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Abstract

We propose a Gaussian manifold variational auto-encoder (GM-VAE) whose latent
space consists of a set of Gaussian distributions. It is known that the set of the uni-
variate Gaussian distributions with the Fisher information metric form a hyperbolic
space, which we call a Gaussian manifold. To learn the VAE endowed with the
Gaussian manifolds, we propose a pseudo-Gaussian manifold normal distribution
based on the Kullback-Leibler divergence, a local approximation of the squared
Fisher-Rao distance, to define a density over the latent space. We demonstrate the
efficacy of GM-VAE on two different tasks: density estimation of image datasets
and state representation learning for model-based reinforcement learning. GM-
VAE outperforms the other variants of hyperbolic- and Euclidean-VAEs on density
estimation tasks and shows competitive performance in model-based reinforcement
learning. We observe that our model provides strong numerical stability, addressing
a common limitation reported in previous hyperbolic-VAEs. The implementation
is available at https://github.com/ml-postech/GM-VAE.

1 Introduction

The geometry of latent space in generative models, such as variational auto-encoders (VAE) (Kingma
& Welling, 2013), reflects the structure of the data representations. Mathieu et al. (2019); Nagano
et al. (2019); Cho et al. (2022) show that employing hyperbolic space as the latent space improves
the preservation of the hierarchical structure within the data. The theoretical background for adopting
hyperbolic space lies in the analysis of Sarkar (2011); the tree-structured data can be embedded with
arbitrary low distortion in hyperbolic space, while Euclidean space requires extensive dimensions.

Previously proposed hyperbolic VAEs rely on Poincaré normal distribution (Mathieu et al., 2019)
or hyperbolic wrapped normal distribution Nagano et al. (2019) for the prior and variational distri-
butions. Unlike the Gaussian distribution in Euclidean space, however, these distributions suffer
from several shortcomings, including the absence of closed-form Kullback-Leibler (KL) divergence,
numerical instability (Mathieu et al., 2019; Skopek et al., 2019), and high computational cost in
sampling (Mathieu et al., 2019).

Meanwhile, we can form a Riemannian manifold from the set of univariate Gaussian distributions
by equipping the Fisher information metric (FIM). It is known that the FIM of univariate Gaussian
distributions is akin to that of the metric tensor of the Poincaré half-plane model (Costa et al., 2015),
providing a perspective of viewing the points in hyperbolic space as univariate Gaussian distributions.
In other words, a Gaussian distribution can be mapped to a single point in the open half-plane
manifold as shown in Figure 1, where the FIM forms the shortest geodesic distance between two
Gaussian distributions. Noting that the numerical issue of Poincaré normal arises from the geodesic
distance of hyperbolic space, we question whether this perspective can lead us to define a new
distribution with better analytic properties.

In this work, inspired by the fact that KL divergence itself is a statistical distance that locally
approximates the geodesic distance (Tifrea et al., 2018), we propose a hyperbolic distribution by
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Figure 1: (a) The visualization of the Gaussian manifold consisting of a set of Gaussian distributions.
Each point of the Gaussian manifold is a pair of two parameters of a univariate Gaussian distribution:
(µ, σ) ∈ R× R>0. The dashed lines are the geodesics, which are either the ellipses with eccentricity
1/

√
2 with the origin placed on the µ-axis or straight lines parallel to the σ-axis. (b) Three univariate

Gaussian distributions correspond to three points in the Gaussian manifold in (a).

substituting the geodesic distance of Poincaré normal with the KL divergence between the univariate
Gaussian distributions. We then verify that this simple yet powerful alteration results in several
practical analytic properties; the proposed distribution reduces into the product of two well-known
distributions, i.e., the Gaussian and gamma distributions, which are easy to sample, with a closed-form
KL divergence between the proposed distributions. By adopting the proposed hyperbolic distribution,
we introduce a new variant of hyperbolic VAE, named Gaussian manifold VAE (GM-VAE), whose
latent space is a set of Gaussian distributions.

During the experiments, we observe that the proposed distribution is robust in terms of sampling and
KL divergence computation compared to the commonly-used hyperbolic distributions; we briefly
explain the reason why others are numerically unstable. Experimental results on the density estimation
task with image datasets show that GM-VAE can achieve outperforming generalization performances
to unseen data against baselines of Euclidean and hyperbolic VAEs. Application of GM-VAE on
model-based reinforcement learning (RL) verifies the feasibility of using hyperbolic space on another
domain of task.

We summarize our contributions as follows:

• We introduce a variant of VAE whose latent space is defined on a statistical manifold formed
by univariate Gaussian distributions, namely Gaussian manifold.

• We propose a new distribution, called a pseudo Gaussian manifold normal distribution,
which is easy to sample and has closed-form KL divergence, to train VAE on the Gaussian
manifold.

• We empirically verify that the newly proposed VAE performs stable training without numer-
ical issues on the density estimation task with several image datasets. The proposed model
outperforms the baseline Euclidean VAE and other hyperbolic variants.

• We show that our method can be used for model-based RL. Specifically, we replace the
latent space of the world model with hyperbolic space for learning environments, showing
competitive results with a state-of-the-art baseline.

2 Preliminaries

In this section, we first review the fundamental concepts of hyperbolic space and commonly used
hyperbolic models. We then explain the Riemannian geometry between statistical objects, showing
the connection between the statistical manifold and hyperbolic space.

2.1 Review on hyperbolic space

Riemannian manifold. A n-dimensional Riemannian manifold consists of a manifold M and a
metric tensor g : M → Rn×n, which is a smooth map from each point x ∈ M to a symmetric
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positive definite matrix. The metric tensor g(x) defines the inner product of two tangent vectors for
each point of the manifold ⟨·, ·⟩x : TxM×TxM → R, where TxM is the tangent space of x.

The metric tensor induces basic Riemannian operations, such as a geodesic, exponential map, log
map, and parallel transport. Given two points x,y ∈ M, geodesic γx : [0, 1] → M is a unit speed
curve on M being the shortest path between γ(0) = x and γ(1) = y. This curve can be interpreted as
a generalized path of a straight line in Euclidean space. The exponential map expx : TxM → M is
defined as expx(v) = γ(1) = y given γ is a geodesic starting from γ(0) = x and γ′(0) = v ∈ TxM.
The log map logx : M → TxM is the inverse of the exponential map, i.e., logx(expx(v)) = v. The
parallel transport PTx→y : TxM → TyM moves the tangent vector v along the geodesic between x
and y. The geodesic distance dM(x,y) can be induced by the metric tensor as follows:

dM(x,y) =

∫ 1

0

√
⟨γ̇(t), γ̇(t)⟩γ(t)dt.

Hyperbolic space. One method of classifying Riemannian manifolds, a basic question of differen-
tial geometry, is based on curvature. Among different types of curvatures, one popular curvature is
the sectional curvature κg, which is a generalization of the Gaussian curvature in classical surface
geometry. Given two linearly independent vector fields X,Y ∈ X(M), the sectional curvature κg
can be computed with Riemannian curvature tensor R : X(M) × X(M) × X(M) → X(M) as
below:

κg =
⟨R(X,Y )Y,X⟩

⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2
,

where R(X,Y )Y returns a tensor field assigning a tensor to each point of the Riemannian manifold
M. The hyperbolic space is a Riemannian manifold that has the sectional curvature value of constant
negative (Nickel & Kiela, 2018). The hyperbolic space is known to be able to embed tree-structured
data with arbitrarily low distortion (Sarkar, 2011).

Hyperbolic models. We utilize three famous models of hyperbolic space: the Poincaré disk model,
the Lorentz model, and the Poincaré half-plane model.

The Poincaré disk model is a hyperbolic space with an open disk manifold. Earlier hyperbolic
machine learning work uses the Poincaré disk model because it has a simple closed-form of the
operations, such as exponential and log maps (Mathieu et al., 2019). However, the Poincaré disk
model suffers from numerical stability issues when the points exist near the boundary of the manifold.

The Lorentz model is often used as an alteration of the Poincaré disk model (Nickel & Kiela, 2018;
Nagano et al., 2019; Bose et al., 2020; Cho et al., 2022). The Lorentz model uses a half hyperboloid
manifold, where the closed form of the Riemannian operations exists, so the numerical stability issue
of employing the Poincaré disk model is relieved.

The Poincaré half-plane model is another well-known model of hyperbolic space with an open
half-plane manifold. The metric tensor of a point of the two-dimensional Poincaré half-plane model
(x, y) is y−2diag(1, 1).

Numerical stability issues of the hyperbolic models. Hyperbolic space suffers from numerical
stability when applied to machine learning algorithms (Yu & Sa, 2021; Skopek et al., 2019; Mathieu
et al., 2019). The numerical stability mainly occurs for two reasons: machine precision error and
unstable Riemannian operations.

First, due to the machine precision error, the hyperbolic points represented with floating point differ
from the real value (Yu & Sa, 2021, 2019). In contrast to Euclidean space, the points of hyperbolic
space need to satisfy manifold constraints, e.g., the Poincaré disk model allows points whose
Euclidean norm is less than one. A point can be placed near the boundary during the optimization or
inference processes. Although the point does not violate the manifold constraint in theory, it can be
located on or out of the boundary when represented with a floating point due to machine precision
error. We empirically observe that the manifold constraint violation occurs frequently when we need
to embed many data points in hyperbolic space. Figure 3 demonstrates the machine precision error of
each hyperbolic model.

Second, the Riemannian operations of hyperbolic space can result in a not-a-number (NaN) value
when the input value is not in the manifold. For example, the geodesic distance from the Poincaré

3



disk model and the log mapping of the Lorentz model are unstable Riemannian operations, which are
written as:

dP(x,y) = cosh−1

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
, logu(v) =

cosh−1(α)√
α2 − 1

(v − αu),

where α = u0v0 −
∑n

i=1 uivi is the Lorentzian inner product of u,v. For the Poincaré disk model,
when the points x,y are near the boundary of the unit disk, the floating point representation of the
norm values ∥x∥2, ∥y∥2 becomes one. The denominator of the geodesic distance then becomes zero.
For the Lorentz model, if u = v and u contains large values in the coordinates, α becomes less than
one which results in NaN because the domain of cosh−1(x) is x ≥ 1.

2.2 Statistical manifold of univariate Gaussians

A particular case of the Riemannian manifold is a statistical manifold, where each point in the
manifold corresponds to a probability distribution. Specifically, the parameter manifold M of the
probability distributions pθ : X → R, where θ ∈ M, equipped with the Fisher information metric
(FIM) forms a Riemannian manifold (Rao, 1992). The FIM is defined as:

gij(θ) =

∫
X

∂ log pθ(x)

∂θj

∂ log pθ(x)

∂θj
pθ(x) dx.

In the parameter space of univariate Gaussian distributions {(µ, σ) | µ ∈ R, σ ∈ R>0}, the FIM can
be simplified as two-dimensional diagonal matrix σ−2diag(1, 2) (Costa et al., 2015).

Connection to the Poincaré half-plane model. The diagonal form of the FIM implies that the
Riemannian manifold with {(µ, σ) | µ ∈ R, σ ∈ R>0} has the same set of points as the manifold of
the Poincaré half-plane, but with different curvature value of −0.5.

The parameter space of the n-dimensional diagonal Gaussian distributions becomes the product of n
manifolds of the parameter space of univariate Gaussian distributions. In turn, the statistical manifold
of n-dimensional diagonal Gaussian distributions can be viewed as the product of n hyperbolic spaces.
The operations on the product of the Riemannian manifolds

⊗n
i=1 Mi are defined manifold-wise.

For example, an exponential map applied on a point (pi)ni=1 ∈
⊗n

i=1 Mi, with tangent vector
vi ∈ Tpi

Mi for each i ∈ {1, · · · , n}, can be represented as (exppi
(vi))

n
i=1.

Distance in the statistical manifold. In the statistical manifold, distance functions measure the
difference between two distributions on the statistical manifold. One example is the geodesic distance
derived from the FIM, which is called the Fisher-Rao distance. The Fisher-Rao distance of the
statistical manifold of univariate Gaussian distributions is the same as the geodesic distance of the
Poincaré half-plane model with constant negative curvature −0.5.

KL divergence is another widely-used statistical distance for distributions, defined as DKL(p ∥ q) :=∫
x
p(x) log p(x)

q(x) dx for two distributions p, q in the same statistical manifold. One notable property of
KL divergence is that it can locally approximate the squared Fisher-Rao distance (Tifrea et al., 2018):

DKL(p(·;θ + dθ) ∥ p(·;θ)) = 1

2

∑
ij

gij(θ)dθidθj +O(∥dθ∥3).

3 Method

In this section, we first present the concept of the Gaussian manifold, which can have an arbitrary
curvature by reparameterizing univariate Gaussian distribution. We then propose a pseudo Gaussian
manifold normal distribution. Finally, we suggest a new variant of the VAE defined over the Gaussian
manifold with PGM normal as prior. We denote the density function of the Gaussian distribution as
N (x;µ, σ2) = 1/(

√
2πσ2) exp

(
−(µ− x)2/(2σ2)

)
.
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3.1 Gaussian manifold with arbitrary curvature

Previous studies on hyperbolic space emphasize the importance of having an arbitrary curva-
ture (Skopek et al., 2019; Mathieu et al., 2019). These works empirically show that the generalization
performances of hyperbolic VAEs can be improved with varying curvatures. However, as shown
in Section 2.2, the univariate Gaussian distributions form a manifold with curvature value of −0.5,
limiting the flexibility of the manifold.

We show that the statistical manifold of univariate Gaussian distributions can have an arbitrary
curvature by reparameterizing the univariate Gaussian distribution properly. Let N (

√
2cµ, σ2)

be the reparameterized univariate Gaussian distribution with additional parameter c > 0. The
reparameterization leads to the FIM of σ−2diag(1, 1/c) showing that the curvature of the statistical
manifold is −c. The computation of the sectional curvature of the extended FIM is described in
Appendix B.1.

We call the statistical manifold with the reparameterized univariate Gaussian distributions and the
extended FIM as the Gaussian manifold and denote it as Gc, where −c is the curvature of the Gaussian
manifold.

We then verify that the KL divergence between the distributions of the Gaussian manifold approxi-
mates the geodesic distance, even in the presence of arbitrary curvature in the Gaussian manifold. Let
(µ, σ) ∈ Gc be an arbitrary point of the Gaussian manifold. The KL divergence between (µ, σ) and
its neighbor (µ+ dµ, σ + dσ) can be computed as:

DKL(N (
√
2c(µ+ dµ), (σ + dσ)2)||N (

√
2cµ, σ2))

2c
=

1

2

(
dµ
dσ

)⊤( 1
σ2 0
0 1

cσ2

)(
dµ
dσ

)
+O((dσ)3),

(1)

where the first term is the squared Riemannian norm of the tangent vector (dµ, dσ) approximating the
squared Fisher-Rao distance. The detailed derivation of the KL divergence of the Gaussian manifold
is described in Appendix B.2.

3.2 Pseudo Gaussian manifold normal distribution

We propose a pseudo Gaussian manifold (PGM) normal distribution defined over the Gaussian
manifold. Let (µ, σ) ∈ Gc be a point in the Gaussian manifold. Inspired by the Riemannian normal
distribution (Pennec, 2006), we define the probability density function of PGM normal with the KL
divergence as:

Kc(µ, σ;α, β, γ) =
σ3

Z(c, β, γ)
× exp

(
−DKL(N (

√
2c · µ, σ2) ∥ N (

√
2c · α, β2))

2c · γ2

)
, (2)

where (α, β) ∈ Gc, and γ ∈ R>0 are the parameters of the distribution. The distribution is centered
at (α, β) with additional scale parameter γ. We verify the convergence of the PGM normal and
compute the normalizing constant Z(c, β, γ) over the probability measure of the Gaussian manifold
at Appendix C.1. As shown in Equation 1, the KL divergence of the Gaussian manifold approximates
the Fisher-Rao distance between N (

√
2c · α, β2) and N (

√
2c · µ, σ2). Therefore, the PGM normal

accounts for the geometric structure of the univariate Gaussian distributions.

The factorization of the probability density function in Equation 2 multiplied with the square root of
the determinant of the FIM shows the advantages of the PGM normal, which can be written as:

Kc(µ, σ;α, β, γ) ·
√
det(g) = N (µ;α, β2γ2) · 2σGamma

(
σ2;

1

4cγ2
+ 1,

1

4cβ2γ2

)
, (3)

where Gamma(z; a, b) = ba

Γ(a)z
a−1 exp (−bz) and g is the FIM of the Gaussian manifold. The

√
det g term enables us to sample and compute the KL divergence in an Euclidean manner. Thanks

to the properties of Gaussian and gamma distributions, the PGM normal is easy to sample and has a
closed-form KL divergence. The detailed derivation is available in Appendix C.2 and Appendix C.3.
The factorization has the same form as the well-known conjugate prior to the Gaussian distribution.
In that sense, the PGM normal explicitly incorporates the geometric structure between Gaussians into
the known prior distribution.
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We note that the PGM normal can be easily extended for the diagonal Gaussian manifold, a manifold
formed by diagonal Gaussian distributions since the diagonal Gaussian manifold is the product of the
Gaussian manifolds.

3.3 Gaussian manifold VAE

We introduce a Gaussian manifold VAE (GM-VAE) whose latent space is defined over the diagonal
Gaussian manifold with the help of the PGM normal. We use the PGM normal for variational and
prior distributions. To be specific, with the PGM normal, the evidence lower bound (ELBO) of the
GM-VAE can be formalized with the diagonal Gaussian manifold {(µ,Σ) | µ ∈ Rn,Σ ∈ Rn

>0} as:

E
qϕ(µ,Σ|x)·

√
det(g)

[log pθ(x | µ,Σ)]−DKL

(
qϕ(µ,Σ | x) ·

√
det(g) ∥ p(µ,Σ) ·

√
det(g)

)
,

where pθ(x | µ,Σ) is the decoder network, qϕ(µ,Σ | x) is the encoder network and p(µ,Σ) is the
prior. The variational distribution is set to qϕ(µ,Σ | x) = Kc(αϕ(x), βϕ(x), γϕ(x)), where αθ(x) ∈
Rn and βϕ(x), γϕ(x) ∈ Rn

>0, and the prior is set to p(µ,Σ) = Kc(0, I, I) in our experiments given
curvature −c. The pseudo-algorithm for the decoder of GM-VAE is present at Algorithm 1.

4 Related Work

Information geometry on VAE. Focusing on the bridge between probability theory and differential
geometry, the adaptation of information geometry to the deep learning framework has been investi-
gated in various aspects (Karakida et al., 2019; Bay & Sengupta, 2017; Gomes et al., 2022). Having
said that, Han et al. (2020) show that the training process of VAE can be seen as minimizing the
distance between the two statistical manifolds: manifolds with the parameters of the decoder and the
encoder. Not only can the parameters but the outputs from the VAE decoder be modeled as probability
distributions. Arvanitidis et al. (2021) suggest a method of using the pull-back metric defined with
arbitrary decoders on the latent space. Our work focuses more on the statistical manifolds lying on
the outputs of the encoder with the benefits from the information geometry.

VAE with Riemannian manifold latent space. The latent space of VAE reflects the geometrical
property of the representations of the data. The efficacy of setting the latent space to be hyperbolic
space (Mathieu et al., 2019; Nagano et al., 2019; Cho et al., 2022) or elliptic space (Xu & Durrett,
2018; Davidson et al., 2018) has been verified for various datasets. Skopek et al. (2019) further extend
the approach to enable the latent space to be the product of Riemannian manifolds with different
learnable curvatures. On top of these, we explore the method of setting the latent space to be the
diagonal Gaussian manifold, which can be viewed as the product of hyperbolic spaces, and provide a
novel viewpoint on prior work with information geometry.

Distributions over hyperbolic space. Defining a tractable distribution over hyperbolic space is
challenging. Nagano et al. (2019) suggest hyperbolic wrapped normal distribution (HWN) from
the observation that the tangent space is Euclidean space. Leveraging operations defined on the
tangent spaces, e.g., parallel transport, enables an easy sampling algorithm. Mathieu et al. (2019)
propose a rejection sampling method for the Riemannian normal distribution defined on the Poincaré
disk model, namely Poincaré normal distribution. This method rejects the pathological samples and
enables accurate sampling from the distribution in exchange for high computational complexity.

Although these distributions are widely adopted in many applications (Skopek et al., 2019; Mathieu &
Nickel, 2020; Cho et al., 2022), one can barely adopt the full covariance matrix due to the difficulties

Algorithm 1 Decoder
Input Parameter (α, β) ∈ Gc, γ, Decoding layers Dec(·)
Output Reconstruction x′

1: Sample µ ∼ N (α, β2γ2)

2: Sample log σ2 ∼ Gamma
(

1
4cγ2 + 1, 1

4cβ2γ2

)
3: x′ = Dec([µ, log σ2])
4: return x′
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Table 1: Density estimation on real-world datasets. d denotes the latent dimension. We report the
negative test log-likelihoods of average 10 runs for Breakout, CUB, Food101, and Oxford102 with
95% confidence interval. N/A in the log-likelihood indicates that the results are not available due to
the failure of all runs, and N/A in the standard deviation indicates the results are not available due to
failures of some runs. The best results are bolded.

d E-VAE L-VAE P-VAE GM-VAE
(c = 1)

GM-VAE
(c = 1/2)

GM-VAE
(c = 3/2)

Breakout
2 124.74±0.86 122.58N/A 270.05±2.84 121.52±1.00121.52±1.00121.52±1.00 122.64±1.13 122.47±1.98

4 66.39±0.76 66.70±0.32 271.73±42.95 65.83±0.49 66.39±0.50 65.80±0.4965.80±0.4965.80±0.49

8 44.97±0.3744.97±0.3744.97±0.37 45.25±0.27 81.55±64.61 45.14±0.30 45.31±0.36 45.36±0.49

CUB
50 992.05±1.38 993.03±1.64 990.49±2.26 985.46±3.82 986.27±3.81 979.14±3.70979.14±3.70979.14±3.70

60 969.99±3.13 968.79±3.70 964.02±3.55 958.00±3.25 960.88±3.46 956.77±2.53956.77±2.53956.77±2.53

70 949.13±2.72 948.88±3.19 944.24±4.40 939.08±3.12 942.34±3.44 937.15±2.76937.15±2.76937.15±2.76

Food101
50 1297.81±4.51 1298.45±6.32 1293.26±7.14 1286.30±6.191286.30±6.191286.30±6.19 1299.58±7.02 1290.57±8.23

60 1224.03±8.31 1227.16±5.18 1218.09±3.88 1213.31±3.88 1216.63±4.56 1207.30±5.121207.30±5.121207.30±5.12

70 1164.95±3.80 1165.39±5.54 1165.91±4.91 1152.80±3.35 1160.97±4.18 1149.56±3.411149.56±3.411149.56±3.41

Oxford102
50 1297.41±2.69 1296.41±1.56 1294.12±1.80 1292.90±3.43 1289.43±2.461289.43±2.461289.43±2.46 1289.99±1.72

60 1253.80±2.57 1256.52±2.99 1251.77±1.82 1245.49±2.181245.49±2.181245.49±2.18 1248.72±1.62 1247.47±2.51

70 1231.52±3.18 1229.38±3.44 1219.75±1.72 1215.07±2.52 1218.54±3.85 1214.85±2.561214.85±2.561214.85±2.56

in Monte-Carlo based KL approximation. The number of samples to approximate the KL divergence
increases exponentially when the full covariance matrix is used (Cho et al., 2022), so it is common to
use isotropic or diagonal covariance instead. Especially in the Poincaré normal, the computation of
KL divergence is slow due to the expensive rejection sampling.

RL with hyperbolic space. The hierarchical relationship between the states lying on the trajectories
earned from RL agents has been gaining attention recently. Nagano et al. (2019) have studied that the
hierarchical structure of Atari2600 Breakout game states can be well-captured with hyperbolic VAEs.
We compare the same task, where GM-VAE outperforms the previous work. Cetin et al. (2022)
suggest using hyperbolic space as the geometric prior for representation learning in model-free RL
agent, showing improvements in generalization performances. Here, we focus on model-based RL,
especially the method of using the world model (Ha & Schmidhuber, 2018; Hafner et al., 2020), and
open the possibility of applying hyperbolic space to broader domains of RL by solving the bottleneck
of the numerical stability.

5 Experiments

In this section, we demonstrate the performances of GM-VAE on two tasks: density estimation of
image datasets and model-based RL. We remark on the practical properties of GM-VAE shown in the
experiments with additional analyses.

5.1 Density estimation on image datasets

We conduct density estimation on image datasets to measure the effectiveness of hyperbolic latent
space against Euclidean space with the proposed GM-VAE. We use three datasets: the images
from Atari2600 Breakout with binarization (Breakout) (Nagano et al., 2019), Oxford 102 Flower
(Oxford102) (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and Caltech-UCSD Birds-
200-2011 (CUB) (Wah et al., 2011). The datasets are chosen with the four lowest δ-hyperbolicity
(δ-H), a metric that measures how the given images are well-embed in hyperbolic space. Low
δ-H implies that the dataset is likely to embed in hyperbolic space. The details about δ-H are
available in Appendix D. The values of δ-H for the four datasets and other candidate datasets are
in Appendix D.2. Several studies show that the images from the chosen datasets have an implicit
hierarchical structure (Nagano et al., 2019; Li et al., 2019; Bossard et al., 2014; Kerdels & Peters,
2015).

We compare GM-VAE with the three baseline models: VAE with Euclidean latent space (E-VAE), and
hyperbolic VAE equipped with HWN (L-VAE) and Poincaré normal (P-VAE). We use the product
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latent space for both L-VAE and P-VAE, and set the curvature value to −1. The other details on the
implementation and experimental setups are described in Appendix E.1.

The results are reported at Table 1. GM-VAE outperforms the baselines in all the settings, except one
case of Breakout. Especially in CUB and Oxford102, GM-VAE outperforms the baselines regardless
of the curvature value. In Breakout, P-VAE shows inferior performance due to unstable training, and
L-VAE fails in some of the runs with small latent dimension. The results of P-VAE and L-VAE with
non-product latent space, a common choice in previous work, are also present in Appendix F.

5.2 State representation learning in model-based RL

We focus on the model-based RL task to verify the utility of GM-VAE on various tasks. Specifically,
we apply GM-VAE to a world model, which aims to learn the representation of the environments (Ha
& Schmidhuber, 2018; Hafner et al., 2019a,b, 2020). We use DreamerV2 (Hafner et al., 2020) as the
baseline model to evaluate the performance of GM-VAE in modeling environments. DreamerV2 is
composed of a recurrent state space model (RSSM) (Hafner et al., 2019b) and three predictors for
the image pϕ(xt|ht, zt), the reward pϕ(rt|ht, zt), and the discount factor pϕ(γt|ht, zt), where xt is
the observation which the format is the image, rt is the reward, γt is the discounting factor, ht is the
deterministic recurrent state, and zt is the stochastic state. The model is trained by maximizing the
likelihood of p(x, r, γγγ | a) given observations x, rewards r, and discount factors γγγ earned from the
sequence of actions a of an agent. By deriving the evidence lower bound of p(x, r, γγγ | a), the world
model is learned to optimize the likelihood with the variational distribution qθ(zt | ht, xt) with the
following objective L(ϕ, θ) as:

L(ϕ, θ) = E

[
T∑

t=1

(
− log pϕ(xt, rt, γt|ht, zt) + βDKL [qθ(zt|ht, xt) ∥ pϕ(zt|ht)]

)]
,

where β is KL loss scaling factor, T is the length of input sequence, pϕ is the prior, and qϕ is the
approximated posterior. GM-VAE is employed by replacing the space of zt with the Gaussian
manifold and two components in RSSM, the representation model qθ(zt|ht, xt) and transition
predictor pϕ(zt|ht), with PGM normal.

We compare evaluation scores between different types of latent space on world model learning over
the Atari2600 environments. The agents are trained with 100M environment steps. We select games
having the δ-H values of the four lowest and the two highest among 60 popular Atari2600 games.
The other details on the implementation and experimental setups are described in Appendix E.2 with
the δ-H for all 60 games in Appendix D.3.

With a commonly-used hyperbolic distribution, i.e., HWN, we observe that training the world model
fails due to the numerical stability issue. On the other hand, GM-VAE shows competitive results with
the baselines in Euclidean and discrete latent space in all the games we test. The results are reported
in Figure 2b. We note that the reproduced Euclidean baseline results by using the official code are
better than those reported in Hafner et al. (2020).

5.3 Remark on GM-VAE

Numerical stability. One notable property of GM-VAE is the numerical stability during training
compared to L-VAE and P-VAE. During the experiments, L-VAE and P-VAE fail to run in some of
the Breakout image density estimations and all the seeds of model-based RL due to the numerical
instability. Similar observations are also reported in several previous works (Mathieu et al., 2019;
Chen et al., 2021; Skopek et al., 2019). The sampling from a hyperbolic distribution is a major cause
of the numerical instability. Consequently, the sampling-based KL divergence computation can be
unstable.

We first show that sampling from PGM normal can be stabilized via a simple reparameterization trick.
To train GM-VAE, one needs to obtain sample µ and σ from PGN normal Kc(α, β, γ). Sampling µ
can be done from N (α, β2γ2) without numerical issues. Sampling σ can be done from Gamma(a, b)
where a = 1/4cγ2+1, b = 1/4cβ2γ2 as shown in Appendix C.2. However, due to machine precision
error, often, β violates the manifold constraints, i.e., β = 0. Eventually, direct sampling of σ can
cause the numerical instability. To avoid β being zero, we use the output of the VAE encoder as
log β2 whose value ranges over the entire real numbers and is more stable even when β is close to
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(a) Latent space analysis

Latent space Euc. Disc. Hyp. δ−H

Breakout 329.0 256.8 319.3 0.12
Alien 3412.5 3120.0 3485.0 0.14

Zaxxon 34275 38825 38950 0.14
Ice Hockey 25.50 11.80 20.75 0.14

Freeway 32.8 33.0 33.0 0.38
Krull 53290 36135 66185 0.38

(b) Results

Figure 2: The results of model-based RL experiment. (a) The dots from yellow to purple represent
the latent states from the world model in the Atari2600 Breakout with decreasing rewards. Along the
red geodesic dashed line passing, we sample for images to visualize the learned representations. As
the sample shows, we can observe a hierarchical structure at different stages of the game along the
geodesic. (b) We compare the methods of using Euclidean, discrete, and hyperbolic latent space. We
report averaged rewards over four runs and bold the best reward.

zero. With log β2, instead of sampling σ2, we sample log σ2 = log ϵ + log b, where ϵ is sampled
from Gamma(a, 1), through the reparameterization of the Gamma distribution, where log b can be
directly computed from log β2.

We can show that the KL divergence between an arbitrary PGM normal and prior distribution
Kc(0, I, I) has a closed-form solution without any sampling. The KL divergence of PGM normal is
the sum of the KL divergences between two Gaussian distributions and between two Gamma distribu-
tions, as shown in Appendix C.3. First, the KL divergence between a univariate Gaussian distribution
N (µ, σ2) and the prior distribution can be obtained with log σ2 as shown in Equation 4. Second, the
KL divergence between the two Gamma distributions, Gamma(a1, b1) and Gamma(a2, b2), written
as:

DKL(Gamma(a1, b1) ∥ Gamma(a2, b2)) = a2 log
b1
b2

− ln
Γ(a1)

Γ(a2)
+(a1−a2)ψ(a1)−

(
1− b2

b1

)
a1,

where ψ is the digamma function, can be computed using log b.

Table 2: The training time of the VAEs in density
estimation of the Breakout image dataset. We re-
port the training time of the VAEs in seconds per
epoch. GM-VAE is 1.93x faster than P-VAE and
1.41x faster than L-VAE in the experiments held
on a single A100 40GB PCI GPU.

E-VAE L-VAE P-VAE GM-VAE

24.5 35.9 49.2 25.5

Training time comparison. Common bottle-
necks of the mode hyperbolic VAEs arise from
the complex manifold constraints and the dif-
ficulty of sampling from the hyperbolic distri-
butions. For example, the Poincaré disk model
of P-VAE and the Lorentz model of L-VAE re-
quires the samples to be inside of a unit disk
and to be on a hyperboloid with constraint
{x ∈ Rn+1 | −x20 +

∑n
i=1 x

2
i }, respectively.

Such manifolds need complex transformations,
e.g., clipping, projection, or geometric transfor-
mations using the Riemannian operations, to
match the manifold constraint so making the training of the hyperbolic VAEs slower. The Gaussian
manifold, on the other hand, has a much simple manifold constraint and even does not require any
transformations if we utilize the log space of σ.

We report the time consumptions of the VAEs with the latent dimension of 8 per epoch in the density
estimation of Breakout at Table 2. The results demonstrate that the algorithmic distinctions enable
GM-VAE to be trained much faster than the baseline hyperbolic VAEs and even similar to E-VAE.

Latent space analysis. We present a plot of the learned representation in the hyperbolic space
at Figure 2a for qualitative analysis. We take the world model with GM-VAE trained for Breakout
and illustrate the geodesic starting from the origin in the figure with four generated samples along
with the geodesic. We also provide the scatter plot of game states with their cumulative rewards
represented in different colors. The brighter the color, the higher the cumulative reward. The scatter

9



plot reveals that the states with high cumulative rewards are distributed near the origin. Together with
the samples from the geodesic, we can observe that the hierarchical structure of Breakout is well
captured in the latent space.

Note that in the Poincaré disk model, the depth of the hierarchy is expected to be shown as the
distance from the origin (Nickel & Kiela, 2017). When the root node is placed near the origin, the
leaf nodes are likely to be placed near the boundary of the open disk. The geodesic lines starting from
the origin to the boundary of the Poincaré disk model are identical to the geodesics of the Gaussian
manifold starting from (0, 1), i.e., the origin of the Gaussian manifold. The connection implies that
the data hierarchy should be aligned along the geodesic curves if the hierarchy is well captured.

To quantitatively measure the correlation between the cumulative rewards and the states, we measure
the Pearson correlation between the cumulative reward and the norm of the states. We obtain a
correlation coefficient of 0.46 from the hyperbolic latent space, whereas the correlation coefficient of
the Euclidean latent space is 0.40, showing the hyperbolic space better captures the hierarchy along
the increasing norm. More experimental details are explained in Appendix G.2.

6 Conclusion & Future Work

In this work, we propose a novel method of representation learning with GM-VAE, utilizing the
Gaussian manifold for the latent space. With the newly-proposed PGM normal defined over the
Gaussian manifold, which shows better stability and ease of sampling compared to the commonly-used
ones, we verify the efficacy of our method on several tasks. Our method achieves outperforming results
on density estimation with image datasets and competitive results on model-based RL compared to
the baselines. We explain the behavior of GM-VAE in terms of solving the frequent numerical issue
of commonly-used hyperbolic VAEs. The analysis of latent space exhibits that the hierarchy lying in
the dataset can be preserved by using GM-VAE.

We suggest that the numerical stability of our method can be helpful for scaling the generative models,
e.g., very deep VAE (Child, 2021), endowed with hyperbolic geometrical priors. As GM-VAE
is beneficial for capturing hierarchy with promising results in modeling RL environment, another
potential future work can be extending the use of hyperbolic space, such as learning a skill tree for
solving complex long-horizon tasks (Shi et al., 2022). We believe that the connection between the
statistical manifold and hyperbolic space provides new insight to the research community and hope
to see more interesting connections and analyses in the future.
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A Machine Precision Error Analysis on Hyperbolic Space

Figure 3: The machine precision errors of the hyperbolic models. For the Poincare half-plane model,
we report the upper bound of the machine precision error derived by Yu & Sa (2021). For the Lorentz
model, we report the error between the Lorentzian product of the point and -1, which is the manifold
constraint of the Lorentz model. For the Poincare disk model, we report the threshold that the norm
of the point becomes one. The precision is set to 32 bits. The analysis reveals that all the three models
suffer from numerical stability issue with points which the distance between the origin is farther than
20.

B Gaussian Manifold

B.1 Curvature of the Gaussian manifold

We construct a Riemannian manifold {(µ, σ) | µ ∈ R, σ ∈ R>0} with a positive constant c and the
metric tensor σ−2diag(1, 1/c), which we will name Gaussian manifold. We need to show the value
of the curvature.

First, we need to compute the Christoeffel symbols of the Gaussian manifold defined as:

Γk
ij =

1

2
gkl
(
∂gjl
∂gi

+
∂gil
∂gj

− ∂gij
∂gl

)
,

where gij is the (i, j) element of the metric tensor and gij is the (i, j) element of the inverse of the
metric tensor.

The Christoeffel symbols of the Gaussian manifold are:

Γ1
ij =

(
0 − 1

σ
− 1

σ 0

)
Γ2
ij =

(
c
σ 0
0 − 1

σ

)
.

Then, the sectional curvature of the space κg with given tangent vectors du, dv is computed as:

κg =
⟨R(dµ, dσ)dσ, dµ⟩

det g

=
1

det g
· g1m

(
∂Γm

22

∂µ
− ∂Γm

12

∂σ
+ Γp

22Γ
m
1p − Γp

12Γ
m
2p

)
=

− 1
σ4

1
cσ4

= −c.
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Note that the sectional curvature of two-dimensional Riemannian manifold is same as the Gaussian
curvature where ⟨dµ, dµ⟩⟨dσ, dσ⟩ − ⟨dµ, dσ⟩2 = det g.

B.2 Gaussian manifold with KL-divergence

Between two univariate Gaussian distributions N (µ1, σ
2
1) and N (µ2, σ

2
2), we can compute the KL

divergence as:

DKL(N (µ1, σ
2
1) ∥ N (µ2, σ

2
2)) =

1

2

(
log

σ2
2

σ2
1

+
σ2
1 + (µ1 − µ2)

2

σ2
2

− 1

)
. (4)

We extend the KL divergence for an arbitrary curvature of the Gaussian manifold as:

DGc

KL((µ1, σ1), (µ2, σ2)) :=
DKL(N (

√
2cµ1, σ

2
1) ∥ N (

√
2cµ2, σ

2
2))

2c
.

Now, we show that the extended KL divergence still approximates the Riemannian distance of the
manifold as:

DGc

KL((µ+ dµ, σ + dσ), (µ, σ)) =
1

2 · 2c

(
log

σ2

(σ + dσ)2
+

(σ + dσ)2 + 2c(dµ)2

σ2
− 1

)
=

1

2 · 2c

(
−2 log

(
1 +

dσ

σ

)
+

2σdσ + (dσ)2

σ2
+

2c(dµ)2

σ2

)
=

1

2 · 2c

(
−2

(
dσ

σ
− (dσ)2

2σ2

)
+

2σdσ + (dσ)2

σ2
+

2c(dµ)2

σ2
+O((dσ)3)

)
=

1

2

(
dµ
dσ

)T ( 1
σ 0
0 1

cσ2

)(
dµ
dσ

)
+O((dσ)3).

C Pseudo Gaussian Manifold Normal Distribution

In this section, we derive the normalizing constant Z(c, β, γ) and the factorization of the PGM normal
which the density function is defined as:

Kc(µ, σ;α, β, γ) =
σ3

Z(c, β, γ)
exp

(
−
DGc

KL((µ, σ), (α, β))

γ2

)
.

C.1 Normalizing Constant

The given probability density function needs to satisfy the following condition:

∫
Gc

Kc(µ, σ;α, β, γ)
√
det g · d(µ, σ) = 1, (5)

where
√
det g · d(µ, σ) is the probability measure over the Gaussian manifold induced from the

Lebesgue measure d(µ, σ). The normalizing factor Z(c, β, γ) can be computed using the condition
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Equation 5 as:

Z(c, β, γ) =

∫ ∞

0

∫ ∞

−∞
σ3 · exp

(
−
DGc

KL((µ, σ), (α, β))

γ2

)
1√
cσ2

dµ dσ

=
1√
c

(
β
− 1

−2cγ2 exp

(
1

4cγ2

)∫ ∞

0

σ · (σ2)

(
1

4cγ2 +1
)
−1

exp

(
− σ2

4cβ2γ2

)
dσ

)
×
(∫ ∞

−∞
exp

(
− (µ− α)2

2β2γ2

)
dµ

)
=

1

2
√
c

√
2πβ3γ exp

(
1

4cγ2

)
Γ

(
1

4cγ2

)(
1

4cγ2

)− 1
4cγ2

×
(∫ ∞

0

Gamma
(
σ2;

1

4cγ2
+ 1,

1

4cβ2γ2

)
dσ2

)(∫ ∞

−∞
N (µ;α, βγ) dµ

)
(6)

=

√
2πβ3

2
√
c
γ exp

(
1

4cγ2

)
Γ

(
1

4cγ2

)(
1

4cγ2

)− 1
4cγ2

.

Finally, the logarithm of the normalizing factor is computed as:

logZ(c, β, γ) =
1

2
log(2π)+3 log β−1

2
log c−log 2+

1

2
log γ2+log Γ

(
1

4cγ2

)
+

1

4cγ2
(1+log(4cγ2)).

C.2 Sampling

Suppose that p(µ, σ) = Kc(µ, σ;α, β, γ)
√
det g. Sampling µ and σ from the probability distribution

p(µ, σ) can be done by sampling µ from the marginal distribution p(µ) and then sampling σ from the
conditional distribution p(σ|µ). The marginal distribution p(µ) can be derived from Equation 6 as:

p(µ) =

∫ ∞

0

p(µ, σ) dσ

=

∫ ∞

0

Kc(µ, σ;α, β, γ)
√
det g dσ

=

(∫ ∞

0

Gamma
(
σ2;

1

4cγ2
+ 1,

1

4cβ2γ2

)
dσ2

)
N (µ;α, β2γ2)

= N (µ;α, β2γ2).

Equation 6 also implies that µ and σ are independent in the aspect of p(µ, σ) so the conditional
distribution p(σ|µ) is identical to the marginal distribution p(σ). The marginal distribution p(σ) is
computed as:

p(σ) =

∫ ∞

−∞
p(µ, σ) dµ

=

∫ ∞

−∞
Kc(µ, σ;α, β, γ)

√
det g dµ

=

(
2σ · Gamma

(
σ2;

1

4cγ2
+ 1,

1

4cβ2γ2

))(∫ ∞

−∞
N (µ;α, β2γ2) dµ

)
= 2σ · Gamma

(
σ2;

1

4cγ2
+ 1,

1

4cβ2γ2

)
.

Here, sampling σ from p(σ) can be easily replaced by the procedure of sampling σ2 from p(σ2),
which is identical to p(σ)/(2σ) = Gamma

(
σ2; 1

4cγ2 + 1, 1
4cβ2γ2

)
, and then applying square root to

the sample σ2 to get σ.
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C.3 KL Divergence

Suppose that p(µ, σ), q(µ, σ) are two different PGM normal multplied with
√
det g. As shown

in Appendix C.2, µ and σ are independent so the KL divergence between p, q is same as
DKL(p(µ)∥q(µ)) + DKL(p(σ)∥q(σ)). The first term is the KL divergence between two normal
distribution. The second term is same with DKL(p(σ

2)∥q(σ2)) due to the change-of-variable for-
mula, so it is the KL divergence between two gamma distribution.
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D δ-Hyperbolicity

In this section, we explain about δ-hyperbolicity (δ-H) and show the δ-H values of the candidate
datasets of our experiments.

D.1 δ-hyperbolicity

A

B

C

δ > 0

(a) δ-H > 0

A

B

C

D

δ = 0

(b) δ-H = 0

Figure 4: The illustration of δ-H for given geodesic
triangles. The blue lines denote the geodesic
curves between the points. (a) When the side AB
is contained in the union of the two δ-neighbor
regions of the side AC and BC, we say that
the geodesic triangle is δ-hyperbolic. δ-H of the
geodesic triangle is then defined as the minimum
possible value of δ. (b) Any tree-structured trian-
gle, where the geodesic curves correspond to the
tree edges, is 0-H. For example, given geodesic
triangle ABC, one side AB is already occupied
by the two sides AB and BC, as the geodesic be-
tween the points A and B is the union of edge AD
and BD being occupied by other counterparts.

Given a metric space (X, d), the metric space is
said to be δ-hyperbolic if, for any geodesic trian-
gle, i.e., a triangle where each side is a geodesic
curve, any point on the side of the geodesic tri-
angle is within the distance of less than or equal
to δ of the other two sides; when such δ exists,
(X, d) is said to be hyperbolic. To be specific,
when the Gromov product between any three
points x, y, z ∈ X is given as:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)) ,

if then the following inequality holds for any
four points x, y, z, w ∈ X , we call the metric
space is δ-hyperbolic:

(x, z)w ≥ min((x, y)w, (y, z)w))− δ. (7)
δ-hyperbolicity (δ-H) is defined to be the mini-
mum value of δ satisfying Equation 7 and is used
as a measurement quantifying how a given met-
ric space well embeds in hyperbolic Khrulkov
et al. (2020); Cetin et al. (2022). Figure 4 illus-
trates the concept of δ-H. We note that the lower
δ-H the metric space has, the less deviation from
the exact hyperbolic space is.

Computation. We measure the δ-H values of
the images X from the datasets by following the procedure from Fournier et al. (2015). We first
extract the embeddings of the images using a pre-trained feature extractor to construct a metric space
of the images. We then randomly sample a fixed point w and calculate the pairwise Gromov product
of the embeddings D with w as Equation 7. We finally determine the δ-H of the images X by finding
the largest coefficient of (maxk minij(Dik, Dkj))−D.

To reduce the scale difference between the datasets, we report the value 2δ(X)/diam(X) where
diam(X) denotes the maximum pairwise distance of X . Because computing the matrix D among all
the images X is computationally expensive, we compute the δ-H of randomly sampled 1,000 images
from X . We repeat this 10 times and report the average δ-H.

D.2 Image datasets

We measure the δ-H of the image datasets using an ImageNet pre-trained Inception V3 as a feature
extractor.

Breakout CUB Food101 Oxford102 CIFAR-10 SVHN CelebA

0.124 0.223 0.233 0.238 0.248 0.283 0.287

D.3 Atari2600 environments

We collect the Atari2600 images using the pre-trained agents of Gogianu et al. (2022) and measure
the δ-H using the image encoder from the agents. For each environment, we report the δ-H of the
images which are collected by the agent with the highest reward. We also report the corresponding
reward. We run the agents for at least 6 episodes.
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Game δ-H Reward

Breakout 0.12 340
Alien 0.14 6855
Zaxxon 0.14 13100
IceHockey 0.14 3
Gravitar 0.17 1004
Carnival 0.17 5605
RoadRunner 0.18 60050
Pong 0.18 21
Tutankham 0.18 236
Boxing 0.19 99
Solaris 0.19 1727
WizardOfWor 0.20 17217
Seaquest 0.20 29745
Gopher 0.20 24173
Centipede 0.20 4663
PrivateEye 0.21 195
Pitfall 0.21 0
ElevatorAction 0.21 64917
Robotank 0.21 75
MsPacman 0.21 5455
DemonAttack 0.22 23876
Asterix 0.22 26792
Qbert 0.22 17364
Jamesbond 0.22 886
VideoPinball 0.23 632563
UpNDown 0.23 27030
FishingDerby 0.23 54
Tennis 0.23 22
Berzerk 0.24 904
Riverraid 0.24 15103

Game δ-H Reward

AirRaid 0.25 11729
Frostbite 0.25 8653
Pooyan 0.25 7973
ChopperCommand 0.26 10530
KungFuMaster 0.26 27733
YarsRevenge 0.26 56405
Phoenix 0.27 30208
JourneyEscape 0.27 -707
SpaceInvaders 0.27 15623
Hero 0.28 28592
Enduro 0.28 2089
Assault 0.28 3217
Venture 0.29 1529
StarGunner 0.29 68417
Atlantis 0.29 919750
DoubleDunk 0.30 18
TimePilot 0.30 10914
BeamRider 0.30 7069
BattleZone 0.30 40333
NameThisGame 0.31 12925
Skiing 0.31 -10021
Amidar 0.32 2826
Asteroids 0.34 1405
MontezumaRevenge 0.34 0
Bowling 0.35 49
BankHeist 0.36 1563
Kangaroo 0.37 14283
CrazyClimber 0.37 132517
Freeway 0.38 34
Krull 0.38 9016

E Implementation Details

In this section, we introduce the implementation details of the experiments.

E.1 Density estimation on image datasets

We estimate the density of the images from Atari2600 Breakout (Nagano et al., 2019), Ox-
ford102 (Nilsback & Zisserman, 2008), and CUB (Wah et al., 2011). The images of Breakout
are collected from plays with a pre-trained Deep Q-Network (Mnih et al., 2015). The size of images
of all the datasets is resized to 64× 64, while Breakout is binarized with a threshold value of 0.1; the
threshold for Breakout is determined to visualize the components clearly.

We split the datasets into train, validation, and test. For Breakout and CUB, we split the original train
set into train and validation sets. For Oxford102, because the original train set is too small, we merge
the original train and test set and then split it into three splits. For Food101, we randomly sample the
train set and validation set from the original train set, and also randomly sample the test set from the
original test set.

Split Breakout CUB Food101 Oxford102

Train 80,000 4,795 6,000 5,120
Validation 9,503 1,199 1,000 1,228

Test 9,934 5,794 1,000 1,025

18



We design the encoder and decoder similar to the generator and discriminator of DCGAN (Radford
et al., 2015). The details of the architecture are at Table 3. We use learning rate 1e-3, batch
size 100, and Adam optimizer for training. We use Bernoulli loss as the reconstruction loss for
Breakout experiments and negative log-likelihood loss as the reconstruction loss for CUB, Food101,
and Oxford102 experiments. We use the validation set for early stopping and report the negative
log-likelihood on the test set with 50 importance weighted samples.

Table 3: The architectures of encoder and decoder used in the density estimation experiments. nc is
the number of channels of the image, nd is the latent dimension. na is a coefficient that depends on
the VAE, i.e., na is 2, 2, 1.5, 1.5 for E-VAE, L-VAE, P-VAE, and GM-VAE, respectively.

Encoder

Layer Size

Input 64× 64× nc
Convolution2D 32× 32× 32
LeakyReLU
Convolution2D 16× 16× 64
LeakyReLU
Convolution2D 8× 8× 128
LeakyReLU
Convolution2D 4× 4× 256
LeakyReLU
Linear na · nd

Decoder

Layer Size

Input 1× 1× nd
TransposedConvolution2D 4× 4× 256
ReLU
TransposedConvolution2D 8× 8× 128
ReLU
TransposedConvolution2D 16× 16× 64
ReLU
TransposedConvolution2D 32× 32× 32
ReLU
TransposedConvolution2D 64× 64× nc

E.2 Model-based RL

We use the official TensorFlow implementation from Dreamerv21 to reproduce the baseline results,
i.e., with Euclidean and discrete latent space. For the hyperbolic latent space results, we apply
GM-VAE by replacing the latent space of zt with the Gaussian manifold and two components in
RSSM, the representation model qθ(zt|ht, xt) and transition predictor pϕ(zt|ht), with PGM normal.
The hyperparameters are set to be the same as suggested in the original paper, except for the training
environment steps being 50M for Freeway and 100M for the others as we observe converging scores.

F Results of Non-Product Latent Space

Previous hyperbolic VAEs are implemented with a hyperbolic space, not the product of the hyperbolic
spaces. We run the non-product hyperbolic VAEs in the density estimation of image datasets. Table 4
reveals that the non-product hyperbolic VAEs fail in most of the settings and the product hyperbolic
space makes the hyperbolic VAEs much more stable.

G Model-Based RL

G.1 Learning curves

G.2 Latent space analysis

We conduct an analysis of the latent space of the agents learned to play Atari2600 Breakout. The
purpose of the analysis is to measure how the latent spaces well-preserve the implicit hierarchy in the
trajectory of the agents. To analyze the hyperbolic latent space, we need two isometries: the isometry
between the Gaussian manifold and the Poincaré disk model and the translation of the Poincaré disk
model.

1https://github.com/danijar/dreamerv2
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Table 4: Density estimation results of non-product hyperbolic VAEs. d denotes the latent dimension.
N/A in the log-likelihood indicates that the results are not available due to the failure of all runs.

d L-VAE P-VAE

Breakout
2 124.24±1.66 266.86±6.01

4 66.20±0.14 N/A
8 44.76±0.48 N/A

CUB
50 N/A N/A
60 N/A N/A
70 N/A N/A

Oxford102
50 N/A N/A
60 N/A N/A
70 N/A N/A
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We first propose an isometry between the Gaussian manifold and the Poincaré disk model TPc→Uc
:

Pc → Uc:

TPc→Gc
(x, y) =

(
−2y

(
√
cx− 1)2 + y2c

,
1− (x2 + y2)c

(
√
cx− 1)2 + y2c

)
,

and the inverse is:

T−1
Pc→Gc

(x, y)

(√
cx2 + (y2 − 1)/

√
c

cx2 + (y + 1)2
,

−2x

cx2 + (y + 1)2

)
.

The translation of the Poincaré disk model can be derived using complex numbers. Let z = x+yi ∈ C
and (x, y) ∈ P1 and z0 ∈ C be the pivot point. Then the isometry that moves z0 to the origin is
defined as T (z) : P1 → P1 := z−z0

1−z̄0z
. Note that the translation of Euclidean space is z − z0.

After transforming the latents on the Gaussian manifold to the Poincaré disk model and using the
translation, we can measure how the latents well-captures the hierarchical structure of data. We first
pick a latent and then translate all the latents by setting the selected latent as the pivot point. We then
measure the Pearson correlation between the cumulative reward of the latents and the norm.

We repeat this process for all the latents and compute the maximum of the correlations. We use the
latents obtained from the agents which recorded at least 250 for long enough trajectories. We obtain a
correlation coefficient of 0.46 from the hyperbolic latent space, whereas the correlation coefficient of
the Euclidean latent space is 0.40, showing the hyperbolic space better captures the hierarchy along
the increasing norm.
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