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Abstract

Homophily is a graph property describing the tendency of edges to connect
similar nodes; the opposite is called heterophily. It is often believed that het-
erophilous graphs are challenging for standard message-passing graph neural net-
works (GNNs), and much effort has been put into developing efficient methods for
this setting. However, there is no universally agreed-upon measure of homophily in
the literature. In this work, we show that commonly used homophily measures have
critical drawbacks preventing the comparison of homophily levels across different
datasets. For this, we formalize desirable properties for a proper homophily mea-
sure and verify which measures satisfy which properties. In particular, we show
that a measure that we call adjusted homophily satisfies more desirable properties
than other popular homophily measures while being rarely used in graph machine
learning literature. Then, we go beyond the homophily–heterophily dichotomy and
propose a new characteristic that allows one to further distinguish different sorts
of heterophily. The proposed label informativeness (LI) characterizes how much
information a neighbor’s label provides about a node’s label. We prove that this
measure satisfies important desirable properties. We also observe empirically that
LI better agrees with GNN performance compared to homophily measures, which
confirms that it is a useful characteristic of the graph structure.

1 Introduction

Graphs are a natural way to represent data from various domains such as social networks, citation
networks, molecules, transportation networks, text, code, and others. Machine learning on graph-
structured data has experienced significant growth in recent years, with Graph Neural Networks
(GNNs) showing particularly strong results. Many variants of GNNs have been proposed [16, 10,
43, 45], most of them can be unified by a general Message Passing Neural Networks (MPNNs)
framework [7]. MPNNs combine node features (attributes) with graph topology to learn complex
dependencies between the nodes. For this, MPNNs iteratively update the representation of each
node by aggregating information from the previous-layer representations of the node itself and its
neighbors.
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In many real-world networks, edges tend to connect similar nodes: users in social networks tend
to connect to users with similar interests, and papers in citation networks mostly cite works from
the same research area. This property is usually called homophily. The opposite of homophily is
heterophily: for instance, in social networks, fraudsters rarely connect to other fraudsters, while in
dating networks, edges often connect the opposite genders. Early works on GNNs mainly focus
on homophilous graphs. However, it was later discovered that classic GNNs typically do not
perform well on heterophilous graphs, and new GNN architectures have been developed for this
setting [1, 4, 32, 48, 49].

To measure the level of homophily, several homophily measures are used in the literature [1, 20,
32, 48], but these measures may significantly disagree with each other. In this work, we start by
addressing the problem of how to properly measure the homophily level of a graph. For this, we
formalize some desirable properties of a reasonable homophily measure and check which measures
satisfy which properties. One essential property is called constant baseline and, informally speaking,
it requires a measure to be not biased towards particular numbers of classes or their size balance.
Our analysis reveals that commonly used homophily measures do not satisfy this property and thus
cannot be compared across different datasets. In contrast, a measure that we call adjusted homophily
(a.k.a. assortativity coefficient) satisfies most of the desirable properties while being rarely used in
graph ML literature. Based on our theoretical analysis, we advise using adjusted homophily as a
better alternative to the commonly used measures.

Then, we note that heterophilous datasets may have various connectivity patterns, and some of
them are easier for GNNs than others. Motivated by that, we propose a new graph property called
label informativeness (LI) that allows one to further distinguish different sorts of heterophily. LI
characterizes how much information the neighbor’s label provides about the node’s label. We analyze
this measure via the same theoretical framework and show that it satisfies the constant baseline
property and thus is comparable across datasets. We also observe empirically that LI better agrees
with GNN performance than homophily measures. Thus, while being very simple to compute,
LI intuitively illustrates why GNNs can sometimes perform well on heterophilous datasets — a
phenomenon recently observed in the literature. While LI is not a measure of homophily, it naturally
complements adjusted homophily by distinguishing different heterophily patterns.

In summary, we propose a theoretical framework that allows for an informed choice of suitable
characteristics describing graph connectivity patterns in node classification tasks. Based on this
framework, we suggest using adjusted homophily to measure whether similar nodes tend to be
connected. To further characterize the datasets and distinguish different sorts of heterophily, we
propose a new measure called label informativeness.

2 Homophily measures

Assume that we are given a graph G = (V,E) with nodes V , |V | = n, and edges E. Throughout the
paper, we assume that the graph is simple (without self-loops and multiple edges) and undirected.3
Each node v ∈ V has a feature vector xv ∈ Rm and a class label yv ∈ {1, . . . , C}. Let nk denote
the size of k-th class, i.e., nk = |{v : yv = k}|. By N(v) we denote the neighbors of v in G and
by d(v) = |N(v)| the degree of v. Also, let Dk :=

∑
v : yv=k d(v). Let p(·) denote the empirical

distribution of class labels, i.e., p(k) = nk

n . Then, we also define degree-weighted distribution as

p̄(k) =
∑

v : yv=k d(v)

2|E| = Dk

2|E| .

2.1 Popular homophily measures

Many GNN models implicitly make a so-called homophily assumption: that similar nodes are
connected. Similarity can be considered in terms of node features or node labels. Usually, label
homophily is analyzed, and we also focus on this aspect, leaving feature homophily for further studies.
There are several commonly used homophily measures in the literature. Edge homophily [1, 48] is
the fraction of edges that connect nodes of the same class:

hedge =
|{{u, v} ∈ E : yu = yv}|

|E|
. (1)

3We further denote (unordered) edges by {u, v} and ordered pairs of nodes by (u, v).
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Node homophily [32] computes the fraction of neighbors that have the same class for all nodes and
then averages these values across the nodes:

hnode =
1

n

∑
v∈V

|{u ∈ N(v) : yu = yv}|
d(v)

.

These two measures are intuitive but have the downside of being sensitive to the number of classes and
their balance, which makes them hard to interpret and incomparable across different datasets [20]. For
example, suppose that each node in a graph is connected to one node of each class. Then, both edge
homophily and node homophily for this graph will be equal to 1

C . Thus, these metrics will produce
widely different values for graphs with different numbers of classes, despite these graphs being
similar in exhibiting no homophily. To fix these issues, Lim et al. [20] propose another homophily
measure sometimes referred to as class homophily [22]. Class homophily measures excess homophily
compared to a null model where edges are independent of the labels. More formally,

hclass =
1

C − 1

C∑
k=1

[∑
v:yv=k |{u ∈ N(v) : yu = yv}|∑

v:yv=k d(v)
− nk

n

]
+

,

where [x]+ = max{x, 0}. The factor 1
C−1 scales hclass to the interval [0, 1]; larger values indicate

more homophilous graphs and non-homophilous ones are expected to have close to zero values.

However, there are still some issues with class homophily. First, when correcting the fraction of
intra-class edges by its expected value, class homophily does not consider the variation of node
degrees. Indeed, if nodes of class k have, on average, larger degrees than 2|E|/n, then the probability
that a random edge goes to that class can be significantly larger than nk/n. Second, only positive
deviations from nk/n contribute to class homophily, while classes with heterophilous connectivity
patterns are neglected. Let us illustrate these drawbacks of class homophily with a simple example.

Example Let us construct non-homophilous graphs for which class ho-
mophily is significantly larger than zero. First, we take a clique of size r
with all nodes belonging to the red class; then, for each node in the clique,
connect it to r − 1 leaves, all of which belong to the blue class (example
for r = 4 is shown on the right). Note that all blue nodes are strictly
heterophilous (i.e., only connect to nodes of the opposite class), while all
red nodes are class-agnostic (i.e., have the same number of neighbors of
both classes). Such graphs are clearly non-homophilous, and a meaningful
homophily measure should not produce a value significantly greater than
zero for them. However, class homophily for such graphs is positive and can
become as large as 1

2 : hclass =
1
2 − 1

r → 1
2 as r → ∞.

2.2 Desirable properties for homophily measures

Above, we discussed some disadvantages of existing homophily measures. In this section, we
formalize and extend this discussion: we propose a list of properties desirable for a good homophily
measure. Our analysis is motivated by recent studies of clustering and classification performance
measures [8, 9], but not all their properties can be transferred to homophily measures. For instance,
we do not require symmetry — a property that a measure does not change when we swap the compared
objects — since homophily compares entities of different nature (a graph and a labeling). For the same
reason, the distance property (requiring a measure to be linearly transformed to a metric distance)
cannot be defined. On the other hand, some of our properties are novel.

Maximal agreement This property requires that perfectly homophilous graphs achieve a constant
upper bound of the measure. Formally, we say that a homophily measure h satisfies maximal
agreement if for any graph G in which yu = yv for all {u, v} ∈ E we have h(G) = cmax. For all
other graphs G, we require h(G) < cmax.

Minimal agreement We say that a homophily measure h satisfies minimal agreement if h(G) =
cmin for any graph G in which yu ̸= yv for all {u, v} ∈ E. For all other graphs G, we require
h(G) > cmin. In other words, if all edges connect nodes of different classes, we expect to observe a
constant minimal value.
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Constant baseline This property ensures that homophily is not biased towards particular class
size distributions. Intuitively, if the graph structure is independent of labels, we would expect a low
homophily value. Moreover, if we want a measure to be comparable across datasets, we expect to
observe the same low value in all such cases. There are several ways to formalize the concept of
independence, and we suggest the one based on the so-called configuration model.

Definition 1. Configuration model is defined as follows: take n nodes, assign each node v degree
d(v), and then randomly pair edge endpoints to obtain a graph.4

Assuming that we are given n labeled nodes and the graph is constructed according to the configuration
model (independently from the labels), we expect to observe a fixed (small) homophily independently
of the number of classes and class size balance. We formalize this property as follows and refer to
Appendix B.2 for other possible definitions.

Definition 2. A homophily measure h has asymptotic constant baseline if for G generated according
to the configuration model and for any ε > 0 with probability 1− o(1) we have |h(G)− cbase| < ε
for some constant cbase as n → ∞.

In combination with maximal agreement, asymptotic constant baseline makes the values of a ho-
mophily measure comparable across different datasets: the maximal agreement guarantees that
perfectly homophilous graphs have the same value, while constant baseline aligns the uninformative
cases with neither strong homophily nor strong heterophily.

Empty class tolerance Since homophily measures are used to compare different graph datasets,
they have to be comparable across datasets with varying numbers of classes. For this, the following
property is required.

Definition 3. A measure is tolerant to empty classes if it is defined and it does not change when we
introduce an additional dummy label that is not present in the data.

For instance, edge homophily and node homophily are empty class tolerant, while class homophily is
not. Empty class tolerance is a new property that was not discussed in [8, 9] since classification and
clustering evaluation measures are used within one given dataset, see Appendix B.3 for more details.

Monotonicity As we discuss in Appendix B.3, it can be non-trivial to define monotonicity for
homophily measures and there can be different possible options. In this paper, we use the follow-
ing definition that aligns especially well with edge-wise homophily measures discussed below in
Section 2.5.

Definition 4. A homophily measure is monotone if it is empty class tolerant, increases when we add
an edge between two nodes of the same class (except for perfectly homophilous graphs) and decreases
when we add an edge between two nodes of different classes (except for perfectly heterophilous
graphs).

In contrast to Gösgens et al. [8, 9], our notion of monotonicity requires the property to hold across
graphs with different numbers of classes. This is caused by the empty class tolerance property.

2.3 Properties of popular homophily measures

Below we briefly discuss the properties of popular homophily measures. In most cases, the proofs are
straightforward or follow from Section 2.5 below. Table 1 summarizes the results.

Edge homophily satisfies maximal and minimal agreement and is empty class tolerant and monotone.
However, it does not satisfy asymptotic constant baseline, which is a critical drawback: one can get
misleading results in settings with imbalanced classes.

Node homophily satisfies maximal and minimal agreement. It is empty class tolerant, but not
monotone: adding an edge between two perfectly homophilous nodes of the same class does not
change node homophily. Similarly to edge homophily, node homophily does not satisfy the asymptotic
constant baseline and thus is incomparable across different datasets.

4See Appendix A for additional discussions about the model.
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Table 1: Properties of homophily measures: maximal agreement (Max), minimal agreement (Min),
asymptotic constant baseline (ACB), empty class tolerance (ECT), monotonicity (Mon). ✗* denotes
that the property is not satisfied in general, but holds for large hadj (see Theorem 1).

Measure Max Min ACB ECT Mon

Edge homophily ✓ ✓ ✗ ✓ ✓
Node homophily ✓ ✓ ✗ ✓ ✗
Class homophily ✓ ✗ ✗ ✗ ✗
Adjusted homophily ✓ ✗ ✓ ✓ ✗*

Class homophily satisfies maximal agreement with hclass = 1, but minimal agreement is not satisfied:
not only perfectly heterophilous graphs may have hclass = 0. Class homophily is not empty class
tolerant and thus is not monotone. Additionally, it does not have the asymptotic constant baseline.
See Appendix B.1 for the proofs and discussions. Interestingly, removing the [·]+ operation from the
definition of class homophily solves the problem with the asymptotic constant baseline, but minimal
agreement, empty class tolerance, and monotonicity are still violated.

2.4 Adjusted homophily

Let us discuss a much less known homophily measure that by construction satisfies two important
properties — maximal agreement and constant baseline. To derive this measure, we start with edge
homophily and first enforce the constant baseline property by subtracting the expected value of the
measure. Under the configuration model, the probability that a given edge endpoint will be connected
to a node with a class k is (up to a negligible term)

∑
v:yv=k d(v)

2|E| . Thus, the adjusted value becomes

hedge −
∑C

k=1
D2

k

4|E|2 . Now, to enforce maximal agreement, we normalize the measure as follows:

hadj =
hedge −

∑C
k=1 p̄(k)

2

1−
∑C

k=1 p̄(k)
2

, (2)

where we use the notation p̄(k) = Dk

2|E| . This measure is known in graph analysis literature as assor-
tativity coefficient [28]. While assortativity is a general concept that is often applied to node degrees,
it reduces to (2) when applied to categorical node attributes on undirected graphs. Unfortunately, this
measure is rarely used in graph ML literature (Suresh et al. [41] is the only work we are aware of that
uses it for measuring homophily), while our theoretical analysis shows that it satisfies many desirable
properties. Indeed, the following theorem holds (see Appendix B.4 for the proof).

Theorem 1. Adjusted homophily satisfies maximal agreement, asymptotic constant baseline, and
empty class tolerance. The minimal agreement is not satisfied. Moreover, this measure is monotone if
hadj >

∑
i p̄(i)

2∑
i p̄(i)

2+1 and we note that the bound
∑

i p̄(i)
2∑

i p̄(i)
2+1 is always smaller than 0.5. When hadj is

small, counterexamples to monotonicity exist.

While adjusted homophily violates some properties, it still dominates all other measures and is
comparable across different datasets with varying numbers of classes and class size balance. Thus,
we recommend using it as a measure of homophily in further works.

2.5 Edge-wise homophily vs classification evaluation measures

We conclude the analysis of homophily measures by establishing a connection between them and
classification evaluation measures [8]. For this, let us first define edge-wise homophily measures. We
say that a homophily measure is edge-wise if it is a function of the class adjacency matrix that we
now define. Since we consider undirected graphs, each edge {u, v} ∈ E gives two ordered pairs of
nodes (u, v) and (v, u). We can define a class adjacency matrix C as follows: each matrix element cij
denotes the number of edges (u, v) such that yu = i and yv = j. Since the graph is undirected, the
matrix C is symmetric. Note that monotonicity can be naturally put in terms of the class adjacency
matrix: adding an edge between two nodes of the same class i corresponds to incrementing the
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(a) Informative neighbors (b) Less informative neighbors

Figure 1: Non-homophilous graphs with different connection patterns

diagonal element cii by two, and adding an edge between two nodes of different classes i and j
corresponds to incrementing cij and cji by one.

Now, for each edge (u, v), let us say that yu is a true label (for some object) and yv is a predicted
label. Then, any classification evaluation measure (e.g., accuracy) applied to this dataset is a measure
of homophily. Based on that, we get the following correspondence.

Clearly, accuracy corresponds to edge homophily hedge.

Interestingly, both Cohen’s Kappa and Matthews correlation coefficient correspond to adjusted
homophily. As argued in [8], the Matthews coefficient is one of the best classification evaluation
measures in terms of its theoretical properties. Our extended analysis confirms this conclusion for
the corresponding homophily measure: we prove a stronger version of asymptotic constant baseline
and also establish a stronger variant of monotonicity in the interval of large values of hadj . The latter
result is essential since in [8] it was only claimed that monotonicity is violated when C > 2.

Another measure advised by [8] is symmetric balanced accuracy. Since in our case the class
adjacency matrix is symmetric, it gives the same expression as balanced accuracy: hbal =
1
C

∑C
k=1

|(u,v):yu=yv=k|
Dk

. The obtained measure satisfies the maximal and minimal agreement prop-
erties. However, it is not empty class tolerant and thus is not monotone. The asymptotic constant
baseline is also not satisfied: the value cbase = 1/C depends on the number of classes. Thus, despite
this measure being suitable for classification evaluation, it cannot be used as a homophily measure.
This difference is caused by the fact that homophily measures have to be comparable across datasets
with different numbers of classes, while for classification evaluation it is not required.

Finally, note that similarly to our derivations in Section 2.4, the value hbal can be adjusted to have
both maximal agreement and constant baseline. Interestingly, this would lead to a slighlty modified
class homophily with [·]+ operation removed. As discussed in Section 2.3, the obtained measure
satisfies only the maximal agreement and constant baseline.

To conclude, there is a correspondence between edge-wise homophily measures and classification
evaluation measures. Adjusted homophily corresponds to both Cohen’s Kappa and Matthews coeffi-
cient. In terms of the satisfied properties, adjusted homophily dominates all other measures derived
from this correspondence.

Finally, we also note that homophily measures can be directly related to community detection
evaluation measures including the well-established characteristic in graph community detection
literature called modularity [30]. See Appendix B.5 for a detailed discussion.

3 Label informativeness

In the previous section, we discussed in detail how to properly measure the homophily level of a
graph. While homophily indicates whether similar nodes are connected, heterophily is defined as the
negation of homophily. Thus, heterophilous graphs may have very different connectivity patterns. In
this section, we characterize such patterns.

To give an example, among strictly heterophilous graphs in which nodes never connect to nodes of the
same class, there can be those where edges are drawn between particular pairs of classes (Figure 1a)
and those where the class of a node cannot be derived from the class of its neighbor (Figure 1b).
While adjusted homophily correctly captures the absence of homophily in these graphs, it is not
designed to identify which type they belong to. However, distinguishing such graphs is practically
important: informative neighbors can be very useful for models accounting for the graph structure.

6



We define a characteristic measuring the informativeness of a neighbor’s label for a node’s label.
For example, in Figure 1a, the neighbor’s label uniquely defines the node’s label. Thus, the node
classification task is simple on this dataset, and we want our informativeness to be maximal for
such graphs. Let us formalize this idea. Assume that we sample an edge (ξ, η) ∈ E (from some
distribution). The class labels of nodes ξ and η are then random variables yξ and yη. We want to
measure the amount of knowledge the label yη gives for predicting yξ. The entropy H(yξ) measures
the ‘hardness’ of predicting the label of ξ without knowing yη. Given yη, this value is reduced
to the conditional entropy H(yξ|yη). In other words, yη reveals I(yξ, yη) = H(yξ) − H(yξ|yη)
information about the label. To make the obtained quantity comparable across different datasets, we
say that label informativeness is the normalized mutual information of yξ and yη:

LI := I(yξ, yη)/H(yξ) . (3)

We have LI ∈ [0, 1]. If the label yη allows for unique reconstruction of yξ, then LI = 1. If yξ and yη
are independent, LI = 0.

Depending on the distribution used for sampling an edge (ξ, η), one can obtain several variants of LI.
For instance, if the edges are sampled uniformly at random (which is a natural approach), the mutual
distribution (yξ, yη) for a randomly sampled edge is p(c1, c2) =

∑
(u,v)∈E

1{yu=c1,yv=c2}
2|E| . Then,

the marginal distribution of yξ (and yη) is the degree-weighted distribution p̄(c). Thus, (3) becomes:

LIedge = −
∑

c1,c2
p(c1, c2) log

p(c1,c2)
p̄(c1)p̄(c2)∑

c p̄(c) log p̄(c)
= 2−

∑
c1,c2

p(c1, c2) log p(c1, c2)∑
c p̄(c) log p̄(c)

.

For brevity, we further denote LIedge by LI and focus on this version of the measure. However, note
that another natural approach to edge sampling is to first sample a random node and then sample a
random edge incident to this node. For a discussion of this approach, we refer to Appendix C.2.

To claim that LI is a suitable graph characteristic, we need to show that it is comparable across
different datasets. For this, we need to verify two properties: maximal agreement and asymptotic
constant baseline. Recall that LI is upper bounded by one and equals one if and only if the neighbor’s
class uniquely reveals the node’s class. This property can be considered as a direct analog of the
maximal agreement defined in Section 2.2. The following theorem shows that LI satisfies the
asymptotic constant baseline; see Appendix C.1 for the proof.

Theorem 2. Assume that |E| → ∞ as n → ∞ and that the entropy of p̄(·) is bounded from below
by some constant. Let p̄min = mink p̄(k) and assume that p̄min ≫ C/

√
|E| as n → ∞. Then, for

the random configuration model, we have LI = o(1) with high probability.

In summary, LI is a simple graph characteristic suitable for comparing different datasets. We note that
LI is not a measure of homophily. LI naturally complements homophily measures by distinguishing
different types of heterophilous graphs.

4 Empirical illustrations

In this section, we first characterize some existing graph datasets in terms of homophily and LI to see
which structural patterns are currently covered. Then, we show that LI, despite being a very simple
graph characteristic, much better agrees with GNN performance than homophily.5

4.1 Characterizing real graph datasets

We first look at the values of homophily and label informativeness for existing graph datasets. For this
analysis, we choose several node classification datasets of different sizes and properties. Statistics
of these datasets and values of all the measures discussed in this paper are provided in Table 5 in
Appendix E, while Table 2 shows selected results.

Recall that both node and edge homophily are sensitive to the number of classes and class size
balance. Indeed, they may indicate high homophily levels for some heterophilous datasets. An

5Implementations of all the graph measures discussed in the paper and examples of their usage are provided
in this Colab notebook.
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extreme example is questions: hedge = 0.84, while more reliable adjusted homophily shows that
the dataset is heterophilous: hadj = 0.02. In fact, all binary classification datasets in Table 5 could be
considered homophilous if one chooses hedge or hnode as the measure of homophily. In contrast, hadj

satisfies the constant baseline property and shows that most of the considered binary classification
datasets are heterophilous.

Table 2: Characteristics of some real graph
datasets, see Table 5 for the full results

Dataset C hedge hadj LI

lastfm-asia 18 0.87 0.86 0.74
cora 7 0.81 0.77 0.59
ogbn-arxiv 40 0.65 0.59 0.45
twitter-hate 2 0.78 0.55 0.23
wiki 5 0.38 0.15 0.06
twitch-gamers 2 0.55 0.09 0.01
actor 5 0.22 0.00 0.00
questions 2 0.84 0.02 0.00
roman-empire 18 0.05 -0.05 0.11

It is expected that datasets with high homophily
hadj also have high LI since homophily implies
informative neighbor classes. For medium-level
homophily, LI can behave differently: for in-
stance, ogbn-arxiv and twitter-hate have
similar homophily levels, while the neighbors in
ogbn-arxiv are significantly more informative.
For heterophilous datasets, LI can potentially be
very different, as we demonstrate in Section 4.2
on synthetic and semi-synthetic data. How-
ever, most existing heterophilous datasets have
LI ≈ 0. This issue is partially addressed by new
heterophilous datasets recently proposed in [33].
For the proposed roman-empire dataset, LI =
0.11 and hadj = −0.05. Thus, while being het-
erophilous, this dataset has non-zero label informativeness, meaning that neighboring classes are
somewhat informative. We believe that datasets with more interesting connectivity patterns will be
collected in the future.

4.2 Correlation of LI with GNN performance

Recently, it has been shown that standard GNNs can sometimes perform well on non-homophilous
datasets [22, 24]. We hypothesize that GNNs can learn more complex relationships between nodes
than just homophily, and they will perform well as long as the node’s neighbors provide some
information about this node. Thus, we expect LI to better correlate with the performance of GNNs
than homophily. To illustrate this, we use carefully designed synthetic and semi-synthetic data. First,
it allows us to cover all combinations of homophily levels and label informativeness. Second, we can
control that only a connection pattern changes while other factors affecting the performance are fixed.

Synthetic data based on SBM model To start with the most simple and controllable setting, we
generate synthetic graphs via a variant of the stochastic block model (SBM) [13]. In this model, the
nodes are divided into C clusters, and for each pair of nodes i, j, we draw an edge between them
with probability pc(i),c(j) independently of all other edges. Here c(i) is a cluster assignment for a
node i, which in our case corresponds to the node label yi.

We set the number of classes to C = 4 and the class size to l = n/4. We define the probabilities as
follows: pi,j = p0K if i = j, pi,j = p1K if i+ j = 5, and pi,j = p2K otherwise. Here K > 0 and
we require p0 + p1 + 2p2 = 1. Note that the expected degree of any node is (up to a negligibly small
term) p0Kl + p1Kl + 2p2Kl = Kl.

This model allows us to explore various combinations of dataset characteristics. Indeed, p0 directly
controls the homophily level, while the relation between p1 and p2 enables us to vary LI. To see this,
we note that the condition i+ j = 5 gives two pairs of classes: (1, 4) and (2, 3). Thus, if p2 = 0 and
p1 > 0, knowing the label of any neighbor from another class, we can uniquely restore the node’s
label. In contrast, for given p0, the case p1 = p2 gives the smallest amount of additional information.
The following proposition characterizes the covered combinations of LI and homophily; the proof
follows from the construction procedure.

Proposition 1. As n → ∞, the dataset characteristics of the proposed model converge to the
following values (with high probability): hadj =

4
3p0 −

1
3 , LI = 1− H(p0,p1,p2,p2)

log 4 , where H(x) =

−
∑

i xi log(xi).

Thus, hadj ranges from −1/3 to 1 and LI can be between 0 and 1. If LI = 0, then we always have
hadj = 0; if hadj = 1, then LI = 1. However, if LI = 1, then either hadj = −1/3 or hadj = 1.
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(a) Synthetic SBM graphs (b) Semi-synthetic cora graphs from [24]

Figure 2: Accuracy of GraphSAGE on synthetic and semi-synthetic graphs

We generated graphs according to the procedure described above with the expected node degree of
10 and various combinations of p0, p1, p2. Given the class labels, the features are taken from the four
largest classes in the cora dataset [38, 27, 46, 25]. We use the obtained graphs to train four popular
GNN models: GCN [16], GraphSAGE [10], GAT [43], and Graph Transformer (GT) [40]. In
total, we run more than 20000 experiments on synthetic datasets for each of the four models. A
detailed description of data generation, training setup, and hyperparameters used is provided in
Appendix F.1.

Table 3: Spearman correlation be-
tween model accuracy and charac-
teristics of synthetic SBM datasets

Model hadj LIedge

GCN 0.19 0.76
GraphSAGE 0.05 0.93
GAT 0.17 0.77
GT 0.17 0.77

Figure 2a shows the results for GraphSAGE. It can be seen
that the performance is much more correlated with LI than
with homophily. In particular, when LI is high, GraphSAGE
achieves good performance even on strongly heterophilous
graphs with negative homophily. We refer to Appendix F.2 for
additional visualizations.

The Spearman correlation coefficient between accuracy and
LI is equal to 0.93, while between accuracy and adjusted ho-
mophily it equals 0.05. For other considered models, the differ-
ence in correlation is also significant; see Table 3. Note that due
to the balanced classes and degrees, all homophily measures
give the same correlation, so we report only hadj .

Semi-synthetic data from [24] Ma et al. [24] also argue that standard GNNs can perform well
on certain heterophilous graphs. They construct semi-synthetic graphs by adding inter-class edges
following different patterns to several real-world graphs, thus obtaining several sets of graphs with
varying levels of homophily. Ma et al. [24] run experiments on these graphs and note that a standard
GNN achieves strong performance on some heterophilous graphs.

Table 4: Spearman correlation between model accuracy
and characteristics of semi-synthetic datasets from [24]

Model hedge hnode hclass hadj LIedge

cora
GCN -0.31 -0.31 -0.31 -0.31 0.72
GraphSAGE -0.24 -0.24 -0.24 -0.24 0.78
GAT -0.24 -0.25 -0.24 -0.24 0.77
GT -0.23 -0.24 -0.23 -0.23 0.79

citeseer
GCN -0.24 -0.24 -0.24 -0.24 0.76
GraphSAGE -0.53 -0.53 -0.54 -0.54 0.51
GAT -0.27 -0.27 -0.27 -0.27 0.75
GT -0.19 -0.19 -0.19 -0.19 0.80

We train GCN, GraphSAGE, GAT, and
GT on the same modifications of the cora
and citeseer graphs used in [24] and
find that the models achieve strong perfor-
mance when the graphs have high label
informativeness. Training setup and hy-
perparameters used in these experiments
are the same as above and are described in
Appendix F.1. The performance of Graph-
SAGE on cora is shown in Figure 2b. In
Appendix F.3, we also show the perfor-
mance of GraphSAGE on the citeseer
dataset. Table 4 shows the Spearman cor-
relation coefficients between accuracy and
various homophily measures or LI for all
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models and both datasets. The correlation coefficients for homophily measures are all negative, while
for LI they are positive and sufficiently large. This again confirms that LI indicates whether graph
structure is helpful for GNNs.

Additionally, we conduct experiments with other datasets: Appendix F.4 describes the results for the
LFR benchmark [17] and Appendix F.5 presents an experiment on synthetic data from [22].

5 Conclusion

In this paper, we discuss how to characterize graph node classification datasets. First, we revisit
the concept of homophily and show that commonly used homophily measures have significant
drawbacks preventing the comparison of homophily levels between different datasets. For this, we
formalize properties desirable for a good homophily measure and prove which measures satisfy
which properties. Based on our analysis, we conclude that adjusted homophily is a better measure
of homophily than the ones commonly used in the literature. We believe that being able to properly
estimate the homophily level of a graph is essential for the future development of heterophily-suited
GNNs: we need a characteristic that reliably differentiates homophilous and heterophilous graphs.

Then, we argue that heterophilous graphs may have very different structural patterns and propose a
new property called label informativeness (LI) that allows one to distinguish them. LI characterizes
how much information a neighbor’s label provides about a node’s label. Similarly to adjusted
homophily, this measure satisfies important properties and thus can be used to compare datasets with
different numbers of classes and class size balance. Through a series of experiments, we show that
LI correlates well with the performance of GNNs.

To conclude, we believe that adjusted homophily and label informativeness will be helpful for
researchers and practitioners as they allow one to easily characterize the connectivity patterns
of graph datasets. We also hope that new realistic datasets will be collected to cover currently
unexplored combinations of hadj and LI. Finally, our theoretical framework can be helpful for the
further development of reliable graph characteristics.

Limitations We advise using adjusted homophily as a reliable homophily measure since it is the
only existing measure having constant baseline and thus it dominates other known alternatives in
terms of desirable properties. However, it still violates minimal agreement, and monotonicity is
guaranteed only for sufficiently large values of hadj . It is currently an open question whether there
exist measures dominating adjusted homophily in terms of the satisfied properties.

Regarding LI, we do not claim that this measure is a universal predictor of GNN performance. We
designed this measure to be both informative and simple to compute and interpret. For instance, LI
considers all edges individually and does not account for the node’s neighborhood as a whole. As a
result, LI can be insensitive to some complex dependencies. Such dependencies can be important for
some tasks, but taking them into account is tricky and would significantly complicate the measure.
However, we clearly see that despite its simplicity, LI correlates with GNN performance much better
than homophily.

Let us also note that our analysis of both homophily and LI is limited to graph-label interactions. In
future work, it would be important to also analyze node features. Indeed, node features may have
non-trivial relations with both graph and labels. For example, a graph can be heterophilous in terms
of labels but homophilous in terms of node features or vice versa. These interactions may allow one
to understand the properties and performance of GNNs even better. However, analyzing feature-based
homophily or informativeness can be much more difficult since the features can differ in nature, scale,
and type.
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A Random configuration model

Numerous random graph models have been proposed to reflect and predict important quantitative and
topological aspects of real-world networks [3]. The simplest model is the Erdős–Rényi random graph,
i.e., we assume that G is sampled uniformly at random from the set of all graphs with n nodes and
|E| edges. However, this model is known to be not a good descriptor of real-world networks since
its Poisson degree distribution significantly differs from heavy-tailed degree distributions observed
in real-world networks. A standard solution is to consider a random graph with a given degree
sequence [26]: a graph is sampled uniformly from the set of all graphs with a given degree sequence.

A configuration model, which we assume throughout the paper, is defined as follows. To generate
a graph, we form a set A containing d(v) distinct copies of each node v and then choose a random
matching of the elements of A. In this case, self-loops and multiple edges may appear. Under some
conditions, the obtained graph is simple (i.e., does not contain self-loops and multiple edges) with
probability 1− o(1) [26].

Let us also note that there is another model that is similar to the one discussed above but can be
easier to analyze. To obtain a graph with given expected degree sequence [5], we take the degree
sequence from the observed graph and say that the number of edges between i and j follows a Poisson
distribution with the mean d(i)d(j)

2|E| if i ̸= i and the expected number of self-loops for a node i is
d(i)2

4|E| . This model does not preserve the exact degree sequence but has it in expectation. Note that
usually d(i)d(j) ≪ 2|E|, so multiple edges rarely appear. Asymptotically, this model is similar
to the configuration model, but a graph with a given expected degree sequence is easier to analyze
theoretically. In our analysis, we assume the configuration model, so we have to track the error terms
carefully.

B Analysis of homophily

B.1 Class homophily

Recall that class homophily is defined as [20]:

hclass =
1

C − 1

C∑
k=1


∑

v:yv=k

|{u ∈ N(v) : yu = yv}|∑
v:yv=k d(v)

− nk

n


+

.

Here the first term inside the brackets is the fraction of edges that go from a particular class k
to itself. The second term nk/n = p(k) is the null expected fraction. We note that p(k) is the
expected fraction if we assume the Erdős–Rényi model. Indeed, for this model, all edges have equal
probability, and thus the expected fraction of neighbors of class k is proportional to the size of this
class. However, as mentioned above, the Erdős–Rényi null model has certain disadvantages since it
does not take into account node degrees. This may lead to incorrect estimates of null probabilities for
degree-imbalanced classes, as shown in the example below.6

Proposition 2. Assume that we have two classes of size n/2. Further, assume that the expected
degrees of nodes in the first class are equal to d, while nodes in the second class have expected
degrees ld for some l > 1. Then, if edges are added independently of the classes, the expected value
of hclass is

Ehclass =
l

l + 1
− 1

2
.

Thus, for randomly connected nodes we get Ehclass → 1/2 as l → ∞.

Proof. We need to compute the expected number of intra-class edges for each class. For the first class,
we multiply the number of nodes by the degree of each node and by the probability of a particular

6For simplicity, in these statements, we use the random graph model with a given expected degree sequence
as it allows for simpler illustrations. For the configuration model, the error terms can be tracked similarly to the
proofs in Sections B.4 and C.1.
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edge to go to the same class: n
2 · d · nd

n(l+1)d = nd
2(l+1) . Normalizing by the sum of the degrees, we get

1
(l+1) . Similarly, for the second class, the normalized number of the intra-class edges is l

(l+1) . Hence,

Ehclass =

[
1

l + 1
− 1

2

]
+

+

[
l

l + 1
− 1

2

]
+

=
l

l + 1
− 1

2
.

This proposition shows that class homophily does not satisfy the constant baseline property.

As discussed in Section 2.3, if we remove the [·]+ operation from the definition of class homophily,
we obtain a measure that does satisfy the asymptotic constant baseline. Following Section 2.5, we
call this measure balanced adjusted homophily as it adjusts balance homophily for chance:

hadj
bal =

1

C − 1

C∑
k=1


∑

v:yv=k

|{u ∈ N(v) : yu = yv}|∑
v:yv=k d(v)

− nk

n

 =
Chbal − 1

C − 1
.

Proposition 3. Assuming that there are C classes and the graph is generated according to the model
with given expected degrees, we have Ehadj

bal = 0.

Proof. Let us denote the sizes of the classes by n1, . . . , nC . Recall that we use the notation Dk =∑
v:yv=k d(v). It is easy to see that

Ehadj
bal =

1

C − 1

C∑
i=1

(
Di∑
j Dj

− ni∑
j nj

)
=

1− 1

C − 1
= 0 .

B.2 Constant baseline

There are several possible ways to formalize the constant baseline property. In the literature [8, 9],
this property is often formalized as follows: assuming some randomized model, the expected value
of a measure should be equal to some constant. For homophily measures, this corresponds to the
following definition.
Definition 5. A homophily measure h has constant baseline if for G generated according to the
configuration model we have Eh(G) = cbase for some constant cbase.

This property is very strict as minor variations in the definition of the model (e.g., different alternatives
of the configuration model discussed in Appendix A) may lead to negligibly small error terms
preventing us from getting exactly the same constant cbase. Thus, in the main text, we use the
alternative Definition 2. This definition is weaker in the sense that we allow asymptotically negligible
deviations from the constant cbase. On the other hand, our definition is somewhat stronger since we
also require the concentration of the value around its expectation. In that sense, our definition is
stronger than the asymptotic constant baseline defined in [8].

B.3 Monotonicity property

In this section, we discuss how one can define monotonicity for homophily measures.

First, let us revisit how monotonicity is defined for measures used in other areas. In general, the
monotonicity property is defined as follows: if an object B′ is definitely more similar to an object
A than B, then the similarity between B′ and A should be larger than between B and A. The only
problem is to define what it means to be “definitely more similar”. In [9], the monotonicity property
was introduced for cluster similarity measures. Such measures evaluate how close two partitions of
the same set of items are. To formally define the concept of more similar partitions, Gösgens et al.
[9] use the concept of perfect splits and perfect merges — such transformations of a partition B that
make it more similar to A. Later, monotonicity was defined for classification evaluation measures
that compare the predicted labels for a set of items with the reference ones [8]. Here it is easier to
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formalize what it means that a labeling B′ is definitely more similar to the reference labeling than B.
Indeed, if we consider a labeling B and change one incorrect label to the correct one, then it becomes
closer to the reference labeling.

Now, let us return to homophily measures. Such measures evaluate the agreement between a graph
and a labeling of its nodes. To define monotonicity, we need such transformations that make a graph
and a labeling definitely more similar. Since the problem is not symmetric, we can either rewire edges
or relabel nodes. Regarding relabeling of nodes, we may say that taking a perfectly heterophilous
node (that is not connected to any node of its class) and relabeling it in such a way that it becomes
perfectly homophilous (which is only possible when all its neighbors belong to one class) should
make the graph and labeling more similar to each other. Regarding the edges, we may say that taking
an edge that connects two nodes of different classes and rewiring it to connect two nodes of the same
class should increase the measure. However, rewiring edges may also affect the graph structure in a
non-trivial way (degree distribution, diameter, etc.).

In this paper, we follow the edge rewiring approach, and thus our definition aligns well with edge-
wise homophily measures and with previous works on classification and clustering performance
measures [8, 9].

If we consider edge-wise measures (that can be defined in terms of the class adjacency matrix)
and directly follow the definition of monotonicity in [8, 9], our definition would be as follows: a
homophily measure is monotone if it increases when we decrement cij and cji by one and increment
either cii or cjj by two for i ̸= j. This condition corresponds to taking an edge with yu ̸= yv and
changing yu to yv or vice versa.

However, an important property that has to be taken into account when discussing monotonicity for
homophily measures is the fact that such measures are used to compare different graph datasets, in
contrast to classification evaluation measures that compare the agreement between predicted labelings
with a fixed given reference labeling. This means that for classification measures, monotonicity
and constant baseline are critical for fixed numbers of classes and elements. In contrast, homophily
measures have to be comparable across datasets with different sizes and numbers of classes. For
instance, balanced accuracy has a constant baseline with the expected value of 1

C , which is sufficient
for classification evaluation but is a drawback for measuring homophily. Because of this, we do
not consider the standard definition of monotonicity as it is restricted to a fixed number of classes
only. Instead, we introduce tolerance to empty classes, and based on that, we introduce a stronger
version of monotonicity where we allow separate edge additions or deletions. In fact, our definition
of monotonicity (Definition 4) is similar to strong monotonicity in [8, 9], but also requires empty
class tolerance since comparing measures across different numbers of classes is crucial.

B.4 Proof of Theorem 1

The fact that adjusted homophily is empty class tolerant directly follows from its definition: an empty
class does not contribute to the numerator or denominator of hadj .

Maximal agreement is also straightforward: we have hedge −
∑C

k=1 D
2
k/(2|E|)2 ≤ 1 −∑C

k=1 D
2
k/(2|E|)2 with equality if and only if all edges are homophilous.

Minimal agreement is not satisfied since the value −
∑C

k=1 D2
k/(2|E|)2

1−
∑C

k=1 D2
k/(2|E|)2 can be different for different

datasets. Thus, perfectly heterophilous datasets may get different values, which also causes some
monotonicity violations for small values of hadj .

Asymptotic constant baseline of adjusted homophily Now, let us formulate and prove the constant
baseline property.

Proposition 4. Let G be a graph generated according to the configuration model. Assume that the
degree-weighted distribution of classes is not very unbalanced, i.e., that 1 −

∑
k p̄(k)

2 ≫ 1/
√
E.

Then, |hadj | ≤ ϕ with probability 1− o(1) for some ϕ = ϕ(|E|) → 0 as |E| → ∞.

Proof. Let us first analyze the numerator of hadj which we denote by hmod (since it corresponds to
the network’s modularity — see Appendix B.5).
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Let ξ denote the number of intra-class edges in a graph constructed according to the configuration
model. We may write:

ξ =
1

2

C∑
k=1

Dk∑
i=1

1i,k ,

where 1i,k indicates that an endpoint i of some node with class k is connected to another endpoint of
class k. Note that the probability of this event is Dk−1

2|E|−1 . Thus, we have

Ehmod =
ξ

|E|
−

C∑
k=1

D2
k

4|E|2
=

1

|E|

C∑
k=1

Dk(Dk − 1)

2(2|E| − 1)
−

C∑
k=1

D2
k

4|E|2
= O

(
1

|E|

)
. (4)

Now, let us estimate the variance of the number of intra-class edges. We may write:

Var(2ξ) = E(2ξ)2 − (E(2ξ))2 = E

(
C∑

k=1

Dk∑
i=1

1i,k

)2

− (E2ξ)2

= E(2ξ) +

C∑
k=1

2 ·
(
Dk

2

)
·
(

1

2|E| − 1
+

Dk − 2

2|E| − 2
· Dk − 3

2|E| − 3

)

+

C∑
k=1

C∑
l=k+1

2DkDl ·
Dk − 1

2|E| − 1
· Dl − 1

2|E| − 3
− (E2ξ)2

= E(2ξ) +

C∑
k=1

D4
k +O(D3

k)

4|E|2

+

C∑
k=1

C∑
l=k+1

2D2
kD

2
l +O(D2

kDl +DkD
2
l )

4|E|2
−

(
C∑

k=1

D2
k +O(Dk)

2|E|

)2

= E(2ξ) +

C∑
k=1

O(D3
k)

4|E|2
+

C∑
k=1

C∑
l=k+1

O(D2
kDl +DkD

2
l )

4|E|2

= E(2ξ) +O(|E|) = O(|E|) .
Let φ = φ(|E|) be any function such that φ → ∞ as |E| → ∞. Using the Chebyshev’s inequality
and (4), we get:

P

(
|hmod| ≥

φ√
E

)
= P

(
|hmod − Ehmod| >

φ√
E

+O

(
1

|E|

))
= O

(
Var(ξ)|E|
|E|2φ2

)
= O

(
1

φ2

)
= o(1).

Recall that hadj =
hmod

1−
∑C

k=1 p̄(k)2
. Since we have 1−

∑C
k=1 p̄(k)

2 ≫ 1/
√
E and |hmod| < φ√

E
with

probability 1− o(1), we can choose such slowly growing φ that hadj <
φ√

E(1−
∑C

k=1 p̄(k)2)
= o(1)

with probability 1− o(1).

Monotonicity of adjusted homophily Finally, let us analyze the monotonicity of adjusted ho-
mophily and finish the proof of Theorem 1.

Recall that a homophily measure is monotone if it is empty class tolerant, and it increases when we
increment a diagonal element by 2 (except for perfectly homophilous graphs) and decreases when we
increase cij and cji by one for i ̸= j (except for perfectly heterophilous graphs).

Empty class tolerance is clearly satisfied for adjusted homophily, so let us now analyze what happens
when we increment a diagonal element or two (symmetric) off-diagonal elements.
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Let us denote N := 2|E|, ai :=
∑

j cij . Then, we have p̄(i) = ai

N . Thus, we have to prove that the

measure is monotone when hadj >
∑

i a
2
i

(
∑

i a
2
i+n2)

.

Using the notation with a class adjacency matrix, adjusted homophily can be written as follows:

hadj =
N
∑

i cii −
∑

i a
2
i

N2 −
∑

i a
2
i

.

To check whether the measure increases when we increment diagonal elements, let us compute the
derivative w.r.t. ckk for some k:

∂hadj

∂ckk
=

(
∑

i cii +N − 2ak)
(
N2 −

∑
i a

2
i

)
(N2 −

∑
i a

2
i )

2 −
(2N − 2ak)

(
N
∑

i cii −
∑

i a
2
i

)
(N2 −

∑
i a

2
i )

2 .

Let us simplify the numerator:(∑
i

cii +N − 2ak

)(
N2 −

∑
i

a2i

)
− (2N − 2ak)

(
N
∑
i

cii −
∑
i

a2i

)
= N3 − 2N2ak −

∑
i

cii
∑
i

a2i −N2
∑
i

cii + 2akN
∑
i

cii +N
∑
i

a2i .

For monotonicity, we need the derivative to be positive, i.e.,

N3 + 2akN
∑
i

cii +N
∑
i

a2i > 2N2ak +
∑
i

cii
∑
i

a2i +N2
∑
i

cii .

Let us denote by D̄ the sum of all off-diagonal elements, i.e., D̄ := N −
∑

i cii. Then, we can rewrite
the above condition as follows:

N2D̄ + D̄
∑
i

a2i > 2NakD̄ ,

N2 +
∑
i

a2i > 2Nak .

The latter equality holds since

N2 +
∑
i

a2i > N2 + a2k ≥ 2Nak .

Thus, hadj increases when we increment a diagonal element.

To see whether the measure decreases when we increment the off-diagonal elements, let us compute
the derivative of the measure w.r.t. ckl (which is equal to clk) for k ̸= l:

∂hadj

∂ckl
=

(2
∑

i cii − 2ak − 2al)
(
N2 −

∑
i a

2
i

)
(N2 −

∑
i a

2
i )

2 −
(4N − 2ak − 2al)

(
N
∑

i cii −
∑

i a
2
i

)
(N2 −

∑
i a

2
i )

2 .

The numerator is:(
2
∑
i

cii − 2ak − 2al

)(
N2 −

∑
i

a2i

)
− (4N − 2ak − 2al)

(
N
∑
i

cii −
∑
i

a2i

)
= −2(ak + al)N

2 − 2
∑
i

cii
∑
i

a2i − 2N2
∑
i

cii + 2(ak + al)N
∑
i

cii + 4N
∑
i

a2i .

For monotonicity, we need the following inequality:

(ak + al)N
2 +

∑
i

cii
∑
i

a2i +N2
∑
i

cii > (ak + al)N
∑
i

cii + 2N
∑
i

a2i . (5)

This inequality is not always satisfied. Indeed, both ak + al and
∑

i cii can be small. Let us note,
however, that the inequality is satisfied if hadj is large enough. Indeed, the sufficient condition for (5)
is ∑

i

cii

(∑
i

a2i +N2

)
> 2N

∑
i

a2i .

18



This is equivalent to the following inequality for hadj :

hadj =
N
∑

i cii −
∑

i a
2
i

N2 −
∑

i a
2
i

>
N
∑

i
2N

∑
i a

2
i

(
∑

i a
2
i+N2)

−
∑

i a
2
i

N2 −
∑

i a
2
i

=
N2
∑

i a
2
i −

(∑
i a

2
i

)2
(N2 −

∑
i a

2
i ) (
∑

i a
2
i +N2)

=

∑
i a

2
i

(
∑

i a
2
i +N2)

.

Thus, hadj is monotone if its values are at least
∑

i a
2
i

(
∑

i a
2
i+N2)

. Note that we have
∑

i a
2
i

(
∑

i a
2
i+N2)

< 0.5,

so when hadj > 0.5 it is always monotone.

However, non-monotone behavior may occur when the numerator of hadj is small. This undesirable
behavior is somewhat expected: due to the normalization, hadj satisfies constant baseline and maximal
agreement but violates minimal agreement. Since minimal agreement does not hold, one can expect
monotonicity to be violated for small values of hadj .

For instance, we can construct the following counter-example to monotonicity. Assume that we
have four classes (0, 1, 2, 3) and non-zero entries of the class adjacency matrix are c23 = c32 = M ,
c33 = 2. Then, the adjusted homophily is:

hadj =
2(2M + 2)−M2 − (M + 2)2

(2M + 2)2 −M2 − (M + 2)2
=

−2M2

2M2 + 4M
=

−M

M + 2
.

Now, we increment the entries c01 and c10 by 1. The new adjusted homophily is:

h′
adj =

2(2M + 4)−M2 − (M + 2)2 − 2

(2M + 4)2 −M2 − (M + 2)2 − 2
=

−2M2 + 2

2M2 + 12M + 10
=

1−M

M + 5
.

We disprove monotonicity if we have h′
adj > hadj , i.e.,

1−M

M + 5
>

−M

M + 2
,

2−M −M2 > −M2 − 5M ,

2 > −4M ,

which holds for all M ≥ 1.

B.5 How homophily and modularity are related

Modularity Modularity is arguably the most well-known measure of goodness of a partition for a
graph. It was first introduced in [30] and is widely used in community detection literature: modularity
is directly optimized by some algorithms, used as a stopping criterion in iterative methods, or used
as a metric to compare different algorithms when no ground truth partition is available. The basic
idea is to consider the fraction of intra-community edges among all edges of G and penalize it for
avoiding trivial partitions like those consisting of only one community of size n. In its general form
and using the notation adopted in this paper, modularity is

1

|E|
(|{{u, v} ∈ E : yu = yv}| − γEξ) ,

where ξ is a random number of intra-class edges in a graph constructed according to some underlying
random graph model; γ is the resolution parameter which allows for varying the number of communi-
ties obtained after maximizing modularity. The standard choice is γ = 1, which also guarantees that
the expected value of modularity is 0 if a graph is generated independently of class labels according
to the underlying model.

Usually, modularity assumes the configuration model. In this case, we have Eξ =
∑

k Dk(Dk−1)

2(2|E|−1) ≈
1

4|E|
∑

k D
2
k, giving the following expression:

hmod =
|{{u, v} ∈ E : yu = yv}|

|E|
−

C∑
k=1

D2
k

4|E|2
.

We refer to Newman [29], Prokhorenkova and Tikhonov [34] for more details regarding modularity
and its usage in community detection literature.
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Relation to homophily While modularity measures how well a partition fits a given graph, ho-
mophily measures how well graph edges agree with the partition (class labels). Thus, they essentially
measure the same thing, and modularity can be used as a homophily measure. Indeed, it is easy to
see that modularity coincides with the numerator of adjusted homophily, see (2). Hence, adjusted
homophily can be viewed as a normalized version of modularity. Note that for modularity, normal-
ization is not crucial as modularity is usually used to compare several partitions of the same graph.
In contrast, homophily is typically used to compare different graphs, which is why normalization is
essential.

C Analysis of label informativeness

C.1 Proof of Theorem 2

In this section, we prove Theorem 2. Let us give a formal statement of this theorem.
Theorem 2. Assume that |E| → ∞ as n → ∞. Assume that the entropy of p̄(·) is bounded from
below by some constant. Let p̄min = mink p̄(k). Assume that p̄min ≫ C/

√
|E| as n → ∞. Let

ε = ε(n) be any function such that ε ≫ C

pmin

√
|E|

and ε = o(1) as n → ∞. Then, with probability

1− o(1), we have |LI| ≤ Kε = o(1) for some constant K > 0.

Proof. Recall that

LI = −
∑

c1,c2
p(c1, c2) log

p(c1,c2)
p̄(c1)p̄(c2)∑

c p̄(c) log p̄(c)
.

Thus, for each pair k, l, we need to estimated p(k, l). Let us denote:

E(k, l) :=

n∑
u=1

n∑
v=1

1{{u, v} ∈ E, yu = k, yv = l} ,

so we have p(k, l) = E(k,l)
2|E| .

As before, we use the notation Dk =
∑

v:yv=k d(v). First, consider the case k ̸= l. Let us compute
the expectation of E(k, l):

EE(k, l) =
DkDl

2|E| − 1
for k ̸= l,

EE(k, k) =
Dk(Dk − 1)

2|E| − 1
.

Now, we estimate the variance. Below, 1i,j indicates that two endpoints are connected.

VarE(k, l) = E

Dk∑
i=1

Dl∑
j=1

1i,j

2

− (EE(k, l))2

= EE(k, l) +
DkDl(Dk − 1)(Dl − 1)

(2|E| − 1)(2|E| − 3)
− (EE(k, l))2

= EE(k, l) +O

(
DkDl(Dk +Dl)

|E|2

)
= O

(
DkDl

|E|

)
.

Similarly,

VarE(k, k) = E

Dk∑
i=1

Dk∑
j=1

1i,j

2

− (EE(k, k))2 = EE(k, k) +O

(
D3

k

|E|2

)
= O

(
D3

k

|E|

)
.

From Chebyshev’s inequality, we get:

P (|E(k, l)− EE(k, l)| > εEE(k, l)) = O

(
|E|

DkDlε2

)
= O

(
1

p̄2min|E|ε2

)
= o

(
1

C2

)
.
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Thus, with probability 1 − o(1), P (|E(k, l)− EE(k, l)| < εEE(k, l)) for all pairs of classes. In
this case,

LI = −
∑

k,l p(k, l) log(1 +O(ε))∑
l p̄(k) log p̄(k)

= O(ε) .

C.2 Alternative definition

Recall that in Section 3 we define the label informativeness in the following general form: LI :=
I(yξ, yη)/H(yξ). Then, to define LIedge, we say that ξ and η are two endpoints of an edge sampled
uniformly at random. Another possible variant is when we first sample a random node and then
sample its random neighbor. The probability of an edge becomes

p̄(c1, c2) =
∑

(u,v)∈E

1{yu = c1, yv = c2}
nd(u)

.

In this case, H(yξ) is the entropy of the distribution p(c), H(yη) is the entropy of p̄(c). Thus, we
obtain:

LInode = −
∑

c1,c2
p̄(c1, c2) log

p̄(c1,c2)
p(c1)p̄(c2)∑

c p(c) log p(c)
.

In this paper, we mainly focus on LIedge and refer to it as LI for brevity. First, this measure is
conceptually similar to adjusted homophily discussed above: they both give equal weights to all
edges. Second, in our analysis of real datasets, we do not notice a substantial difference between
LIedge and LInode in most of the cases, see Table 5. However, these measures can potentially be
different, especially for graphs with very unbalanced degree distributions (in LInode, averaging is
over the nodes, so all nodes are weighted equally, while in LIedge, averaging is over the edges, so
more weight is given to high-degree nodes). The choice between LIedge and LInode may depend on a
particular application.

D Additional related work

In the aspect of characterizing graph datasets, our work is conceptually similar to a recent paper
by Liu et al. [21]. In this paper, the authors empirically analyze what aspects of a graph dataset (e.g.,
node features or graph structure) influence the GNN performance. Liu et al. [21] follow a data-driven
approach and measure the performance change caused by several data perturbations. In contrast,
we follow a theoretical approach to choosing graph characteristics based only on the label-structure
relation. Additionally, our characteristics are very simple, model agnostic, and can be used for
general-purpose graph analysis (beyond graph ML). Similarly to [21], we believe that the proposed
characteristics can help in the selection and development of diverse future graph benchmarks.

Similarly to our work, several papers note that homophily does not always reflect the simplicity of
a dataset for GNNs, and standard GNNs can work well on some heterophilous graphs. To address
this problem, Luan et al. [22] propose a metric called aggregation homophily that takes into account
both graph structure and input features. We note that the aggregation homophily is based on a
particular aggregation scheme of the GCN model. In contrast, the proposed LI is a simple and
intuitive model-agnostic measure. An additional advantage of LI is that it is provably unbiased and
can be compared across datasets with different numbers of classes and class size balance. Another
feature-based metric was very recently proposed by Luan et al. [23]. It is called Kernel Performance
Metric (KPM) and reflects how beneficial is a graph structure for prediction. Ma et al. [24] also
observe that some heterophilous graphs are easy for GNNs. To analyze this problem, they propose a
measure named cross-class neighborhood similarity defined for pairs of classes. While this measure is
an informative tool to analyze a particular dataset, it does not give a single number to easily compare
different datasets.

Finally, let us note that Suresh et al. [41] use (2) as a measure of graph assortativity (homophily).
The authors show that the homophily level varies over the graph, and the prediction performance of
GNNs correlates with the local homophily. They use these insights to transform the input graph and
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get an enhanced level of homophily. In future work, it would be interesting to see whether additional
benefits can be obtained using label informativeness instead of homophily.

E Characterizing real graph datasets

E.1 Datasets

Cora, citeseer, and pubmed [6, 25, 38, 27, 46] are three classic paper citation network benchmarks.
For cora and citeseer labels correspond to paper topics, while for pubmed labels specify the type
of diabetes addressed in the paper. Coauthor-cs and coauthor-physics [39] are co-authorship
networks. Nodes represent authors, and two nodes are connected by an edge if the authors co-authored
a paper. Node labels correspond to fields of study. Amazon-computers and amazon-photo [39]
are co-purchasing networks. Nodes represent products, and an edge means that two products are
frequently bought together. Labels correspond to product categories. Lastfm-asia is a social
network of music streaming site LastFM users who live in Asia [35]. Edges represent follower
relationships, and labels correspond to user’s nationality. In the facebook [37] graph nodes corre-
spond to official Facebook pages, and links indicate mutual likes. Labels represent site categories.
In the github [37] graph, nodes represent GitHub users and edges represent follower relationships.
A binary label indicates that a user is either a web or a machine learning developer. Ogbn-arxiv
and Ogbn-products [14] are two datasets from the recently proposed Open Graph Benchmark.
Ogbn-arxiv is a citation network graph with labels corresponding to subject areas. ogbn-products
is a co-purchasing network with labels corresponding to product categories. Actor [42, 32] is a
popular dataset for node classification in heterophilous graphs. The nodes correspond to actors
and edges represent co-occurrence on the same Wikipedia page. The labels are based on words
from an actor’s Wikipedia page. Flickr [47] is a graph of images with labels corresponding to
image types. Deezer-europe [35] is a user network of the music streaming service Deezer with
labels representing a user’s gender. Twitch-de and twitch-pt [37] are social network graphs of
gamers from the streaming service Twitch.7 The labels indicate if a streamer uses explicit language.
Genius [19], twitch-gamers [36], arxiv-year [14], snap-patents [18], and wiki [20] are re-
cently proposed large-scale heterophilous datasets. For the wiki dataset we remove all isolated nodes.
Roman-empire, amazon-ratings, minesweeper, workers, and questions [33] are recently pro-
posed mid-scale heterophilous datasets. We additionally construct one more binary classification
graph — twitter-hate. This graph is based on data from Hateful Users on Twitter dataset on
Kaggle.8 The labels indicate if a user posts hateful messages or not. We remove all the unlabeled
nodes from the graph and use the largest connected component of the resulting graph.

We transform all the considered graphs to simple undirected graphs and remove self-loops.

E.2 Dataset characteristics

Dataset characteristics are shown in Table 5. This table extends Table 2 in the main text. It can be
seen that the typically used homophily measures — hedge and hnode — often overestimate homophily
levels, since they do not take into account the number of classes and class size balance. This is
particularly noticeable for datasets with two classes. If fact, according to these measures all binary
classification datasets in our table are homophilous. In contrast, hadj corrects for the expected number
of edges between classes and shows that most of the considered binary classification datasets are
actually heterophilous (github and twitter-hate being the exceptions).

As for label informativeness, it can be seen that on real heterophilous datasets it is typically very
low (with the exception of roman-empire dataset). This is in contrast to synthetic datasets used for
experiments in [22, 24], which sometimes exhibit a combination of low homophily and high label
informativeness. High label informativeness of these datasets leads to strong GNN performance on
them despite low homophily levels.

Let us note that edge and node label informativeness differ in how they weight high/low-degree nodes.
For node label informativeness, averaging is over the nodes, so all nodes are weighted equally. For

7Twitch-de and twitch-pt are subgraphs of a larger dataset twitch-gamers. We report characteristics
for all of them since they have different sizes, edge density, and may have different structural properties.

8https://www.kaggle.com/datasets/manoelribeiro/hateful-users-on-twitter
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Table 5: Dataset characteristics, more homophilous datasets are above the line

Dataset n |E| C hedge hnode hclass hadj LIedge LInode

cora 2708 5278 7 0.81 0.83 0.77 0.77 0.59 0.61
citeseer 3327 4552 6 0.74 0.72 0.63 0.67 0.45 0.45
pubmed 19717 44324 3 0.80 0.79 0.66 0.69 0.41 0.40
coauthor-cs 18333 81894 15 0.81 0.83 0.75 0.78 0.65 0.68
coauthor-physics 34493 247962 5 0.93 0.92 0.85 0.87 0.72 0.76
amazon-computers 13752 245861 10 0.78 0.80 0.70 0.68 0.53 0.62
amazon-photo 7650 119081 8 0.83 0.85 0.77 0.79 0.67 0.72
lastfm-asia 7624 27806 18 0.87 0.83 0.77 0.86 0.74 0.68
facebook 22470 170823 4 0.89 0.88 0.82 0.82 0.62 0.74
github 37700 289003 2 0.85 0.80 0.38 0.38 0.13 0.15
twitter-hate 2700 11934 2 0.78 0.67 0.50 0.55 0.23 0.51
ogbn-arxiv 169343 1157799 40 0.65 0.64 0.42 0.59 0.45 0.53
ogbn-products 2449029 61859012 47 0.81 0.83 0.46 0.79 0.68 0.72

actor 7600 26659 5 0.22 0.22 0.01 0.00 0.00 0.00
flickr 89250 449878 7 0.32 0.32 0.07 0.09 0.01 0.01
deezer-europe 28281 92752 2 0.53 0.53 0.03 0.03 0.00 0.00
twitch-de 9498 153138 2 0.63 0.60 0.14 0.14 0.02 0.03
twitch-pt 1912 31299 2 0.57 0.59 0.12 0.11 0.01 0.02
twitch-gamers 168114 6797557 2 0.55 0.56 0.09 0.09 0.01 0.02
genius 421961 922868 2 0.59 0.51 0.02 -0.05 0.00 0.17
arxiv-year 169343 1157799 5 0.22 0.29 0.07 0.01 0.04 0.12
snap-patents 2923922 13972547 5 0.22 0.21 0.04 0.00 0.02 0.00
wiki 1770981 242605360 5 0.38 0.28 0.17 0.15 0.06 0.04
roman-empire 22662 32927 18 0.05 0.05 0.02 -0.05 0.11 0.11
amazon-ratings 24492 93050 5 0.38 0.38 0.13 0.14 0.04 0.04
minesweeper 10000 39402 2 0.68 0.68 0.01 0.01 0.00 0.00
workers 11758 519000 2 0.59 0.63 0.18 0.09 0.01 0.02
questions 48921 153540 2 0.84 0.90 0.08 0.02 0.00 0.01

Figure 3: Dependence of GraphSAGE accuracy on homophily and label informativeness for synthetic
SBM graphs

edge label informativeness, averaging is over the edges, which implies that high-degree nodes make a
larger contribution to the final measure. It is natural to expect that for high-degree nodes the amount
of information from each individual neighbor is lower than for low-degree nodes since neighbors of
high-degree nodes are expected to be more diverse and closer to the “average” distribution. Thus, it
is natural to expect edge label informativeness to often be smaller than node label informativeness,
which agrees with Table 5. Note that for most of the real datasets, the values of these two measures
are rather close, with twitter-hate, genius, and arxiv-year being the exceptions.
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F Correlation of LI with GNN performance

F.1 Experimental setup

For our experiments on synthetic data, we select 208 combinations of homophily and LI. For each
combination, we generate 10 random graphs with the corresponding homophily and LI values using
the SBM-based model described in Section 4.2. Each graph has 1000 nodes (250 nodes for each
class) and the expected node degree of 10. Node features are taken from the four largest classes in
the cora dataset (each of these four classes is mapped to one class in the synthetic data, and node
features are sampled randomly from the corresponding class). For each synthetic graph, we create 10
random 50%/25%/25% train/validation/test splits. Thus, for each model, we make 10 runs per graph
or 100 runs per homophily/LI combination, totaling 20800 runs.

We use GCN [16], GraphSAGE [10], GAT [43] and Graph Transformer (GT) [40] as repre-
sentative GNN architectures for our experiments. For GraphSAGE, we use the version with the
mean aggregation function and do not use the node sampling technique used in the original paper.
For all models, we add a two-layer MLP after every graph neighborhood aggregation layer and
further augment all models with skip connections [11], layer normalization [2], and GELU activation
functions [12]. For all models, we use two graph neighborhood aggregation layers and hidden
dimension of 512. We use Adam [15] optimizer with a learning rate of 3 · 10−5 and train for 1000
steps, selecting the best step based on the validation set performance. We use a dropout probability of
0.2 during training. Our models are implemented using PyTorch [31] and DGL [44].

F.2 Synthetic data based on SBM model

In Figure 2a of the main text, we show the results for GraphSAGE. In Figure 3, we additionally plot
the dependence of GraphSAGE accuracy on homophily and label informativeness. It can be seen that
the model’s accuracy is much more correlated with label informativeness than with homophily. The
results for GCN, GAT, and GT are presented in Figures 4, 5, and 6, respectively. As can be seen, the
performance of all models generally follows the same pattern, and LI is a better predictor of model
performance than homophily. In particular, when LI is high, all models achieve high accuracy even
if homophily is negative. Recall that we provide Spearman correlation coefficients between model
accuracy and adjusted homophily or LI in Table 3.

F.3 Semi-synthetic data from [24]

We use the same experimental setting described above for training GCN, GraphSAGE, GAT, and GT
on modifications of the cora and citeseer graphs from [24]. The results for GraphSAGE and cora
are provided in Figure 2b of the main text. The results for GraphSAGE and citeseer are shown in
Figure 7.

F.4 Synthetic data based on LFR model

Table 6: Spearman correlation be-
tween model accuracy and charac-
teristics of LFR graphs

Model hadj LIedge

GCN 0.79 0.96
GraphSAGE 0.68 0.99
GAT 0.77 0.97
GT 0.77 0.97

We also experiment with the LFR random graph model, which
is a well-known benchmark for community detection (we treat
communities as node labels). We generated 39 LFR graphs
with the mixing parameter values evenly spaced between 0.025
and 0.975. Each graph has 1000 nodes and 5 communities. The
maximum community size is 350, and the minimum community
size is 100. The average node degree is 10, and the maximum
node degree is 50. Note that homophily monotonically changes
with the mixing parameter, while LI is U -shaped. Similarly to
our experiments with SBM, we measure the Spearman corre-
lation coefficient between accuracy and LI / hadj , see Table 6.
We see that LI is a better predictor of GNN performance than
homophily.
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Figure 4: Accuracy of GCN on synthetic SBM
graphs

Figure 5: Accuracy of GAT on synthetic SBM
graphs

Figure 6: Accuracy of GT on synthetic SBM
graphs

Figure 7: Accuracy of GraphSAGE on semi-
synthetic citeseer graphs from [24]

F.5 Synthetic data from [22]

Luan et al. [22] have shown that GNNs can achieve strong performance on certain heterophilous
graphs. Again, this phenomenon can be explained by the high label informativeness of the het-
erophilous graphs used for these experiments.

Figure 8: Label informativeness depend-
ing on edge homophily on synthetic
graphs from [22]

The authors investigate how different levels of homophily
affect GNN performance. They find that the curve showing
the dependence of GNN performance on edge homophily
(as well as on node homophily) is U -shaped: GNNs show
strong results not only when edge homophily is high, but
also when edge homophily is very low. Our label infor-
mativeness explains this behavior. We use the same data
generating process as in [22] and find that the curve of la-
bel informativeness depending on edge homophily is also
U -shaped (see Figure 8). Thus, on the datasets from [22],
GNNs perform well exactly when label informativeness
is high regardless of edge homophily. The U -shape of the
label informativeness curve is not surprising: when edge
homophily is very low, knowing that a node has a neighbor
of a certain class provides us with information that this
node probably does not belong to this class.
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(b) GraphSAGE

Figure 9: Performance of GAT and GraphSAGE on real graphs vs LIedge

Table 7: Spearman correlation coefficients between ROC AUC score and characteristics of real-world
datasets from Table 5

Model hedge hnode hclass hadj LIedge LInode

GraphSAGE 0.64 0.62 0.67 0.61 0.78 0.82
GAT 0.69 0.65 0.74 0.69 0.85 0.84

F.6 Correlation of GNN performance with homophily and LI on real datasets

Analyzing which measures better agree with GNN performance on real data is non-trivial. Indeed,
if we consider diverse node classification problems, there are many factors affecting the GNN
performance: the size of the datasets and fraction of training examples, the edge density, the number
of features and their informativeness, the number of classes and their balance, and so on. However, as
requested by the reviewers, we analyze how well different homophily measures and LI correlate with
GNN performance on the datasets in Table 5. In this experiment, we measure the ROC AUC score
since some of the datasets are highly unbalanced, and thus accuracy is not a suitable performance
measure. For the datasets with more than two classes, we report the macro-averaged ROC AUC score.
The relation between ROC AUC and LI for GAT and GraphSAGE is shown in Figure 9. The Spearman
correlation for all the measures is reported in Table 7. We see that the largest correlation is achieved
by LIedge and LInode. Let us note that this table does not aim to compare homophily measures with
each other since a good homophily measure is expected to properly capture the tendency of edges
to connect similar nodes. Thus, we compare homophily measures using the proposed theoretical
framework in Section 2.
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