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Abstract

The generation of 3D molecules requires simultaneously deciding the categorical1

features (atom types) and continuous features (atom coordinates). Deep generative2

models, especially Diffusion Models (DMs), have demonstrated effectiveness of3

generating feature-rich geometries. However, existing DMs typically suffer from4

unstable probability dynamics with inefficient sampling speed. In this paper, we5

introduce geometric flow matching, which enjoys the advantages of both equivari-6

ant modeling and stabilized probability dynamics. More specifically, we propose a7

hybrid probability path where the coordinates probability path is regularized by8

an equivariant optimal transport and the information between different modality is9

aligned. Experimentally, the proposed method could consistently achieve better10

performance on multiple molecule generation benchmarks, with up to 6% improve-11

ment for the validity percentage of large biomolecules and with 4.75× speed up of12

sampling on average.13

1 Introduction14

Geometric generative models aim at approximating the distribution of complex geometries and15

emerge as an important research direction in various scientific domains. A general formulation of16

the geometries in scientific fields could be the point clouds lies where each point is embedded in17

the Cartesian coordinates and labeled with rich features. For example, the molecules are the atomic18

graphs in 3D [43] and the proteins could be seen as the proximity spatial graphs [15]. Therefore, with19

the ability of density estimation and generating novel geometries, geometric generative models have20

appealing potentials in many important scientific discovery problems, e.g., material science [36], de21

novo drug design [11] and protein engineering [44].22

With the advancements of deep generative modeling, there have been a series of fruitful research23

progresses achieved in geometric generative modeling, especially the molecular structures. For24

example, [9, 30] and [41] proposed data-driven methods to generate 3D molecules (in silico) with25

autoregressive and flow-based models respectively. However, despite great potential, the results26

are still unsatisfactory with low chemical validity and small molecule size, due to the insufficient27

capacity of the underlying generative models [39]. However, the performance is indeed limited28

considering several important empirical evaluation metrics such as validity, stability, and molecule29

size. Most recently, diffusion models (DMs) have shown surprising results on many generative30

modeling tasks which generate new samples by simulating a stochastic differential equation (SDE)31

to transform the prior density to the data distribution. With the simple regression training objective,32

several attempts [13] on applying DMs in this field have also demonstrated superior performance.33

However, existing DM-based methods typically suffer from unstable probability dynamics which34

could lead to an inefficient sampling speed also limit the validity rate of generated molecules.35
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Figure 1: Illustration of EquiFM. We define a hybrid path for generating molecules g = ⟨x,h⟩,
where x is trained on an equivariant optimal transport path and h is trained on a path whose
information quantity is aligned with x’s path. The sampling is conducted by solving an ODE, i.e.
g0 = ODESolve(g1, vθ, 1, 0).

In this work, we propose a novel and principled flow-matching objective, termed Equivariant Flow-36

Matching (EquiFM), for geometric generative modeling. Our method is inspired by the recent37

advancement of flow matching [26], a simulation-free objective for training CNFs that has demon-38

strated appealing generation performance with stable training and efficient sampling. Nevertheless,39

designing suitable geometric flow-matching objectives for molecular generation is non-trivial:40

(1) the 3D skeleton modeling is sensitive, i.e., a slight difference in the atom coordinates could affect41

the formulation of some certain types of bonds; (2) the atomic feature space consists of various42

physical quantities which lies in the different data modality, e.g., charge, atom types, and coordinates43

are correspondingly discrete, integer, and continuous variables. To this end, we highlight our key44

innovations as follows:45

• For stabling the 3D skeleton modeling, we introduce an Equivariant Optimal-Transport46

to guide the generative probability path of atom coordinates. The improved objective47

implies an intuitive and well-motivated prior, i.e. minimizing the coordinates changes during48

generation, and helps both stabilize training and boost the generation performance.49

• Towards the modality inconsistency issues, we proposed to differ the generative probability50

path of different components based on the information quantity and thus introduce a hybrid51

generative path. The hybrid-path techniques distinguish different modalities without adding52

extra modeling complexity or computational load.53

• The proposed model lies in the scope of continuous normalizing flow, which is parameterized54

by an ODE. And we can use an efficient ODE solver during the molecule generation process55

to improve the inference efficiency upon the SDE simulation required in DMs.56

A unique advantage of EquiFM lies in the framework enrich the flexibility to choose different57

probability paths for different modality. Besides, the framework is very general and could be easily58

extended to various downstream tasks. We conduct detailed evaluations of EquiFM on multiple59

benchmarks, including both unconditional and property-conditioned molecule generation. Results60

demonstrate that EquiFM can consistently achieve superior generation performance on all the metrics,61

with up to 7% higher validity rate for large biomolecules and 4.75× speed up on average. Empirical62

studies also show a significant improvement in controllable generation. All the empirical results63

demonstrate that EquiFM enjoys a significantly higher modeling capacity and inference efficiency.64

2 Related Work65

Flow Matching and Diffusion Models Diffusion models have been studied in various research66

works such as [46, 12, 48], and have recently shown success in fields like high-dimensional statistics67

[40], language modeling [23], and equivariant representations [13]. Loss-rescaling techniques for68

diffusion models have been introduced in [47], while enhancements to the architecture incorporating69

classifier guidance are discussed in [8]. Noise schedule learning techniques have also been proposed70

in [33, 18]. Diffusion models suffer from unstable probability dynamics and inefficient sampling,71

which limits their effectiveness in some scenarios. Flow matching is a relatively new approach that72

has gained attention recently. Research works such as [26, 1, 28] have proposed this simulation-free73
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objective for training continuous normalizing flow. It involves other probability paths besides the74

diffusion path and could potentially offer better sampling efficiency through ODE solving. However,75

the application of flow matching to geometric domains requires designing appropriate probability76

paths, which is an area that remains unexplored.77

3D Molecule Generation Previous studies have primarily focused on generating molecules as 2D78

graphs [14, 27, 45], but there has been increasing interest in 3D molecule generation. G-Schnet and79

G-SphereNet [9, 30] have utilized autoregressive methods to construct molecules by sequentially80

attaching atoms or molecular fragments. These frameworks have also been extended to structure-81

based drug design [24, 35, 37]. However, this approach requires careful formulation of a complex82

action space and action ordering. Other approaches use atomic density grids that generate the entire83

molecule in a single step by producing a density over the voxelized 3D space [31]. Nevertheless,84

these density grids lack the desirable equivariance property and require a separate fitting algorithm.85

In the past year, the attention has shifted towards using DMs for 3D molecule generation [13, 50], with86

successful applications in target drug generation [25], antibody design [29], and protein design [2, 49].87

However, our method is based on the flow matching objective and hence lies in a different model88

family, i.e. continuous normalizing flow, which fundamentally differs from this line of research in89

both training and generation.90

3 Backgrounds91

3.1 Flow Matching for Non-geometric Domains92

The data distribution is defined as q, also x0 represents a data point from q and x1 represents a sample93

from the prior distribution p1. The time-dependent probability path is defined as pt∈[0,1] : Rd → R>0,94

and the time-dependent vector field is defined as vt∈[0,1] : Rd → Rd. The vector field uniquely95

defines time-dependent flow ψt∈[0,1] : Rd → Rd by the following ordinary differential equation96

(ODE):97

d

dt
ψt(x) = vt(ψt(x)), ψ1(x) = x (1)

98 [4] proposed to train the parameterized flow model ψt called a continuous normalizing flow (CNF)99

with black-box ODE solvers. Such model could reshape a simple prior distribution p1 to the complex100

real-world distribution q. CNFs are difficult to train due to the need of numerical ODE simulations.101

[26] introduced flow matching, a simulation-free objective, by regressing the neural network vθ(x, t)102

to some target vector field ut(x):103

LFM(θ) = Et,pt(x) ∥vθ(x, t)− ut(x)∥2 (2)

104 The objective LFM requires access to the vector field ut(x) and the corresponding probability path105

pt(x). However, these entities are difficult to define in practice. Conversely, the conditional vector106

field ut(x | x0) and the corresponding conditional probability path pt(x | x0) are readily definable.107

The probability path can be marginalized from a mixture of conditional probability path pt(x) =108 ∫
pt(x | x0)q(x0)dx0, and the vector field ut(x) can be marginalized from conditional vector109

field as ut(x) = Ex0∼q
ut(x|x0)pt(x|x0)

pt(x)
. This illustrates how ut(x) and pt(x) is related to their110

conditional form, and [26] further proved that with the conditional vector field ut(x | x0) generating111

the conditional probability path pt(x | x0), the marginal vector field ut(x) will generate the marginal112

probability path pt(x). The observation inspires the new conditional flow matching (CFM) objective:113

LCFM(θ) = Et,q(x0),pt(x|x0) ∥vθ(x, t)− ut(x | x0)∥22 (3)

The CFM objective enjoys the tractability for optimization, and optimizing the CFM objective is114

equivalent to optimizing Eq. 2, i.e., ∇θLFM(θ) = ∇θLCFM(θ). For the inference phase, ODE115

solvers could be applied to solve the Eq. 1, e.g., x0 = ODESolve(x1, vθ, 1, 0). In this paper, we116

consider using the Gaussian conditional probability path, which lies in the form of pt(x | x0) =117

N
(
x | µt(x0), σt(x0)2I

)
. We introduce two probability paths utilized in the following of the paper:118

Conditional Optimal Transport Path With the prior distribution p1 defined as a standard Gaussian119

distribution, and p0(x | x0) as a peaked Gaussian distribution centered at x0, e.g. N
(
x | x0, σ2

minI
)
.120
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The probability path is pt(x | x0) = N
(
x | (1− t)x0, (σmin + (1− σmin)t)

2I
)

and the correspond-121

ing flow is ψt(x) = (σmin + (1− σmin)t)x+ (1− t)x0. Then the vector field could be obtained by122

Eq. 1 as: ut(ψt(x) | x0) = d
dtψt(x) = −x0 + (1− σmin)x.123

Put the above terms into Eq. 3, the reparameterized objective is as:124

LOT
CFM(θ) = Et,q(x0),p1(x1) ∥vθ(ψt(x1), t)− (−x0 + (1− σmin)x1)∥2 (4)

125 Intuitively, the conditional optimal transport objective tends to learn the transformation direction126

from noise to data sample in a straight line which could hold appealing geometric properties.127

Variance Preserving Path The variance-preserving (VP) path is defined as pt(x | x0) =128

N
(
x | αtx0, (1− α2

t )I
)
, where αt = e−

1
2T (t) and T (t) =

∫ t
0
β(s)ds. Here β is some noise129

schedule function. Following the Theorem. 3 in [26], the target conditional vector field of VP path130

could be derived as ut(x | x0) = α′
t

1−α2
t
(αtx − x0). α′

t denotes the derivative with respect to time.131

And the objective for VP conditional flow matching is as:132

LVP
CFM(θ) = Et,q(x0),pt(x|x0)

∥∥∥∥vθ(x, t)− α′
t

1− α2
t

(αtx− x0)

∥∥∥∥2 (5)
133 The VP path is flexible to control the information dynamics, e.g. correlation changes towards x0 on134

the conditional probability path, by selecting different noise schedule functions.135

4 Methodology136

In this section, we formally describe the Equivariant Flow Matching (EquiFM) framework. The137

proposed method is inspired by the appealing properties of recent advancements in flow matching [26],138

but designing suitable probability paths and objectives for the molecular generation is however139

challenging [13]. We address the challenges by specifying a hybrid probability path with equivariant140

flow matching. The overall framework is introduced in Section. 4.1. And then we elaborate on the141

design details of the hybrid probability path of the equivariant variable and invariant variable in142

Section. 4.2 and Section. 4.3 respectively. A high-level schematic is provided in Figure. 1.143

4.1 Equivariant Flow Matching144

Recall molecule could be presented as the tuple g = ⟨x,h⟩, where x = (x1, . . . ,xN ) ∈ X is the145

atom coordinates matrix and h = (h1, . . . ,hN ) ∈ RN×d is the node feature matrix, such as atomic146

type and charges. Here X =
{
x ∈ RN×3 : 1

N

∑N
i=1 x

i = 0
}

is the Zero Center-of-Mass (Zero147

CoM) space, which means the average of the N elements should be 0. We introduce the general form148

of equivariant flow matching in the following.149

SE(3) Invariant Probability Path For modeling the density function in the geometric domains, it is150

important to make the likelihood function invariant to the rotation and translation transformations. We151

could always make the probability path of equivariant variable x invariant to the translation by setting152

the prior distribution and vector field in the Zero CoM space, i.e. 1
N

∑N
i=1 v(x, t)

i = 0. Formally,153

the rotational invariance could be satisfied by making the parameterized vector field equivariant and154

the prior p1 invariant to the rotational transformations as shown in the following statement:155

Theorem 4.1. Let (vxθ (g, t), v
h
θ (g, t)) = vθ(g, t), where vxθ (g, t) and vhθ (g, t) are the parameterized156

vector field for x and h. If the vector field is equivariant to any rotational transformation R, i.e.,157

vθ(⟨Rx,h⟩, t) = (R(vxθ (g, t)), v
h
θ (g, t)). With an rotational invariant prior function p1(x,h), i.e.,158

p1(Rx,h) = p1(x,h), then the probability path pθ,t generated by the vector field vθ(·) is also159

rotational invariant.160

To make the vector field satisfy the equivariance constraint, we parameterize it with an Equivariant161

Graph Neural Network (EGNN) [42]. And more details could be found in AppendixC.162

Hybrid Probability Modeling We refer to the target conditional vector field on each part as163

uxt (g | g0) and uht (g | g0) correspondingly, then we could get the objective in the following164

formulation:165
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(a) EquiFM (b) FM (c) EDM

Figure 2: Generation route visualization of different models. Note that a lighter color indicates an earlier step
of an atom and a denser color corresponds to a latter step. A change of base color indicates a change of atom
type. EquiFM generates molecules in a straight forward route as shown in 2(a). Vanilla flow matching method
2(b) on the other hand, takes a detour while generating molecules, resulting in a route inward then outward
before converging to a molecule. The generation process in EDM 2(c) is rather chaotic until last few steps before
converging to a molecule.

LCFM(θ) = Et,q(g0),pt(g|g0)[∥v
x
θ (g, t)− uxt (g | g0)∥22 +

∥∥vhθ (g, t)− uht (g | g0)
∥∥2
2
] (6)

166 Proposition 4.2. There could be joint probability path pt(g|g0) which satisfies that pt(g|g0) =167

pt(x|x0)pt(h|h0), and the conditional vector field on x and h is independent: uxt (g | g0) = ut(x |168

x0), u
h
t (g | g0) = ut(h | h0).169

The above Proposition 4.2 states a special property of conditional flow matching, i.e., in the multi-170

variable setting the probability path of each variable could be designed independently. Such property171

is appealing in our setting, as x and h hold different data types and come from different manifolds,172

thus it is intuitive to use different probability paths for modeling and generating the two variables.173

4.2 Coordinates Matching with Equivariant Optimal Transport174

We focus on the generation of coordinates variable x. The conditional OT path (Eq. 4) could be175

a promising candidate as it tends to move the atom coordinates directly towards the ground truth176

atom coordinates along a straight line. However, directly applying the objective could be problematic177

in 3D molecule generation. With x0 as the point cloud from molecule distribution and x1 from178

the prior distribution, the objective in Eq. 6 tends to move the atom based on a random alignment179

between the atoms. Optimizing the vector field toward such a direction could involve extra variance180

for training and lead to a twisted and unstable generation procedure as shown in molecule generation181

visualization Fig. 2(b) and Fig. 2(c).182

To address the above-mentioned issue, we first introduce the concept of equivariant optimal transport183

(EOT) between two geometries as follows:184

Definition 4.3. Given two point clouds, z = (z1, . . . , zN ) ∈ RN×3 and y = (y1, . . . ,yN ) ∈ RN×3.185

We define the equivariant optimal transport plan as186

π∗,R∗ = argmin
π,R

∥π(Rz1,Rz2, . . . ,RzN )− (y1,y2, . . . ,yN )∥2 (7)

187 Here π is a permutation of N elements and R ∈ R3×3 stands for a rotation matrix in the 3D space.188

The equivariant optimal transport finds the minimum straight-line distance between the paired atom189

coordinates upon all the possible rotations and alignment. We could then build a probability path190

based on the EOT map which could minimize the movement distance of atom coordinates for the191

transformation between the molecule data from p0 and a sampled point cloud from p1 as:192

pt = [ψEOT
t ]∗p1, where ψEOT

t (x) = (σmin + (1− σmin)t)π
∗(R∗x) + (1− t)x0 (8)

Proposition 4.4. The probability path implied by the EOT map, i.e. Eq. 8, is also an SE(3) invariant193

probability path.194

The proposition could be proved following the Definition 4.3 and the Theorem 4.1. Combining the195

above terms, the final equivariant optimal transport based training objective is:196

LEOT
CFM(θ) = Et,q(x0),p1(x1)

∥∥vθ(ψEOT
t (x1), t)− (−x0 + (1− σmin)π

∗(R∗x1))
∥∥2 (9)

197
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A good property of the objective with EOT is that, the training characteristics is invariant to translation198

and rotation of initial x1, and equivariant with respect to both sampled noise x1 and data point x0,199

which empirically contributes to more effective training.200

Solving Equivariant Optimal Transport We propose an iterative algorithm to obtain the equivari-201

ant optimal transport map. The algorithm first conducts the Hungarian algorithm [20] to align the202

atoms between the initial geometry from p1 and the ground truth geometry from p0; and then conduct203

the Kabsch algorithm [17] to solve the optimal rotation matrix based on the atom alignment. The204

proposed algorithm asymptotically converges to the optimal solution. Besides, the method holds a205

close relationship with the Iterative Closest Point (ICP) [5] algorithm, while our settings require the206

node alignment could only be one-one mapping. We leave the detailed description in AppendixC.207

4.3 Information Aligned Hybrid Probability Path208

With the conditional probability path of x set as the equivariant optimal transport path, we are now209

seeking a proper path on h. Although the conditional probability paths could be set independently for210

h and x under the framework of Proposition. 4.2, the combination of the paths matters in modeling211

the joint variable g = ⟨x,h⟩. This is due to the combination of conditional paths imposed by different212

priors on the data generation process. We introduce the following example for better illustration:213

Example 1: pt(x|x0) = p0(x|x0),∀t < ϵx and pt(x|x0) = p1(x|x0),∀t ≥ ϵx.214

We define the pt(h|h0) similarly with a different parameter ϵh. Now consider the case with the215

ϵx → 0 and ϵh → 1, this is, for a transformation process from p1 to p0, the process will turn the216

h part to ground truth in the very start and keep the x noisy until the very last steps; another case217

could be ϵx = ϵh, and such a probability path will tend to keep both paths noisy, and turn them to the218

ground truth together at a certain time step. Obviously, the above two different paths have diverse219

intermediate steps and could hold completely different properties. To formally study the property220

under different probability path, we introduce the following information quantity:221

Definition 4.5. For distribution p0 on the joint space g, and two corresponding conditional probability222

path pt(x|g0) and pt(h|g0), we denote the I(xt,ht) as the mutual information for xt with distribution223 ∫
pt(x|g0)p0(g0)dg0 and ht with distribution

∫
pt(h|g0)p0(g0)dg0.224

Proposition 4.6. For the independent conditional probability path pt(g|g0) = pt(x|x0)pt(h|h0),225

when the conditional probability path of x and h lies in OT path or VP path, if I(x0,h0) > 0, then226

∀t ∈ (0, 1), I(xt,ht) > 0 and I(xti ,hti) > I(xtj ,htj ),∀ti < tj .227

We use the quantity It(xt,ht) as the key property to distinguish different probability paths. Given228

the conditional probability path pt(x|x0), it implies an information quantity change trajectory from229

I(x1,h1) = 0 to I(x0,h0) following I(xt,h0). Thus, one well-motivated probability path on230

h is to align the information quantity changes by setting I(ht,h0) = I(xt,h0). Based on such231

intuition, we design our probability path on h. Empirically, the VP path involves a noise schedule232

function β which could naturally adjust the information change by choosing different noise schedules,233

so we explore the probability path mainly on the VP path. For I(ht,h0), we decompose it as234

I(ht,h0) = H(h0)−H(h0|ht) whereH(h0) is constant andH(h0|ht) is the cross entropy towards235

h0 with ht as the logits. Similarly, the difficulty of estimation I(xt,h0) lies in I(h0|xt). Following236

the difference of entropy estimator in [32], we build prediction model pϕ(h0|xt) to estimate I(h0|xt)237

for selected time t. More details could be found in AppendixC. We demonstrate 20 time steps for238

I(xt,h0), and I(ht,h0) for vanilla VP path with the linear schedule (VPlinear) on β, VP path with239

cosine schedules(VPcos) [33] and polynomial schedules(VPpoly) [13], and the OT path in Fig. 4.240

We observe that the information quantity of I(xt,h0) does not change uniformly, this is, it stays241

stable at the start and drops dramatically after some threshold. It is in line with the fact that when the242

coordinates x are away from the original positions to a certain extent, the paired distance between243

the bonded atoms could be out of the bond length range [6]. In this case, the point cloud x then244

loses the intrinsic chemical information. Reversely, the dynamics I(xt,h0) also implies a generation245

procedure where the coordinates x transform first and the atom types h are then determined when x246

are relatively stable.247
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Table 1: Results of atom stability, molecule stability, validity, and validity×uniqueness. A higher
number indicates a better generation quality. The results marked with an asterisk were obtained from
our own tests.

QM9 DRUG
# Metrics Atom Sta (%) Mol Sta (%) Valid (%) Valid & Unique (%) Atom Sta (%) Valid (%)

Data 99.0 95.2 97.7 97.7 86.5 99.9

ENF 85.0 4.9 40.2 39.4 - -
G-Schnet 95.7 68.1 85.5 80.3 - -
GDM 97.0 63.2 - - 75.0 90.8
GDM-AUG 97.6 71.6 90.4 89.5 77.7 91.8
EDM 98.7 82.0 91.9 90.7 81.3 92.6
EDM-Bridge 98.8 84.6 92.0* 90.7 82.4 92.8*

EQUIFM 98.9 ± 0.1 88.3 ± 0.3 94.7 ± 0.4 93.5 ± 0.3 84.1 98.9

5 Experiments248

In this section, we justify the advantages of the proposed EquiFM with comprehensive experiments.249

The experimental setup is introduced in Section 5.1. And then we report and analyze the evaluation250

results for the unconditional and conditional settings in Section 5.2 and 5.3. We provide detailed251

ablation studies in Section 5.4 to further gain insight into the effect of different probability paths. We252

leave more implementation details in AppendixC.253

5.1 Experiment Setup254

Evaluation Task. With the evaluation setting following prior works on 3D molecules generation [9,255

30, 41, 13, 50], we conduct extensive experiments of EquiFM on three comprehensive tasks against256

several state-of-the-art approaches. Molecular Modeling and Generation assesses the capacity to257

learn the underlying molecular data distribution and generate chemically valid and structurally diverse258

molecules. Conditional Molecule Generation focuses on testing the ability to generate molecules259

with desired chemical properties. Following [13], we retrain a conditional version EquiFM on the260

molecular data with corresponding property labels.261

Datasets We choose QM9 dataset [38], which has been widely adopted in previous 3D molecule262

generation studies [9, 10], for the setting of unconditional and conditional molecule generation. We263

also test EquiFM on on the GEOM-DRUG (Geometric Ensemble Of Molecules) dataset for generating264

large molecular geometries. The data configurations directly follow previous work[3, 13].265

5.2 Molecular Modeling and Generation266

Evaluation Metrics. The model performance is evaluated by measuring the chemical feasibility of267

generated molecules, indicating whether the model can learn underlying chemical rules from data.268

Given molecular geometries, the bond types are first predicted (single, double, triple, or none) based269

on pair-wise atomic distances and atom types [13].270

Next, we evaluate the quality of our predicted molecular graph by calculating both atom stability and271

molecule stability metrics. The atom stability metric measures the proportion of atoms that have a272

correct valency, while the molecule stability metric quantifies the percentage of generated molecules273

in which all atoms are stable. Additionally, we report validity and uniqueness metrics that indicate the274

percentage of valid (determined by RDKIT) and unique molecules among all generated compounds.275

Furthermore, we also explore the sampling efficiency of different methods.276

Baselines. The proposed method is compared with several competitive baselines. G-Schnet [9]277

is the previous equivariant generative model for molecules, based on autoregressive factorization.278

Equivariant Normalizing Flows (ENF) [41] is another continuous normalizing flow model while the279

objective is simulation-based. Equivariant Graph Diffusion Models (EDM) with its non-equivariant280

variant (GDM) [13] are recent progress on diffusion models for molecule generation. Most recently,281

[50] proposed an improved version of EDM (EDM-Bridge), which improves upon the performance282

of EDM by incorporating well-designed informative prior bridges. To yield a fair comparison, all the283

model-agnostic configurations are set as the same as described in 5.1.284
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Table 2: Mean Absolute Error for molecular property
prediction. A lower number indicates a better control-
lable generation result.

Property α ∆ε εHOMO εLUMO µ Cv
Units Bohr3 meV meV meV D cal

mol K

QM9* 0.10 64 39 36 0.043 0.040

Random* 9.01 1470 645 1457 1.616 6.857
Natoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
EQUIFM 2.41 591 337 530 1.106 1.033

Table 3: Ablation study, EquiFM models trained
with different probability path, the effect of EOT
is also evaluated.

Method Atom Stable (%) Mol Stable (%)
EquiFMEOT+VPLinear

98.9±0.1 88.3±0.3
EquiFMOT+VPLinear

98.7±0.1 84.9±0.4
EquiFMVP+VPLinear

98.4±0.1 81.6±0.3
EquiFMEOT+VPCos

98.7±0.1 84.7±0.2
EquiFMEOT+VPPoly

98.7±0.1 83.4±0.5
EquiFMEOT+OT 97.3±0.1 77.1±0.4

Results and Analysis. We generate 10, 000 samples from each method to calculate the above metrics,285

and the results are reported in Table 1. As shown in the table, EquiFM outperforms competitive286

baseline methods on all metrics with an obvious margin. It is worth noticing that, for the DRUG287

dataset, even for ground-truth molecules, the achieves no higher than 86.5% atom-level stability and288

nearly 0% molecule-level stability. This is because the DRUG molecules contain larger and more289

complex structures, creating errors during bond type prediction based on pair-wise atom types and290

distances. Furthermore, as DRUG contains many more molecules with diverse compositions, we291

also observe that unique metric is almost 100% for all methods. Therefore, we omit the molecule292

stability and unique metrics for the DRUG dataset. Overall, the superior performance demonstrates293

EquiFM’s higher capacity to model the molecular distribution and generate chemically realistic294

molecular geometries. We provide visualization of randomly generated molecules AppendixE.295

5.3 Controllable Molecule Generation296

Evaluation Metrics. In this task, we aim to conduct controllable molecule generation with the given297

desired properties. This can be useful in realistic settings of material and drug design where we298

are interested in discovering molecules with specific property preferences. We test our conditional299

version of EquiFM on QM9 with 6 properties: polarizability α, orbital energies εHOMO, εLUMO and300

their gap ∆ε, Dipole moment µ, and heat capacity Cv . For evaluating the model’s capacity to conduct301

property-conditioned generation, we follow the [41] to first split the QM9 training set into two halves302

with 50K samples in each. Then we train a property prediction network ω on the first half and train303

conditional models in the second half. Afterward, given a range of property values s, we conditionally304

draw samples from the generative models and then use ω to calculate their property values as ŝ. The305

Mean Absolute Error (MAE) between s and ŝ is reported to measure whether generated molecules306

are close to their conditioned property. We also test the MAE of directly running ω on the second307

half QM9, named QM9 in Table 2, which measures the bias of ω. A smaller gap with QM9 numbers308

indicates a better property-conditioning performance.309

Baselines. We incorporate existing EDM as our baseline model. In addition, we follow [13] to also310

list two baselines agnostic to ground-truth property s, named Random and Natoms. Random means311

we simply do random shuffling of the property labels in the dataset and then evaluate ω on it. This312

operation removes any relation between molecule and property, which can be viewed as an upper313

bound of MAE metric. Natoms predicts the molecular properties by only using the number of atoms in314

the molecule. The improvement over Random can verify the method is able to incorporate conditional315

property information into the generated molecules. And overcoming Natoms further indicates the316

model can incorporate conditioning into molecular structures beyond the number of atoms.317

Results and Analysis. The visualizations of conditioned generation can be found in Appendix E.318

As shown in Table 2, for all the conditional generation tasks, our proposed EquiFM out performs319

other comparable models with a margin. This further demonstrates the generalization ability of the320

proposed framework upon different tasks.321

5.4 Ablations On the Impacts of Different Probability Paths322

In this section, we aim to answer the following questions: 1) how is the impact of the different323

probability paths on the coordinate variable x and the categorical variable h? 2) how does the324

equivariant optimal transport path boost the generation?325

To answer these questions, we apply several different probability paths and compare them on the326

QM9 dataset, including the variance-preserving (VPLinear) path(Eq. 5), vanilla optimal transport (OT)327

path(Eq. 4), and the equivariant optimal(Eq. 9) transport path(EOT) on the coordinate variable x;328
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And variance-preserving (VPLinear) path(Eq. 5), vanilla optimal transport (OT) (Eq. 4), the variance-329

preserving path with polynomial decay (VPPoly), variance preserving path with cosine schedule330

(VPCos). The result is illustrated in Tab. 5.2. We notice that OT-based paths on coordinates in general331

show superior performance than the others due to the stability and simplicity of the training objective.332

Furthermore, regularizing the path with the equivariant-based prior, the EOT path could further boost333

the performance by a large margin. To gain a more intuitive understanding, we further provide the334

generation dynamic comparison in Fig. 2(b). As shown, the generation procedure trained with vanilla335

OT path, though more stable than the EDM generation procedure, also exit some twisted phenomenon,336

i.e., all atoms tend to first contract together and then expand; Such phenomenon disappears in the337

generation procedure of EOT path due to that the generation direction is well constrained. For the338

probability path on the categorical variable, we find the VP path, holds the superior performance due339

to the closest alignment with the information quantity changes. If there is a significant discrepancy in340

the information quantity dynamics, e.g., OT path, it may result in a substantial decline in performance.341

5.5 Sampling Efficiency342

We also evaluate the sampling efficiency of our model, as shown in Fig. 5.4, the results of EquiFM343

with 4 different integrating algorithm converge to state-of-the-art results in much less NFE compared344

to baseline model EDM. Remarkably, the red triangle is result of EquiFM with Dopri5 integrating345

algorithm, it converges in approximately 210 NFE to achieve 0.883 model stability, while EDM takes346

1000 NFE to achieve only 0.820. With simple non-adaptive step integration algorithms such as Eulers347

method and midpoint, the NFE required to convergence is much less than that of baseline models.348

This indicates that our proposed model have learned a much better vector field, and takes a much349

shorter generation route during generation, this can be justified with visualization Fig. 2(a).350

6 Conclusion and Future Work351

We introduce EquiFM, an innovative molecular geometry generative model that utilizes a simulation-352

free objective. While flow matching has demonstrated excellent properties in terms of stable training353

dynamics and efficient sampling in other domains, its application in geometric domains poses354

significant challenges due to the equivariant property and complex data modality. To address these355

challenges, we propose a hybrid probability path approach in EquiFM. This approach regularizes356

the probability path on coordinates and ensures that the information changes on each component357

of the joint path are appropriately matched. Consequently, EquiFM learns the underlying chemical358

constraints and produces high-quality samples. Through extensive experiments, we demonstrate that359

EquiFM not only outperforms existing methods in modeling realistic molecules but also significantly360

improves sampling speed, achieving a speedup of 4.75× compared to previous advancements. In361

future research, as a versatile framework, EquiFM can be extended to various 3D geometric generation362

applications, such as protein pocket-based generation and antibody design, among others.363
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A Sampling and Training Algorithm497

We provide a detailed training and sampling pipeline in this section. The training algorithm with498

EOT path on the equivariant variable x and VP path on the invariant variable h as an example is499

demonstrated in Algorithm 1.500

Algorithm 1 Training Algorithm of EquiFM
1: Input: geometric data distribution pg, g = ⟨x,h⟩
2: Initial: vector field network vθ, minimum constant variance σmin
3: while θ have not converged do
4: t ∼ U(0, 1), ϵ ∼ N (0, I), g0 ∼ pg
5: Subtract center of gravity from ϵx in ϵ = [ϵx, ϵh]
6: Obtaining the Equivariant Optimal Transport plan π∗,R∗ based on Algorithm 3
7: xt = (σmin + (1− σmin)t)π

∗(R∗ϵx) + (1− t)x0 {Eq. 8}
8: ht = αth0 + (1− α2

t )ϵh, αt = e−
1
2T (t) {Eq. 5}

9: LEquiFM = ||vxθ (⟨xt, ht⟩, t)−(−x0+(1−σmin)ϵx)||2+||vhθ (⟨xt, ht⟩, t)−
α′

t

1−α2
t
(αtht−h0)||2

10: end while
11: return vθ

The sampling algorithm could be found in Algorithm 2.501

Algorithm 2 Sampling Algorithm of EquiFM
1: Input: vector field model vθ
2: g1 ∼ N (0, I)
3: Subtract center of gravity from x1 in g1 = [x1, h1]
4: g0 = ODESolve(g1, vθ, 1, 0)
5: {During the ODE solving, always subtract the center of gravity from vxθ }
6: sample p̂(x0, h0|g0)
7: return ⟨x0, h0⟩

Note the p̂(·|g0) stands for the procedure of transforming the continuous h0 into the specific data502

modality. This is, for the categorical part, p̂(h|g0) = C(h|h0) and for the integer part p (h | g0) =503 ∫ h+ 1
2

h− 1
2

N (u | h0, σ0) du.504

B Formal Proof of Theorems and Propositions505

B.1 Invariant Probability Path: Theorem 4.1506

The key properties of the equivariant flow matching model here are the invariant density modeling.507

For simplicity, here we omit the invariant feature, i.e. h, and focus on the variable x. Here we508

demonstrated that with an invariant prior p1(x) and the equivariant vector field vθ(x, t), the marginal509

distribution implied by the vector field of each time step, pθ,t(x) is also invariant.510

Proof. We are given that p1(x) is invariant, and that vθ(x, t) is equivariant, i.e. for any ro-511

tation R, p1(Rx) = p1(x), and vθ(Rx, t) = Rvθ(x, t). Our target is to prove that ∀t ∈512

[0, 1], ∀R, pθ,t(Rx) = pθ,t(x). Then specifically, the sampling distribution p0(x) is invariant.513

First recall that the way we generate the distribution pθ,t(x) is to exert a transformation ψθ,t to the514

prior p1(x). And the definition of the vector field is vθ(x, t) = d
dtψθ,t(x).515

We can derive the equivariance of ψθ,t by the following equations:516
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ψ1(x)− ψθ,t(x) =

∫ 1

t

vθ(x, t)dt

ψ1(Rx)− ψθ,t(Rx) =

∫ 1

t

vθ(Rx, t)dt

=

∫ 1

t

Rvθ(x, t)dt

= R(ψ1(x)− ψθ,t(x))

Note that ψ1(Rx) = Rψ1(x) since ψ1(x) = x, we have ψθ,t(Rx) = Rψθ,t(x). That is to517

say, ψθ,t is an equivariant transformation. Thus its inverse ψ−1
θ,t is also equivariant, since ∀y =518

ψθ,t(x), we have Ry = Rψθ,t(x) = ψθ,t(Rx), so ψ−1
θ,t (Ry) = Rx = Rψ−1

θ,t (y). Also, the519

Jacobian matrix ∂ψθ,t(x)
∂x is equivariant, i.e. ∂ψθ,t(u)

∂u |u=Rx = R
∂ψθ,t(u)
∂u |u=x, which implies that520

det
∂ψθ,t(u)
∂u |u=Rx = det

∂ψθ,t(u)
∂u |u=x, since the det function keeps constant under any rotation.521

According to the Change of Variable Theorem,522

pθ,t(x) = p1(ψ
−1
θ,t (x))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(x)

∣∣∣∣
pθ,t(Rx) = p1(ψ

−1
θ,t (Rx))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(Rx)

∣∣∣∣
Applying the above conclusions together, we have523

pθ,t(Rx) = p1(Rψ
−1
θ,t (x))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(x)

∣∣∣∣
= p1(ψ

−1
θ,t (x))/

∣∣∣∣det ∂ψθ,t(u)∂u
|u=ψ−1

θ,t(x)

∣∣∣∣ = pθ,t(x).

524

B.2 Explanation of Proposition 4.2525

Note for the initial prior distribution, p1(g|g0), could be the standard distribution, i.e. p1(g|g0) =526

N (0, I). In this case, p1(g|g0) = p1(x|x0)p1(h|h0). And for the time step zero, if we assume the527

distribution is a Gaussian centralized on the g0, i.e., p0(g|g0) = N (g0, σminI). And in this case we528

also have that p0(g|g0) = p0(x|x0)p0(h|h0).529

Example 2: For the Gaussian probability path,530

pt (g | g1) = N
(
g | µt (g1) , σt (g1)2 I

)
(10)

where µ : [0, 1] × Rd → Rd is the time-dependent mean of the Gaussian distribution, while σ :531

[0, 1]× R → R>0 describes a time-dependent scalar standard deviation (std).532

The Gaussian probability path satisfies that pt(g|g0) = pt(x|x0)pt(h|h0). To better clarify, we533

highlight the difference between the conditional probability path and the marginal probability path534

with the following Remark B.1.535

Remark B.1. With the conditional probability path on x and h being independent of each other, the536

marginal distribution could be correlated, i.e. pt(g) ̸= pt(x)pt(h)537

With this property, we could design different paths for modeling complex variables.538
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B.3 Proof of Proposition 4.4539

In the Proposition 4.4, we claim that the probability path under the EOT map is SE(3) invariant.540

The invariant property under translations is guaranteed by the training and sampling setting within541

Zero CoM space, and below we will focus on proving the path is invariant under rotations. The key542

observation is that R∗ might be different for different x.543

Specifically, for any rotation T acting on the point cloud x with N points, the new R∗ corresponding544

with Tx (we denote it by R∗
rot) exactly offsetting the impact of T. Formally, let x0 denotes the target545

point cloud, we calculate546

(π∗,R∗) = argmin
(π,R)

∥π(Rx1,Rx2, . . . ,RxN )− x0∥2

(π∗
rot,R

∗
rot) = argmin

(π,R)

∥π(RTx1,RTx2, . . . ,RTxN )− x0∥2

We claim that π∗
rot = π∗,R∗

rot = R∗T−1, and a strict proof follows.547

Note that if ϕ(R) : R3×3 → R3×3 is a reversible map, then for any scalar function f(R),548

argmin
R

f(ϕ(R)) = ϕ−1(argmin
R

f(R)). Here let ϕ(R) = RT, and ϕ−1(R) = RT−1, we get549

(π∗
rot,R

∗
rot) = argmin

(π,R)

∥π(RTx1,RTx2, . . . ,RTxN )− x0∥2

= argmin
(π,R)

∥π(ϕ(R)x1, ϕ(R)x2, . . . , ϕ(R)xN )− x0∥2

= ϕ̂−1(argmin
(π,R)

∥π(Rx1,Rx2, . . . ,RxN )− x0∥2)

= ϕ̂−1((π∗,R∗)) = (π∗, ϕ−1(R∗)) = (π∗,R∗T−1)

where ϕ̂ is an natural extension of ϕ defined as ϕ̂((π,R)) = (π, ϕ(R)),∀(π,R).550

Now we recheck the probability path pt in Eq. 8. Since p1 is invariant under rotations, and the551

transformation ψEOT
t satisfies552

ψEOT
t (x) = (σmin + (1− σmin)t)π

∗(R∗x) + (1− t)x0

ψEOT
t (Tx) = (σmin + (1− σmin)t)π

∗
rot(R

∗
rotTx) + (1− t)x0

= (σmin + (1− σmin)t)π
∗(R∗x) + (1− t)x0

i.e. ψEOT
t is invariant. So we conclude that pt = [ψEOT

t ]∗p1 is also invariant under rotations.553

B.4 Explanation of Proposition 4.6554

Here we provide the informal explanation of the Proposition 4.6. The proposition states that for555

OT path or VP path on x or h, i.e. pt(x | x0) = N
(
x | (1− t)x0, (σmin + (1− σmin)t)

2I
)

or556

pt(x | x0) = N
(
x | αtx0, (1− α2

t )I
)
, the mutual information between the marginal variable xt and557

ht monotonically decays following the path from time step 0 to time step 1 where I0(x0,h0) > 0.558

Note that the I1(x1,h1) = 0, as p1(g) = p1(x)p1(h). Recall the definition of signal-to-noise ratio559

(SNR) as:560

SNR =
µ2

σ2

For OT-path, SNR = (1−t)2
t2 ; and for VP-path SNR =

α2
t

1−α2
t

. The key observation is that the SNR561

along the probability path of both x and h on either path will decay monotonically. Intuitively, with562

t→ 1, xt has less information of x0 thus has less of h.563
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Figure 5: The dependency relationship on the hybrid path. Note that 0 < t1 < t2 < 1, and the
direction of arrows indicates the flow corresponding to the target vector field ut running backwards
(from t = 0 to 1, opposite of the sampling process) on a random molecule g (not in training data).
This can be regarded as a process similar to that of a diffusion model, but x and h have conditionally
independent paths.

B.5 Proof of Proposition 4.6564

Proof. Firstly, we will prove the dependency relationship between the time-dependent variables in565

the hybrid probability path as shown in Fig. 5.566

To this end, we demonstrate the relationship between the x0,h0,xt1 . Recall the definition of567

conditional independent probability path as pt(x | ⟨x0,h0⟩) = pt(x | x0). Thus we have the568

distribution of random variable xt1 , pt1(x) =
∫
pt1(x | x0)p(x0)dx0. And hence, there is xt1 ⊥569

h0 | x0. Similarly, we could also derive ht1 ⊥ x0 | h0.570

Next, for any time step 0 < t1 < t2 < 1. We will then demonstrate the dependency relationship571

between x0,xt1 ,xt2 . We denote the target vector field which generates the marginal probability572

path pt(x) as ut(x), then the distribution of random variable xt2 could be then derived as pt2(x) =573

[
∫ t2
t1
ut(x)dt]∗pt1(x) = [ψut2 − ψut1 ]∗pt1(x), where ψut denotes the transformation corresponding574

with ut. Then we have xt2 ⊥ x0 | xt1 . Similarly, ht2 ⊥ h0 | ht1 could be also derived.575

With the above two conclusions, we demonstrate the dependency relationship shown in Fig. 5 holds576

in the hybrid probability path. Therefore, with the dependency relationship we could directly obtain577

that I(xt2 ,ht2) ≤ I(xt1 ,ht1). If αt in VP path satisfies αt > 0 when 0 < t < 1, then for any578

combination of such OT path and VP path, we always have I(xt,ht) > 0.579

C Implementation Details580

C.1 Solving EOT with a variant of iterative closest point (ICP) algorithm.581

Problem definition. Given a point cloud z ∈ R3×N and its reference point cloud y ∈ R3×N ,582

note they are point cloud representations in Euclidean space. The objective is to find an optimal583

permutation matrix Π∗ ∈ RN×N and a rotation matrix R∗ ∈ R3×3 that minimizes the following584

objective:585

Π∗,R∗ = argmin
Π,R

∥Π(Rz)⊤ − y⊤∥2 (11)

We optimize the objective iteratively with a variant of iterative closest point (ICP) algorithm, where it586

iteratively obtain Π and R.587

C.2 Model Architectures and Training Configurations588

We use the open-source software RDKIT [21] to preprocess molecules. For QM9 we take atom types589

(H, C, N, O, F) and integer-valued atom charges as atomic features, while for DRUG we only use590

atom types.591
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Algorithm 3 A variant of iterative closest point (ICP) algorithm.
1: Input: a point cloud z ∈ R3×N and it’s reference point cloud y ∈ R3×N .
2: while τ has not converged do
3: Obtain permutation matrix Π = argmin

Π
∥Π(Rz)⊤ − y⊤∥2 with Jonker-Volgenant algorithm

[7]
4: Obtain rotation matrix R = argmin

R
∥R(Πz)⊤ − y⊤∥2 with Kabsch algorithm [22]

5: τ = ∥Π(Rz⊤)⊤ − y⊤∥2
6: end while
7: return Π, R

Figure 6: Number of Evaluation analysis of EquiFM generation process with Dopri5 integrator.

The vector field network is implemented with EGNNs [42] by PyTorch [34] package. We set the592

dimension of latent invariant features k to 1 for QM9 and 2 for DRUG, which extremely reduces the593

atomic feature dimension. For the training of vector field network vθ: on QM9, we train EGNNs594

with 9 layers and 256 hidden features with a batch size 64; and on DRUG, we train EGNNs with 4595

layers and 256 hidden features, with batch size 64. The model uses SiLU activations. We train all596

the modules until convergence. For all the experiments, we choose the Adam optimizer [19] with597

a constant learning rate of 10−4 as our default training configuration. The training on QM9 takes598

approximately 2000 epochs, and on DRUG takes 20 epochs.599

D Number of Evaluation (NFE) analysis600

We further explore the behavior of adaptive integrators during sampling with Dopri15 as an example.601

In Fig. 6, we show the average NFE at different time intervals. We could observe that at time intervals602

near 0 the NFE is much larger than at other time intervals. The underlying reason lies in the vector603

field of h dramatically changes in these steps, which results in the frequent change of the atom type604

in the last period of sampling. This behavior could be due to the unsmoothness of the categorical605

manifold and which could shed light on several future directions.606
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Figure 7: Molecules generated from EquiFM trained on QM9.

E More visualizations607

This section presents additional visualizations of molecules generated by our EquiFM method. We608

include samples from two datasets, QM9 and DRUG, in Fig. 7 and Fig. 9, respectively. All examples609

are randomly generated without cherry-picking, but the viewing direction may affect the visibility of610

some geometries.611

As demonstrated in the figures, our model can generate realistic molecular geometries for small and612

large molecules alike. However, the model occasionally generates disconnected components, which613

is more common when trained on the large molecule DRUG dataset, as shown in the second molecule614

in Fig. 9. This phenomenon is not unique to our model but is a common issue in non-autoregressive615

molecule generative models [51, 16]. Nevertheless, it is easily solvable by filtering out the smaller616

components.617

We also present a qualitative assessment of controlled molecule generation by EquiFM in Fig. 8. We618

interpolate the conditioning parameter, polarizability, with different values of α, while keeping the619

prior g1 fixed. Polarizability measures the tendency of matter to acquire an electric dipole moment620

when subjected to an electric field. In general, less isometric molecular geometries tend to correspond621

to higher α values. This observation is consistent with our results in Fig. 8.622
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63.11 66.76 70.41 74.06 77.71

81.36 85.01 88.66 92.31 95.96

99.62 103.27 106.92 110.57 114.22

Figure 8: Molecules generated from conditioned version of EquiFM trained on QM9. We conduct
controllable generation with interpolation among different polarizability α values with the same prior
g1. The given α values are provided at the bottom.

Figure 9: Molecules generated from EquiFM trained on DRUG.
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