 ± 0.7 58.6 ± 2.2 6.9 64.1
11 Ego4D+MN (VIT-L) 52.7 ± 4.2 86.7 ± 3.9 69.7 ± 3.3 72.4 ± 0.5 58.4 ± 1.1 69.1 ± 0.7 61.2 ± 2.2 3.1 67.2
12 Ego4D+MNI (VIT-B) 54.0 ± 4.0 89.6 ± 3.9 63.8 ± 2.7 72.2 ± 0.6 55.4 ± 1.1 67.9 ± 0.7 60.6 ± 2.2 4.4 66.2

11 VC-1: Ego4D + MNI (VIT-L) 59.3 ± 5.2 88.8 ± 2.2 66.9 ± 1.4 71.7 ± 0.4 60.3 ± 1.1 70.3 ± 0.7 63.2 ± 2.2 2.4 68.7

improves average performance on CORTEXBENCH. However, in Table 4, we find exceptions where
this general trend does not hold. For instance, when pre-trained on Ego4D+MNI, the ViT-B model
outperforms the ViT-L model on MetaWorld and TriFinger.

Dataset Size and Diversity. Figure 3b shows that, in general, increasing dataset size and diversity
leads to improved performance. Models are are ordered from right to left by increasing size and the
diversity of their pre-training dataset, and we mostly see improvements for both ViT-B and ViT-L.
For instance, Ego4D+M slightly improves upon Ego4D by 0.6 and 0.9 points (62.2 → 62.8 and 63.5
→ 64.4) in the case of ViT-B and ViT-L, respectively. The gains with Ego4D+N are larger and it
outperforms Ego4D by 1.6 points using ViT-B (62.2 → 63.8) and by 3.6 points for ViT-L (63.5 →
67.1). It is interesting to note that Ego4D+N has a larger improvement over the base Ego4D dataset
than Ego4D+M, even though Ego4D+N and Ego4D+M dataset are similar in size. In these results,
we find that increasing diversity by adding indoor navigation data improves performance more than
adding additional manipulation data to Ego4D.

Additionally, we find that pre-training on Ego4D+MN is roughly on par with pre-training on
Ego4D+N. We see a 0.3 and 0.1 point difference (63.8 → 64.1 and 67.1 → 67.2) for ViT-B and
ViT-L, respectively, even though Ego4D+MN has about 800K more training frames. Together with
the results from above this demonstrates that increasing data diversity seems to matter more than
simply increasing dataset size.

Next, we find that adding ImageNet positively impacts average performance on CORTEXBENCH. For
example, models pre-trained on Ego4D+MNI outperform those pre-trained on Ego4D+MN by 1.9
points (64.1 → 66.2) for ViT-B and 1.5 points (67.2 → 68.7) for ViT-L. Interestingly, these results
demonstrate that including static internet images can significantly boost performance on EAI tasks.
This finding further highlights the importance of seeking data diversity to build better representations.

Finally, our largest model (ViT-L) pre-trained on all datasets (Ego4D+MNI), achieves the best rank
when averaged across all benchmark tasks (Table 4 row 11), with a mean rank of 2.4. We call this
model VC-1, and will open-source it. VC-1 is superior to the second-best model (Ego4D+MN ViT-L,
Table 4 row 9), which has an average rank of 3.1.

However, upon further dis-aggregation, we observe we find that while VC-1 performs best on
average, it is not the best for each benchmark. For example, the best model for Mobile Pick, a
mobile manipulation task, is a ViT-L trained on Ego4D+M and the best model for ImageNav, an
indoor navigation task, is the ViT-L trained on Ego4D+N. These findings suggest that task-specific
pre-training datasets could enhance the performance of models on individual tasks. However, it is
important to note that this approach would lead to multiple pre-trained models, each tailored to a
specific task, and not a unified visual foundation model.
5.3 How does VC-1 compare to existing PVRs?
We now compare VC-1 to PVRs from Section 4. On average, VC-1 has the best rank across all
benchmarks (Figure 3c). In terms of mean success, VC-1 (Table 4 row 11) outperforms MVP (ViT-L)
by +1.2 points (67.5 → 68.7), R3M by +10.7 (58.0 → 68.7), CLIP by +11.7 (57.0 → 68.7), and
end-to-end fine-tuning from scratch +19.6 (49.1 → 68.7).

Impressively, VC-1 outperforms CLIP on every benchmark (Figure 4), despite training on a 70X
smaller dataset, emphasizing the importance of egocentric interaction datasets. VC-1 also outperforms
fine-tuning from scratch on every benchmark, indicating that PVRs trained with out-of-domain data
can outperform in-domain, end-to-end learning.
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Figure 4: Comparison of VC-1 with existing PVRs. VC-1 matches or exceeds existing PVRs on all benchmarks
except R3M on AD, MW, and DMC, indicating an opportunity for model adaptation.

The MVP model is the most similar in terms of results, architecture, and pre-training objective to
VC-1, with the main difference being the addition of a convolutional stem in MVP. VC-1 outperforms
MVP VIT-L by 1.3 points on mean success and performs better on four out of seven benchmarks
(Figure 4), likely due to the use of a more diverse dataset.

When compared to R3M, VC-1 demonstrates superior performance both on average and in 4 out of 7
benchmarks (Figure 4). However, R3M outperforms VC-1 on Adroit, MetaWorld and DMControl
benchmarks. The cause of this gap is unclear – it could be due to differences in pre-training objectives,
datasets, or the backbone architecture. That said, the fact that R3M, which uses a ResNet-based
architecture, performs better on some tasks than VC-1 which employs a Transformer-based backbone,
suggests the potential value of exploring new architectures that integrate the strengths of both
approaches - inductive biases and scalability. Taken together, these observations highlight the need
for more robust and standardized evaluations on benchmarks like CORTEXBENCH.

Overall, VC-1 is effective across a broad set of tasks and thus a reasonable starting point for novel
EAI problems. However, it is not always the best model for a specific task. This leads us to theorize
that there is a domain gap that might be bridged with dataset engineering or adaptation of the PVR.

6 Adapting VC-1

In prior sections, we focused on evaluating VC-1 as a frozen PVR. We now study if adapting VC-1
can improve results in downstream tasks. We use a broad definition of adaptation [55], which, in the
context of large pre-trained foundation models, can take several forms from simple prompting [56],
to selectively updating some or all weights of the backbone [5, 35, 57].

In the context of PVRs for EAI, adaptation can serve at least two purposes. The first is task-
specialization in the feature extraction stage. Since VC-1 was trained with MAE [18], it captures fea-
tures that are generally useful for reconstructing images (see VC-1 attention maps in Appendix A.10).
Adaptation can specialize the visual backbone to extract features required for performing specific
EAI tasks. Secondly, adaptation can also help mitigate domain-gap that might exist between pre-
training and evaluation settings. In general, domain-gap can arise for several reasons such as poor
coverage in pre-training datasets or deployment in novel conditions (e.g., on robots) not seen in the
pre-training data (e.g., in human-centric video datasets). Domain gap is naturally instantiated in our
setup, since VC-1 was pre-trained on real-world, human video data while our downstream evaluation
in CORTEXBENCH uses simulated EAI domains with different visual characteristics.

In this work, we explore two methods for adaptation: end-to-end (E2E) fine-tuning and MAE
adaptation. While we do not explore prompting-based adaptation, because our visual encoders were
not originally designed to utilize prompts, it may be an interesting direction for future work.

End-to-end (E2E) fine-tuning with a task-specific loss function can in-principle capture both of
the aforementioned benefits of adaptation, and is widely used in computer vision literature [18, 20,
58, 59]. To study E2E fine-tuning of VC-1, we use the same policy learning methods described
in Appendix A.2, except we allow updates to the VC-1 weights. In the CORTEXBENCH results
in Table 5, we find an interesting mixed result. In domains that involve large-scale IL or RL
(ObjectNav, ImageNav, and Mobile Pick), the strategy proposed in [5] of adapting VC-1 with E2E
fine-tuning significantly improves performance over using a frozen VC-1 backbone. Specifically,
we see an improvement in ObjectNav success rate (SR) of +7.4 (60.3 → 67.7), ImageNav SR of
+11.3 (70.3 → 81.6), and Mobile Pick SR of +10.8 (63.2 → 74.0). These results suggest that E2E
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Table 5: Adapting VC-1 with end-to-end fine-tuning or self-supervised learning (MAE) on task-specific data
leads to substantial gains. Best prior results are across any setting (frozen/finetuned). Best result (our exp.) are
from Section 5. ∗∗ indicates that, on hardware, we only evaluated MVP (ViT-L), the closest competitor to VC-1.
The TF Push-Cube results are averaged across 12 trials with randomized start/goal configurations. The Franka
results are averaged across 4 tasks and 10 trials per task (details in Appendix A.12).

CortexBench Hardware

# Method Adroit MetaWorld DMControl TriFinger ObjectNav ImageNav Mobile Pick TF Push-Cube Franka

1 Best prior result 75 80 77 - 70.4 82.0 - - -
2 Best result (our exp.) 73.3 ± 2.0 96.0 ± 1.1 81.1 ± 0.7 74.1 ± 0.3 60.3 ± 1.1 70.5 ± 0.7 68.6 ± 2.1 31.9 ± 4.3∗∗ 55.0 ± 10.4 ∗∗

3 In-domain MAE (baseline) 47.3 83.4 77.6 80.4 ± 0.32 39.9 ± 1.09 47.6 ± 0.77 51.6 ± 2.23 22.9 ± 5.4 35.0 ± 13.9

4 VC-1 59.3 ± 5.2 88.8 ± 2.2 66.9 ± 1.4 71.7 ± 0.4 60.3 ± 1.1 70.3 ± 0.7 63.2 ± 2.2 45.8 ± 6.5 70.0 ± 10.9
5 VC-1 E2E fine-tuning 15.9 ± 9.8 22.7 ± 9.7 6.7 ± 3.8 70.9 ± 0.5 67.7 ± 1.05 81.6 ± 0.6 74.0 ± 1.96 52.7 ± 9.2 67.5 ± 13.4
6 VC-1 MAE adaptation 72.0 ± 3.3 96.0 ± 1.8 80.9 ± 1.8 80.6 ± 0.25 57.4 ± 1.11 67.0 ± 0.73 62.4 ± 2.16 43.5 ± 6.7 85.0 ± 9.1

fine-tuning of VC-1 can achieve the benefits of both task-specialization and domain adaptation. A
comparison of VC-1 attention maps before and after adaptation is provided in Appendix A.10.

However, in few-shot IL domains (Adroit, MetaWorld, DMC, and TriFinger), E2E fine-tuning does
not result in improvements. In fact, in these domains, it leads to a drop in performance, a finding
consistent with prior work [6, 40]. We hypothesize that the poor performance of E2E fine-tuning in
few-shot IL domains is caused by overfitting, due to fine-tuning a large model with 307M parameters
on a small dataset (≤ 50K frames).

MAE adaptation to mitigate domain-gap. As an alternative to E2E fine-tuning, we explore adapting
VC-1 with self-supervised learning (SSL). Specifically, in MAE adaptation we continue training
the backbone network with the MAE [18] pre-training objective on task-specific data. Then, we
freeze these adapted representations and use them to learn task-specific policies. We note that in
MAE adaptation, the backbone is adapted using the same data that is used for training the policy
(e.g., frames from expert demonstrations), and no additional in-domain datasets are used. While this
adaptation strategy cannot address task-specialization, it may serve to mitigate domain gap.

For MAE adaptation, we initialize with VC-1 weights, and then train with MAE for 100 epochs. In
domains where expert demonstrations are available (i.e., Adroit, MetaWorld, DMControl, TriFinger,
and ObjectNav), we use the RGB frames from these demonstrations for adaptation. In the remaining
two benchmarks (ImageNav and Mobile Pick) we sample frames from training environments to
create adaptation datasets. Finally, to isolate the importance of initializing with VC-1 weights, we
train in-domain MAE baselines by starting from a random initialization and then following the same
approach used for MAE adaptation.

In the CORTEXBENCH results in Table 5, we observe MAE adaptation substantially improves per-
formance in few-shot learning domains. Specifically, on Adroit performance improves by +12.7
(59.3 → 72.0), MetaWorld by +7.2 (88.8 → 96.0), DMC by +14.0 (66.9 → 80.9), TriFinger by +8.9
(71.7 → 80.6). Interestingly, in DMC and TriFinger, the in-domain MAE baseline (row 3) performs
surprisingly well, highlighting the importance of in-domain data for representation learning. Finally,
in large-scale IL or RL domains (ObjectNav, ImageNav, and Mobile Pick), we find MAE adaptation
results in small reductions in performance from VC-1 (row 4 vs. 6). In these domains, where sub-
stantial amounts of data is available for task-specific training (large-scale IL or RL), we find that E2E
fine-tuning is the superior approach for adaptation. In aggregate, these results suggests that MAE adap-
tation can be explored as a powerful alternative in few-shot domains or where E2E fine-tuning fails.

Overall, we find that adapting the VC-1 model leads to performance improvement in all the bench-
mark domains. Furthermore, on MetaWorld, DMControl, and TriFinger, VC-1 with MAE adaptation
(row 6) is comparable with the best known results (SoTA) and the best results from previous sections
(rows 1 and 2). Similarly, on ImageNav and Mobile Pick, VC-1 with E2E fine-tuning (row 5) matches
or exceeds the best results. Together, these results demonstrate that adaptation of PVRs can be a
powerful paradigm for EAI, especially when compared to training representations from scratch.

7 Proof-of-Concept Hardware Experiments
In addition to simulation experiments with CORTEXBENCH, we also explore proof-of-concept
hardware experiments utilizing VC-1 as a backbone PVR for training policies with IL. Our hardware
evaluation spans two platforms: TriFinger (1 task) and a Franka-Emika Panda arm (4 tasks). Setup
details are provided in Appendix A.11 and A.12. We follow a similar experiment protocol to
the simulated counterparts by studying few-shot imitation learning, where the demonstrations are
collected directly in the real-world via tele-operation or hand-designed controllers.
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We study the cases when using VC-1 as a frozen PVR, VC-1 with MAE adaptation and VC-1
with E2E adaptation (as specified in Section 6), and the MVP model as a baseline (best PVR from
Section 4). The results are summarized in the hardware section of Table 5. Overall, we observe similar
trends to our findings in Section 6. We observe that in frozen mode (row 4), VC-1 substantially
outperforms both MVP (row 2) and in-domain MAE (row 3) in both robot setups. We also find that
adaptation via E2E fine-tuning improves real-world TriFinger performance and that MAE adaptation
leads to large improvements on Franka tasks. We note that while MAE adaptation does not help
TriFinger performance, this is likely due to the mere 300 real robot images available for adaptation.
Together, these results suggest that learning task-specific features (via fine-tuning) was more important
than closing any domain gap (via MAE adaptation) for TriFinger. Overall, these results demonstrate
that VC-1 can effectively function as a PVR for multiple hardware platforms, and can outperform
prior PVRs that have shown success on hardware, such as MVP. Furthermore, it reinforces finding
from Section 6 that adapting VC-1 with SSL objectives (MAE) can improve the performance.

8 Discussion
This work introduced CORTEXBENCH, which comprises 17 different EAI task spanning locomotion,
indoor navigation, and dexterous and mobile manipulation; and conducted the most comprehensive
study to-date of PVRs (or visual foundation models) for EAI. We find that (1) despite significant
progress in a number of narrow domains, we do not yet have a universal visual backbone for
all EAI tasks of interest, (2) naively scaling model size and pre-training data diversity does not
improve performance universally across all tasks, but does so on average, (3) adapting our largest
pre-trained model (VC-1) results in performance that is competitive with or outperforms the best
known results on all benchmarks in CORTEXBENCH, and (4) VC-1 and adaptation show proof-
of-concept generalization to hardware. Our study is an attempt to unify various EAI areas using
the perception module as a cornerstone. The study and development of visual representations for
sensorimotor control today appears splintered across different sub-communities studying egocentric
computer vision, locomotion, navigation, dexterous and mobile manipulation. However, we contend
that this cannot be the final solution. Biological organisms have one visual cortex, not one per
‘task’. Analogously, it must be possible for an embodied AI agent to have one universal artificial
visual cortex supporting a diverse range of sensorimotor skills, environments, and embodiments. We
speculate that learning visual representation using temporal signals, 3D spatial priors, or objectness
will help make progress towards this goal. Our final contention is that in order for the research
community to develop such a model, we need to create benchmarks that test broad generalization
capabilities; we hope CORTEXBENCH will help the community make progress towards that.
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A Appendix

A.1 Limitations

This study presents a thorough examination of visual foundation models but has several limitations.
Firstly, in proposing a benchmark, we sought to find a balance between task diversity and the
computational resources required for evaluation. However, new and challenging benchmarks in
embodied AI, such as those presented in [60], continue to emerge and may merit inclusion in future
studies to track progress in this field. Additionally, while we have focused on masked auto-encoders
(MAE) as the pre-training objective and ViTs as the architecture in our study, there may be other SSL
algorithms that exhibit different scaling behaviors or superior performance on the proposed tasks in
our benchmark. Lastly, the adaptation procedures studied in this work necessitate separate training
on in-domain datasets, as well as careful tuning of hyperparameters such as the number of training
epochs and sampling ratio of the dataset. This results in a significant effort to produce a separate
adapted PVR model for each benchmark evaluated on our benchmark, and the overall effort increases
proportionately with the number of benchmarks included in the study.

In conclusion, it is important to note that although we utilize real-world images and videos for
pre-training our visual representation models (PVRs), the evaluation benchmarks used in this study
serve as proxies for actual robotic tasks, and thus, the performance of the PVR models on real robots
may differ from the rankings established in this study. Further research is necessary to fully evaluate
the effectiveness of these models in real-world scenarios.

A.2 Overview of Downstream Policy Learning in CORTEXBENCH

Given a frozen PVR, an agent needs to learn a policy for each task. The EAI community has
developed a range of policy learning algorithms from few-shot imitation learning (IL) to large-scale
reinforcement learning (RL). For each task in CORTEXBENCH, we conform to the community
standard for achieving state-of-art performance in that domain.

“MuJoCo Tasks” On the tasks from the Adroit, MetaWorld, and DMC suites we train policies using
behavior cloning on a small number of expert demonstrations (100 for Adroit and DMC and 25
for MetaWorld), which follows [6, 7]. Specifically, we train policies for 100 epochs and report the
average rollout performance on the test set for the best intermediate policy during training. For all
tasks, we use frame-stacking and a 3-layer MLP policy network. When using vision transformers
(ViT) based PVRs, we use the [CLS] token as input to the policy, and with ResNets we use features
from the final convolutional layer after global average pooling. These design choices follow prior
work such as [7, 8].

“TriFinger Tasks” For TriFinger, we train policies using behavior cloning on 100 demonstrations
per task. Specifically, we train a policy network composed of a 3-layer MLP for 100 epochs for
Reach-Cube and 1,000 epochs for Push-Cube. We report the average score for the best checkpoint
over the course of training. The input to the policy is the [CLS] token for ViT-based PVRs and
average pooled features from the last convolutional layer for ResNet-based models.

“Habitat Tasks” We train ObjectNav policies with behavior cloning on 77k human demonstra-
tions [61] collected by [62], totaling 360M environment steps. For ImageNav and Mobile-Pick, we
use RL for 500M environment steps with DD-PPO [63] and VER [36]. We use patch representations
for ViT-based PVRs and grid-features from last convolutional layer for ResNet models, passed
through a compression layer [14] for a lower dimensional representation for use by the policy layers,
which is a 2-layer LSTM for navigation and a 2-layer GRU for manipulation.

A.3 Additional Details of Tasks and Downstream Learning in CORTEXBENCH

In this section, we discuss further details for a subset of downstream tasks in CORTEXBENCH.

ImageNav. Our study conducts ImageNav experiments using the standard dataset presented in [64].
This benchmark utilizes the Habitat simulator [15, 65] and is situated within the Gibson [66] envi-
ronments, which comprise 72 training scenes and 14 validation scenes. The validation set includes
300 episodes for each scene, for a total of 4,200 episodes. In this benchmark, agents are modeled as
cylinders with a height of 1.5m, radius of 0.1m, and sensors located 1.25m above the center of the
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base. The RGB camera has a resolution of 128×128 and a 90◦ field-of-view. Agent is able to take up
to 1000 steps within the environment and are deemed successful if they reach a location within 1m of
the goal position and call STOPACTION.

To train the agents within the Gibson environments, we utilize 500M timesteps (25k updates) with
320 environments running in parallel. Each environment collects up to 64 frames of experience,
which is followed by 2 PPO epochs utilizing 2 mini-batches. Unless otherwise specified, we use
a learning rate of 2.5 × 10−4 for training the agents and update the parameters using the AdamW
optimizer with a weight decay of 10−6. We train agents with the reward functions presented in [67]
utilizing the following settings: success weighting cs = 5.0, angle success weighting ca = 5.0, goal
radius rg = 1.0, angle threshold θg = 25◦, and slack penalty γ = 0.01. We evaluate performance
every 25M steps of training and report metrics based on the highest success rate (SR) achieved on the
validation set.

ObjectNav. We present an evaluation of object navigation (ObjectNav) using the HM3D-SEM
dataset [61]. The dataset is comprised of 80 training, 20 validation, and 20 testing scenes and utilizes
the Habitat simulator [15, 65] and HM3D [68] environments. Our results are reported on the v0.1
HM3D-SEM VAL split, which was used in the 2022 Habitat Challenge [69] ObjectNav benchmark.
The agent in this evaluation is modeled after the LocoBot [70] with a height of 0.88m, radius of
0.18m, and sensors placed at the top of the agent’s head. The RGB camera has a 640×480 resolution
and a 79◦ horizontal field of view. The task for the agent is to locate objects from one of 6 categories:

‘chair’, ‘bed’, ‘plant’, ‘toilet’, ‘tv/monitor’, and ‘sofa’ within 500 steps. Successful episodes are
determined by the agent stopping within 0.1m of a viewpoint that is (a) within 1m of any instance
of the target object and (b) from which the object is visible, as outlined in the evaluation protocol
of [45].

We utilize a dataset of human demonstrations for training our imitation learning agent in the task of
ObjectNav. The dataset was collected using Habitat-Web [61, 71] and Amazon Mechanical Turk,
and consists of 77k demonstrations for 80 scenes from the HM3D-SEM dataset [69]. Each scene
contains approximately 158 episodes, each with a unique goal object category and a randomly set
start location, resulting in approximately 950 demonstrations per scene. The dataset includes a total
of ∼12.1 million steps of experience, with an average of ∼159 steps per episode. By leveraging this
human demonstration data, our imitation learning agent is able to learn a more effective policy for
navigating to objects in complex environments.

We trained object navigation (ObjectNav) agent in the HM3D environment for an approximate total
of 400 million steps, utilizing 25,000 updates and 512 parallel environments. Similar to our previous
image-based navigation (ImageNav) experiments, we employed a weight decay of 10−6 and utilized
different learning rates for the visual encoder and other elements of the model. Specifically, we used
a learning rate of 10−4 for the visual encoder and 10−3 for all other elements, with the AdamW
optimizer. To ensure the quality of our trained models, we evaluated checkpoints after every 10M
steps and only reported metrics for the checkpoints with the highest validation success rate.

Mobile Pick. We investigate the Habitat 2.0 Rearrangement task proposed by [15]. This task involves
a mobile manipulation scenario in which a Fetch robot navigates an ReplicaCAD apartment to pick up
a target object from a cluttered receptacle using a mobile base [46]. The robot starts from a non-trivial
position and must utilize a variety of sensors, including an egocentric RGB camera, proprioceptive
joint sensing, and an object grasping indicator. The action space for the robot includes continuous
control over the robot’s 7-DOF arm, base movement, and suction gripper. We relax the dense goal
specification, where the relative position between the end-effector and the target object must be
updated at each step, to a sparse goal specification, where this information is only provided at the
start of the episode. This relaxation places greater emphasis on visual input and makes the task
significantly more challenging.

TriFinger Tasks. The TriFinger tasks are implemented in Pybullet. For Reach-Cube, the state for
the BC policy is [xft

t , zt], where xft
t is the current fingertip position and zt is the latent visual state

vector, obtained by passing the current image observation through the PVR. The success metric
captures how close the fingertip is to the optimal distance from the center of the cube, accounting for
the half=width of the cube. For Push-Cube, the state for the BC policy is [xft

t , zt,∆xc
g], where ∆xc

g
is the goal position for the cube, specified as a displacement from its initial position. Here the success
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is the distance of the center of the cube to the target goal position. We train a policy network with
hidden layers of size 2000 and learning rate 10−4 for up to 100 epochs for the reach task and 1000
epochs for the Push-Cube task.

A.4 Additional Analysis of Existing Pre-Trained Visual Representations (PVRs)

The rank distribution for existing PVRs (shown in Figure 5) demonstrates that there is high variability
in the performance of the models (from prior work) across the benchmarks in CORTEXBENCH.

1 2 3 4 5 6 7 8
Rank per Task

MVP (VIT-L)

MVP (VIT-B)

R3M (RN-50)

CLIP (VIT-B)

VIP (RN-50)

Random finetune (VIT-B)

Random (VIT-L)

Random (VIT-B)

Figure 5: Rank distribution of existing pre-trained visual representations. For every model, we compute the
ranks it achieved on each of the 7 benchmarks. We visualize them as vertical lines, where each rank number
x receives a tick if that model achieved such rank x. For instance, MVP (ViT-L) achieves ranks 1,1,1,2,3,3,4
across the 7 benchmarks. Significant variability exists in the performance of PVRs across benchmarks.

A.5 Scaling Hypothesis Datasets

The datasets composed for scaling hypothesis experiments are detailed in Table 6.

A.5.1 OpenHouse24 Dataset

The OpenHouse24 (OH24) dataset is a collection of video walk-throughs of furnished residential
real estate properties. Over 1600 homes are represented in the dataset, totaling 139 hours of video
footage. Each home is traversed in a continuous shot with a stable HD RGB camera by an operator
that efficiently visits each room. The dataset represents a diverse set of properties, including (but not
limited to) small and large suburban homes, high-rise apartments, ranch homes, and condos. The
ensuing walk-throughs range from under a minute to 14 minutes in length, with the average taking 5
minutes and 12 seconds. The dataset will be open-sourced by a separate research project.

A.6 Scaling Hypothesis Pretraining Details

To train the MAE models, we use the official codebase released by the authors on GitHub [18] and
use the default hyperparameters provided by the repo to train the ViT-B and ViT-L models. We found
the default values worked well on the CORTEXBENCH. However, we do vary the number of epochs
we use to train the different models in Section 5 given the different dataset sizes. We choose the
number of epochs per run such that the number of model updates remain constant across all runs and
match the number of model updates taken by MAE on the ImageNet dataset. We provide details
about the dataset sizes and the epochs calculated for the different runs in Table 7.

A.7 Additional Analysis of Scaling Hypothesis Results

Figure 6 (left) provides additional evidence of the significance of pre-training dataset diversity. We
observe that while the ViT-L models trained in Ego4D+M and Ego4D+N datasets, achieve the best
result in one of the benchmarks, they perform the worst and second-worst in other benchmarks.
However, by adding diversity, the Ego4D+MN and Ego4D+MNI models have decreased variance
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Table 6: Datasets used for our scaling hypothesis experiments, containing up to 5.6M frames.

Name Contains Total Frames Frames used

Ego4D Ego4D 418,578,043 2,790,520

Ego4D+M (Manipulation)

Ego4D 418,578,043 2,790,520
100DOH 99,899 99,899

SS-v2 25,209,271 315,115
Epic Kitchens 19,965,439 332,757

Total 3,538,291

Ego4D+N (Navigation)
Ego4D 418,578,043 2,790,520

OpenHouse24 27,806,971 499,442
RealEstate10K 10,000,000 303,087

Total 3,289,962

Ego4D+MN (Manipulation, Navigation)
Ego4D+M 3,538,291 3,538,291

OpenHouse24 27,806,971 499,442
RealEstate10K 10,000,000 303,087

Total 4,340,820

Ego4D+MNI (Manipulation, Navigation, ImageNet)
Ego4D+MN 4,340,820 4,340,820

ImageNet 1,281,167 1,281,167

Total 5,621,987

Table 7: Experiment Details of Training PVRs.

Dataset Name Epochs Frames used

Ego4D+N (VIT-B) 289 3,538,291
Ego4D+N (VIT-L) 289 3,538,291
Ego4D+M (VIT-B) 414 3,289,962
Ego4D+M (VIT-L)) 414 3,289,962
Ego4D+MN (VIT-B) 236 4,340,820
Ego4D+MN (VIT-L) 236 4,340,820
Ego4D+MNI (VIT-B) 182 5,621,987
VC-1 (Ego4D+MNI (VIT-L)) 182 5,621,987

in their rank distributions. Notably, the Ego4D+MNI model consistently performs well across all
benchmarks, and ranks among the top models.

A.8 Additional Analysis of All Models Evaluated on CORTEXBENCH

Figure 6 (right) provides a complete picture of the rank distribution for all of the models evaluated in
this study. Similarly, Table 8 provides results for all models evaluated in this study is collected.

A.9 Additional Analysis of Scaling Model Size

Figure 7 illustrates that scaling model size has a positive effect on every benchmark and on fifteen
out of the seventeen tasks.
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Random (VIT-L)
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Figure 6: (left) Rank distribution per model - scaling hypothesis. (right) Rank distribution per model - existing
PVRs and scaling hypothesis models

Table 8: The success rate for each task and each model we evaluate during the study before being aggregated by
benchmark.

TASK

model assembly bin_picking button_press cheetah_run drawer_open finger_spin hammer imagenav mobile_pick move_cube objectnav pen reach_cube reacher relocate walker_stand walker_walk

CLIP (VIT-B) 70.7 68.0 48.0 22.7 100.0 74.6 90.7 52.2 49.8 40.1 56.6 72.0 83.8 89.9 22.7 64.9 25.4
MAE Ego4D (VIT-B) 81.3 76.0 80.0 29.1 100.0 76.9 93.3 64.0 57.4 54.0 46.8 74.7 82.6 79.8 22.7 84.3 50.5
MAE Ego4D (VIT-L) 98.0 84.0 84.0 20.7 100.0 76.5 98.7 55.8 67.6 57.0 47.6 76.0 82.4 71.9 24.0 78.4 56.3
MAE Ego4D+M (VIT-B) 76.0 58.7 84.0 31.9 100.0 75.5 98.7 65.8 59.8 57.5 47.4 77.3 80.7 89.3 25.3 80.7 44.3
MAE Ego4D+M (VIT-L) 89.3 73.3 84.0 33.5 100.0 75.6 94.7 65.5 68.6 47.2 47.3 74.7 82.1 85.8 29.3 76.2 52.3
MAE Ego4D+MN (VIT-B) 82.7 74.7 77.3 32.0 100.0 77.5 92.0 68.9 58.6 62.1 52.8 73.3 78.5 85.6 24.0 84.1 41.8
MAE Ego4D+MN (VIT-L) 93.3 70.7 74.7 38.1 100.0 77.0 94.7 69.1 61.2 62.4 58.4 78.7 82.4 91.7 26.7 83.0 58.9
MAE Ego4D+MNI (VIT-B) 88.0 78.7 82.7 32.3 100.0 76.0 98.7 67.9 60.6 60.6 55.4 76.0 83.9 82.6 32.0 83.5 44.7
MAE Ego4D+MNI (VIT-L) 88.0 84.0 80.0 32.8 100.0 76.8 92.0 70.3 63.2 60.2 60.3 80.0 83.3 88.0 38.7 83.3 53.7
MAE Ego4D+N (VIT-B) 86.7 76.0 73.3 28.1 100.0 75.8 96.0 68.7 59.4 54.1 54.7 77.3 81.6 78.7 22.7 72.4 42.6
MAE Ego4D+N (VIT-L) 89.3 73.3 89.3 33.3 100.0 76.2 93.3 70.5 65.2 52.7 57.4 76.0 81.1 88.6 32.0 83.4 50.7
MVP (VIT-B) 92.0 73.3 92.0 33.9 100.0 76.9 98.7 64.7 56.0 44.3 51.2 69.3 75.0 86.3 26.7 84.7 47.9
MVP (VIT-L) 89.3 78.7 70.7 36.9 100.0 76.4 98.7 68.1 65.4 63.4 55.0 76.0 84.8 90.2 30.7 83.2 59.3
R3M (RN-50) 97.3 93.3 89.3 66.1 100.0 77.1 100.0 30.6 33.2 51.9 22.6 81.3 86.5 98.4 65.3 93.8 70.1
Random (VIT-B) 0.0 0.0 2.7 0.4 0.0 0.1 0.0 42.1 10.8 41.3 19.2 4.0 74.3 23.4 0.0 22.7 4.0
Random (VIT-L) 0.0 0.0 0.0 0.5 0.0 0.2 2.7 45.2 20.6 39.4 19.3 5.3 74.9 19.9 0.0 20.1 4.6
Random finetune (VIT-B) 61.3 34.7 20.0 10.2 40.0 48.6 93.3 62.5 47.6 37.6 28.5 73.3 74.5 26.8 14.7 73.6 58.1
VIP (RN-50) 93.3 76.0 88.0 53.2 100.0 76.1 93.3 48.8 7.2 47.2 26.4 81.3 86.2 83.2 26.7 86.6 63.4

Adroit

MetaWorld

DMControl

Trifinger BCObjectNav

ImageNav

MobilePick

25
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75

VIT-B
VIT-L

(a) scaling model size per benchmark (b) scaling model size per task

Figure 7: Scaling model size has a positive effect on (a) every benchmark and on (b) fifteen out of the seventeen
tasks.

A.10 Attention Visualizations of VC-1

To visualize the attention we apply a mean pooling operation to the attention matrices of the ViT
encoder’s final layer during inference for downstream tasks. The resulting values are then overlaid
onto the image.

We start by noticing the effect of MAE pre-training; frozen VC-1 attention maps appear to focus
on the contours and general features of the image. We hypothesize that this results from the MAE
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reconstruction-based training objective, as contours provide essential information for reconstructing
images.

Additionally, we study the attention maps after end-to-end fine-tuning of VC-1 on the downstream
tasks. The attention appears to focus on regions of the image that are important for the task (e.g., the
objects being manipulated). Thus, through adaptation (via E2E fine-tuning), the model learns to drop
attention on areas irrelevant to the specific task.

Figure 8: Attention Visualization: (left) Random ViT-L; (middle) VC-1 frozen; (right) VC-1 E2E finetuned. We
overlay the mean attention matrix in the last layer of the ViT encoder in one of our tasks -MobilePick-. We
notice the effect of MAE pre-training on VC-1: The attention focuses in general features of the image; and of
task-adaptation: the attention concentrates in task-specific regions of the image

A.11 TriFinger Hardware Experiment Setup

We carried out experiments on the real TriFinger robot (shown in Figure 9) for the Push-Cube task,
after training a model using behavior cloning on 30 real-world demonstrations. The success for
Push-Cube is defined as the distance which the cube is able to travel relative to its starting distance
to the goal, similar to [43]. The episode length for this task is 20 steps. For each model, we chose 1
seed and ran it on 12 different start and goal configurations, mostly centered in the arena.

The action space for this environment consists of end-effector displacements for the three fingers.
The motors are controlled at a frequency of 1kHz and the action sent to the robot is a 9 dimensional
vector specifying the joint torques. We use an Intel RealSense camera, positioned next to the table
overlooking the scene, similar to how our simulation image observations are captured. To detect the
cube, we make sure that the green side is always facing upwards and detect the center of that face,
and use that to track the cube’s position in the bowl.
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Figure 9: TriFinger Push Cube task

A.12 Franka Hardware Experiment Setup

We conduct behavior cloning experiments on a manipulation platform comprising a Franka arm and a
Robotiq gripper fitted with Festo Adaptive Gripper Finger. Figure 10 shows the task setups:

• The reaching task requires controlling the end-effector to reach an randomly selected point
between (−0.3, 0.4, 0.2) and (0.3, 0.4, 0.2) in the robot frame within 5cm error given a goal
image prompt.

• The bottle pickup task requires reaching and picking up a bottle with the gripper. The bottle
is randomly positioned on a 10 cm line, same orientation).

• The close-drawer and toaster plunge tasks are similar to the Cacti setup [72].

For all the tasks, the observations are single RGB camera image (420x224 resolution) and pro-
prioceptive signals (7 degree-of-freedom joint angles and 1 degree-of-freedom gripper width). A
3-hidden layer, each with 256 hidden nodes, multi-layer perceptron policy takes PVR encoded images
concatenated with scaled proprioceptive signals as input and predicts the desired absolute joint angles
and gripper width as actions. A low-level 1kHz real-time joint-space PD controller follows the
policy-generated desired trajectory. We specifically keep the gains low (half of the factory setting)
so that the robot will not break anything even if it were commanded to hit the table. This results in
poor trajectory tracking performance, yet both human teleoperators and learned policy can control
the robot to complete the tasks. We use Robohive [73] as the middleware to interface with all sensors
and robots.

Demonstrations are collected from human teleoperation using a Quest 2 controller. For PVR (frozen
encoders), we use Adam optimizer with a learning rate 10−3 to train the policies. For fine-tuning,
we use the same learning rate for policies but a lower learning rate (10−5) for the visual encoders.
Table 9 shows the behavior cloning success rates.

(a) Reaching Ran-
dom Point

(b) Bottle Pickup (c) Toaster Plunge
task on a kitchen
table-top setup

(d) Open Drawer task
on a kitchen table-top
setup

Figure 10: Franka manipulation tasks
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Table 9: Franka manipulation task success rates.
Reaching Bottle Pickup Open Drawer Plunge Toaster Success Count Success %

Demos 30 50 250 250
Evals 10 10 10 10

VC-1 frozen 80 100 60 40 28 70.0
VC-1 E2E fine-tuning 50 90 80 50 27 67.5
VC-1 MAE adaption 90 100 80 70 34 85.0

MAE baseline 30 10 50 50 14 35.0
MVP 70 100 30 20 22 55.0
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