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Abstract

In the field of phase change phenomena, the lack of accessible and diverse datasets
suitable for machine learning (ML) training poses a significant challenge. Exist-
ing experimental datasets are often restricted, with limited availability and sparse
ground truth, impeding our understanding of this complex multiphysics phenomena.
To bridge this gap, we present the BubbleML dataset 3 which leverages physics-
driven simulations to provide accurate ground truth information for various boiling
scenarios, encompassing nucleate pool boiling, flow boiling, and sub-cooled boil-
ing. This extensive dataset covers a wide range of parameters, including varying
gravity conditions, flow rates, sub-cooling levels, and wall superheat, comprising
79 simulations. BubbleML is validated against experimental observations and
trends, establishing it as an invaluable resource for ML research. Furthermore,
we showcase its potential to facilitate the exploration of diverse downstream tasks
by introducing two benchmarks: (a) optical flow analysis to capture bubble dy-
namics, and (b) neural PDE solvers for learning temperature and flow dynamics.
The BubbleML dataset and its benchmarks aim to catalyze progress in ML-driven
research on multiphysics phase change phenomena, providing robust baselines for
the development and comparison of state-of-the-art techniques and models.

1 Introduction

Phase-change phenomena, such as boiling, involve complex multiphysics processes and dynamics
that are not fully understood. The interplay between bubble dynamics and heat transfer performance
during boiling presents significant challenges in accurately predicting and modeling these heat
and mass transfer processes. Machine learning (ML) has the potential to revolutionize this field,
enabling data-driven discovery to unravel new physical insights [1], develop accurate surrogate and
predictive models [2, 3], optimize the design of heat transfer systems, and facilitate adaptive real-time
monitoring and control [4].

The applications of ML in this domain are diverse and impactful. Consider the context of high-
performance computing in data centers, where efficient cooling is critical. Boiling-based cooling
techniques, such as two-phase liquid cooling, offer enhanced heat dissipation capabilities, ensuring
reliable and optimal operation of power-intensive electronic components such as GPUs [5, 6]. Boiling
also plays a central role in optimizing heat transfer in nuclear reactors, where precise modeling and
prediction of boiling dynamics contribute to advancing the safety and efficiency of nuclear power
systems [7]. Furthermore, boiling processes play a vital role in thermal desalination methods that
provide clean drinking water in water-scarce regions [8]. These advancements in pivotal areas such
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Figure 1: BubbleML Dataset. Diverse two-phase boiling phenomena with ground truth for key
physical variables–velocity, temperature, and pressure. (a) Single bubble rising from a nucleation site
on the heater surface. (b) Chaotic multi-bubble dynamics–merging and splitting. (c) Flow boiling
transitions from bubbly to slug regime with increasing inlet velocity. Velocity and temperature fields
are obtained by solving equations 1a and 1b, pressure field is obtained by solving the Poisson equation
which ensures that continuity is satisfied. The physical quantities are in non-dimensional units.

as thermal management, energy efficiency, and heat transfer applications, driven by ML techniques
have far-reaching implications, empowering us to design more sustainable energy systems, enhance
environmental preservation efforts, and advance engineering capabilities across various domains.

To train data-driven ML algorithms effectively, we need large, diverse, and accurately labeled datasets.
However, obtaining high-fidelity datasets that encompass a wide range of phase-change phenomena
and operating conditions is a significant challenge. Boiling processes are highly sensitive to factors
like surface properties, pressure, orientation, and working fluid composition [9]. Additionally, the
chaotic nature of vapor interactions and occlusions makes quantifying boiling processes inherently
difficult. Specialized experimental setups, involving instrumentation, sensors, and high-speed visu-
alization techniques, come with substantial costs, further limiting the availability of extensive and
accurate large-scale experimental data [3]. As a result, only a few well-funded research laboratories
have access to precise ground truth data, and even then, this data often lacks fidelity and fails to
capture detailed microscale dynamics, such as local bubble-induced turbulence and its impact on
overall heat transfer. This scarcity of high-fidelity datasets poses challenges in designing accurate ML
models for multiphase and phase change processes. While scientific ML (SciML) approaches can
incorporate physical knowledge and constraints into the training process to reduce some of this data
burden [10], the validation and quantification of uncertainty still rely on the availability of ground
truth data. Therefore, there is an urgent need for open, diverse, and large-scale datasets to develop
robust models and advance research in multiphysics problems such as phase change phenomena.

Simulations have played a key role as the third pillar of science in overcoming the inherent challenges
faced by experimental studies in various scientific domains. High-fidelity multiscale data from simula-
tions complement and enhance experimental measurements. In the field of phase change, simulations
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have successfully modeled transport equations for momentum, energy, and phase transition, enabling
accurate measurements of velocity, pressure, and temperature fields around bubbles [11, 12]. As
a result, simulations serve as powerful tools for understanding and quantifying boiling. However,
SciML researchers often set up their own simulations to generate ground truth solutions for training
and testing their models rather than relying on open-source benchmark datasets. This practice is com-
mon even among impactful papers [10, 13, 14, 15]. While this approach is reasonable for studying
specific, simple partial differential equations (PDEs), real-world applications of PDE solvers and
simulations often involve large-scale systems with complex multiphase physics and a combination
of Dirichlet and Neumann boundary conditions [16]. These real-world problems require significant
domain expertise, engineering time, and computational resources. Independently performing such
simulations is impractical and even infeasible for many ML researchers. This difficulty in dataset
generation has led to a drought of SciML research to study real-world physics problems. Prior
efforts to build benchmark datasets have primarily focused on single- and multiphysics problems
with single-phase dynamics [17, 18, 19, 20].

As a response to the above challenges, we introduce the BubbleML Dataset 4, an extensive and
innovative collection of data generated through Flash-X simulations [21]. This dataset encompasses
a wide range of boiling phenomena, including nucleate boiling of single bubbles, merging bubbles,
flow boiling in different configurations, and subcooled boiling. Figure 1 is a visual glimpse into the
diverse range of physical phenomena and variables in the dataset. To further enhance its applicability,
the dataset covers various gravity conditions ranging from earth gravity to gravity at the International
Space Station, different heater temperatures, and different inlet velocities. In total, we present around
80 simulations, each capturing a specific combination of parameters and conditions. In summary, the
key contributions are as follows:

Multiphase and Multiphysics Dataset. A comprehensive dataset encompassing a range of two-phase
(liquid-vapor) phase change phenomena in boiling, with a focus on bubble and flow dynamics.

Real-world Validation. Validation against experimental data to ensure the dataset’s accuracy and
reliability. This validation process enhances the dataset’s fidelity and establishes a strong connection
between simulation and real-world phenomena.

Diverse Downstream Tasks. BubbleML is designed to facilitate diverse downstream applications. To
demonstrate its potential, we present two benchmark tasks: optical flow for learning bubble dynamics
and neural PDE solvers for modeling temperature and flow dynamics.

2 Related Work

Scientific Machine Learning Datasets. There have been several efforts to develop benchmark
datasets for scientific machine learning tasks [17, 18, 19, 20, 22, 23]. Notably, the ERA5 atmospheric
reanalysis dataset [23], curated by the European Center for Medium-Range Weather Forecasting
(ECMWF) provides hourly estimates of a large number of atmospheric, land, and oceanic climate
variables since 1940. It is the most popular publicly available source for weather forecasting,
facilitating the training of neural weather models such as FourCastNet [24], GraphCast [25], and
ClimaX [26]. PDEBench [17] provides an impressive collection of datasets for 11 PDEs commonly
encountered in computational fluid dynamics. Boundary conditions in scientific simulations play a
crucial role in capturing the dynamics of the underlying physical systems. The majority of datasets in
PDEBench utilize periodic boundary conditions. Although some datasets encompass Neumann or
Dirichlet boundary conditions, none consider a combination of both which presents a noteworthy
gap in accurately modeling real-world scenarios. Another challenging problem is the modeling of
turbulent Kolmogorov flows and the dataset generated using JAX-CFD [27] is gaining popularity
in benchmarking neural flow models [28, 29]. BlastNet [19] generated using DNS solver, S3D [30]
focuses on simulating the behavior of a single fluid phase solving for compressible fluid dynamics,
combustion, and heat transfer. AirfRANS [20] is a dataset for studying the 2D incompressible
steady-state Reynolds-Averaged Navier–Stokes equations over airfoils. Current datasets have made
commendable strides in addressing single- and multiphysics scenarios, and provide a valuable
foundation for developing and evaluating SciML algorithms. Nonetheless, their scope falls short of
capturing the range of behaviors and phenomena encountered in phase change physics.

4Through Zenodo, a permanent DOI for the dataset 10.5281/zenodo.8039786
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In contrast, BubbleML focuses on capturing the complex dynamics and physics associated with
multiphase phenomena, particularly in the context of phase change simulations. Unlike many existing
datasets that predominantly utilize a single type of boundary condition, BubbleML incorporates a
combination of Dirichlet and Neumann boundary conditions [16]. This inclusion enables researchers
to explore and model scenarios where multiple boundary conditions coexist, enhancing the realism
and applicability of the dataset. Moreover, the presence of “jump” conditions along the liquid-vapor
interface adds an additional layer of complexity. These conditions arise due to surface tension effects
and require careful modeling to accurately capture the interface behavior [31, 32]. By incorporating
such challenges, BubbleML provides a realistic and demanding testbed for ML models.

Optical Flow Datasets. Optical flow estimation, a classical ill-posed problem [33] in image pro-
cessing, has witnessed a shift from traditional methods to data-driven deep learning approaches.
Middlebury [34] is a dataset with dense ground truth for small displacements, while KITTI2015 [35]
provides sparse ground truth for large displacements in real-world scenes. MPI-Sintel [36] offers
synthetic data with very large displacements, up to 400 pixels per frame. However, these datasets
are relatively small for training deep neural networks. FlyingChairs [37], a large synthetic dataset,
contains around 22,000 image pairs generated by applying affine transformations to rendered chairs
on random backgrounds. FlyingThings3D [38] is another large synthetic dataset with approximately
25,000 stereo frames of 3D objects on different backgrounds.

While these datasets have been instrumental in advancing data-driven optical flow methods, they
primarily focus on rigid object motion in visual scenes and do not address the specific challenges
posed by multiphase simulations. Efforts have been made to capture non-rigid motion in nature, such
as piece-wise rigid motions seen in animals [39]. In boiling, the non-rigid dynamics of bubbles and
the motion of liquid-vapor interfaces play a crucial role in the distribution and transfer of thermal
energy. The BubbleML dataset provides a unique opportunity to explore and develop optical flow
algorithms tailored to phase change dynamics. Unlike existing datasets, it offers a diverse range of
bubble behaviors, including merging, growing, splitting, and complex interactions (see Figure 1). The
ability to accurately predict and forecast bubble dynamics has practical implications in various fields.

3 BubbleML: A Multiphase Multiphysics Dataset for ML
We first introduce the preliminary concepts underlying the SciML learning problem and give insights
into the simulation and PDEs in this domain. Then, we present an overview of the dataset pipeline.

3.1 Preliminaries

A common application for SciML is approximating the solution of boundary value problems (BVPs).
BVPs are widely used to model various physical phenomena, including fluid dynamics, heat transfer,
electromagnetics, and quantum mechanics [16, 40, 41, 42]. BVPs take the form: L[u(x)] = f(x), x ∈
Ω and B[u(x)] = g(x), x ∈ ∂Ω. The goal is to determine the vector-valued solution function, u. x
is a point in the domain Ω and may include a temporal component. The boundary of the domain is
denoted as ∂Ω. The governing equation is described by the PDE operator L, and the forcing function
is denoted as f . The boundary condition (BC) is given by the boundary operator B and the boundary
function g. B[u] = g ensures the existence and uniqueness of the solution.

There are three common types of BCs: periodic, Dirichlet, and Neumann. Periodic BCs enforce
the equality of the solution at distinct points in the domain: u(x1) = u(x2). Dirichlet BCs specify
the values of the solution on the boundary: u(x) = g(x). Neumann BCs enforce constraints on the
derivatives of the solution: ∂nu(x) = g(x) [16]. As seen in Figure 1, BubbleML combines both
Dirichlet (no-slip walls, heater, inflow) and Neumann (outflow) boundaries, which impose constraints
on flow and temperature dynamics. Additionally, the “jump conditions” that govern the transitions
between the liquid and vapor phases use Dirichlet and Neumann boundaries [31].

3.2 Overview of PDEs and Flash-X Simulation

A comprehensive description of the simulations is well beyond the scope of this paper and can be
found in [31, 32]. We provide a concise description here as knowledge of the PDEs is important
when training physics-informed models.
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The liquid (l) and vapor (v) phases of a boiling simulation are characterized by differences in fluid
and thermal properties: density, ρ; viscosity, µ; thermal diffusivity, α; and thermal conductivity k.
The phases are tracked using a level-set function, ϕ, which is positive inside the vapor and negative in
the liquid. ϕ = 0 provides implicit representation of the liquid-vapor interface, Γ (see Figure 1). The
transport equations are non-dimensionalized and scaled using the values in liquid and are given as,

∂u⃗

∂t
+ u⃗ ·∇u⃗ = − 1

ρ′
∇P +∇ ·

[µ′

ρ′
1

Re
∇u⃗

]
+

g⃗

Fr2
+ S⃗Γ

u + SΓ
P (1a)

∂T

∂t
+ u⃗ ·∇T = ∇ ·

[ α′

Re Pr
∇T

]
+ SΓ

T (1b)

where, u⃗, is the velocity, P is the pressure, and T is the temperature everywhere in the domain.
The Reynolds number (Re), Froude number (Fr), and Prandtl Number (Pr) are constants set for
each simulation. Scaled fluid properties like ρ′ represent the local value of the phase scaled by the
corresponding value in liquid. Therefore, ρ′ is 1 in liquid phase, and ρv/ρl for vapor phase. The
effect of surface tension is modeled using Weber number (We) and incorporated by a sharp pressure
jump, SΓ

P , at the liquid-vapor interface, Γ. The effects of evaporation and saturation conditions on
velocity and temperature, S⃗Γ

u , and SΓ
T , are modeled using a ghost fluid method [31]. For a more

detailed discussion of non-dimensional parameters and values, we refer the reader to Appendix D.

The continuity equation is given by,∇ · u⃗ = −ṁ∇(ρ′)−1 · n⃗, where the mass transfer ṁ is computed
using local temperature gradients in liquid and vapor phase, ṁ = St(RePr)−1

[
∇Tl ·n⃗Γ−k′∇Tv ·n⃗Γ

]
where, n⃗Γ is the surface normal vector to the liquid-vapor interface. The Stefan number St, is another
constant defined for the simulation and depends on the temperature scaling given by ∆T = Twall −
Tbulk, and latent heat of evaporation, hlv. Simulation data is scaled to dimensional values using the
characteristic length l0, velocity u0, and temperature (T − Tbulk)/∆T scale. Temporal integration is
implemented using a fractional step predictor-corrector formulation to enforce incompressible flow
constraints. The solver has been extensively validated and demonstrates an overall second-order
accuracy in space [31, 32].

In thermal science, heat flux measured as the integral of the temperature gradient across the heater
surface (q = ∂T/∂y) serves as a vital indicator of boiling efficiency. It reflects the contribution of
multiple sub-processes, such as conduction, convection, microlayer evaporation, and bubble-induced
turbulence. Identifying and managing the impact of each sub-process to enhance q is an open
challenge [4, 43]. Critical heat flux (CHF) signifies peak heat flux before a sharp drop in efficiency
occurs due to the formation of a vapor barrier (see Figure 5b). It is arguably the most important
design and safety parameter for any heat flux controlled boiling application [44]. Accurate heat flux
modeling and prediction of boiling crisis are paramount for the reliability of heat transfer systems
[45, 46, 47].

The simulations in this study are implemented within the Flash-X framework [21, 31], and a dedicated
environment is provided for running new simulations 5. The repository contains example configuration
files for various multiphase simulations, including those used in this dataset. To ensure reproducibility,
a lab notework has been designed that organizes each study using configuration files for data curation.
The lab notebook and Flash-X source code are open-source to allow for community development and
contribution, enabling the creation of new datasets beyond the scope of this paper. The simulation
archives store HDF5 output files and bash scripts that document software environment and repository
tags for reproducibility. The lab notebook also provides an option to package Flash-X simulations
as standalone Docker/Singularity containers, which can be deployed on cloud and supercomputing
platforms without the need for installing third-party software dependencies. The latter is ongoing
work towards software sustainability [48].

3.3 Dataset Overview

The study encompasses two types of boiling – pool boiling and flow boiling. Pool boiling represents
fluid confined in a tank above a heater, resembling scenarios like cooling nuclear waste. The BCs
for pool boiling include walls on the left and right, an outlet at the top, and a heater at the bottom.
In contrast, flow boiling models water flowing through a channel with a heater, simulating liquid

5 https://github.com/Lab-Notebooks/Outflow-Forcing-BubbleML
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cooling of data center GPUs. There is an inlet BC modeling flow into the system and an outlet.
The fluid used for the simulations is FC-72 (perfluorohexane), an electrically insulating and stable
fluorocarbon-based fluid commonly used for cooling applications in electronics operating at low
temperatures (ranging from 50◦C to 100◦C). To explore various phenomena, different parameters
such as heater temperature, liquid temperature, inlet velocity, and gravity scale are adjusted in each
simulation. Table 1 presents a summary of the dataset. Appendix E provides detailed illustrations of
the boundary conditions and descriptions of each simulation for reference.

Table 1: Summary of BubbleML datasets and their parameters. ∆t is the temporal resolution in
non-dimensional time (∆t = 1 = 0.008 seconds). For rationale behind the parameter choices, refer
to appendix A.3. PB: pool boiling. FB: flow boiling.

Dim Type - Physics Sims Domain Resolution Timesteps Size
(mmd) Spatial ∆t (GB)

2D PB - Single Bubble 1 4.2× 6.3 192× 288 0.5 500 0.5
2D PB - Saturated 13 11.2× 11.2 512× 512 1 200 24.2
2D PB - Subcooled 10 8.4× 8.4 384× 384 1 200 10.3
2D PB - Gravity 9 11.2× 11.2 512× 512 1 200 16.5
2D FB - Inlet Velocity 7 29.4× 3.5 1344× 160 1 200 10.7
2D FB - Gravity 6 35× 3.5 1600× 160 1 200 10.9
2D PB - Subcooled0.1 15 8.4× 8.4 384× 384 0.1 2000 155.1
2D PB - Gravity0.1 9 11.2× 11.2 512× 512 0.1 2000 163.8
2D FB - Gravity0.1 6 35× 3.5 1600× 160 0.1 2000 108.6
3D PB - Earth Gravity 1 8.753 4003 1 57 122.2
3D PB - ISS Gravity 1 8.753 4003 1 29 62.6
3D FB - Earth Gravity 1 35× 3.52 1600× 1602 1 55 93.9

BubbleML stores simulation output in HDF5 files. Each HDF5 file corresponds to the state of a
simulation at a specific instant in time and can be directly loaded into popular tensor types (e.g.,
PyTorch tensors or NumPy arrays) using BoxKit. BoxKit is a custom Python API designed for
efficient management and scalability of block-structured simulation datasets [49, 50]. It leverages
multiprocessing and cache optimization techniques to improve the read/write efficiency of data
between disk and memory. Figure 2 shows an example of a boiling dataset and the corresponding
workflow for enabling downstream tasks like scientific machine learning and optical flow. By
operating on simulation data in manageable chunks that fit into memory, BoxKit significantly
improves computational performance, particularly when handling large datasets.

Figure 2: Dataset Curation and Workflow. Flash-X multiphase simulations are executed and
converted into unblocked HDF5 formats using the BoxKit library. The resulting dataset is publicly
available 3, enabling downstream tasks like scientific machine learning and optical flow.

Each simulation within the BubbleML dataset tracks the velocities in the x and y directions, tempera-
ture, and a signed distance function (SDF), ϕ, which denotes the distance from the bubble interface.
The SDF can be used to get a mask of the bubble interfaces or determine if a point is in the liquid or
vapor phase. These variables are stored in HDF5 datasets. For instance, the temperature is stored as a
tensor with a shape t×x×y×z (t×x×y in 2D), which allows indexing with xyz-spatial coordinates
or time. The HDF5 files also include any constants or runtime parameters input to the simulation.
Some of these parameters, such as thermal conductivity or Reynolds number, are constants used in
the PDEs that govern the system. Including these variables and parameters in the dataset enables
comprehensive analysis and modeling of the boiling phenomena.
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Table 2: Results of pre-trained and fine-tuned RAFT and GMFlow models on optical flow data (B)
generated from PB-Saturated dataset. A 80:20 split results in 2000 training and 500 validation
image pairs. The pre-trained models include C trained on FlyingChairs dataset, C+T trained further
on FlyingThings3D, and C+T+S further fine-tuned for the Sintel test benchmark. Model+B represents
models fine-tuned on the BubbleML optical flow dataset.

Model Method Chairs (Val) Things (Val) Sintel (Train) KITTI (Train) Boiling (Test)
Clean Clean Final F1-EPE F1-all

C RAFT 0.82 9.03 2.19 4.49 9.83 37.57 4.20
GMFlow 0.92 10.23 3.22 4.43 17.82 56.14 4.73

C+B RAFT 0.91 11.22 2.55 5.16 13.7 44.44 2.33
GMFlow 1.31 11.99 3.78 5.12 21.91 63.04 2.36

C+T RAFT 1.15 4.39 1.40 2.71 5.02 17.46 4.72
GMFlow 1.26 3.48 1.50 2.96 11.60 35.62 7.98

C+T+B RAFT 1.28 7.69 1.69 2.95 9.96 23.61 2.38
GMFlow 1.39 3.88 1.61 2.91 14.49 43.09 2.51

C+T+S RAFT 1.21 4.69 0.77 1.22 1.54 5.64 8.39
GMFlow 1.53 4.09 0.95 1.28 3.04 13.61 14.65

C+T+S+B RAFT 1.37 6.59 0.89 1.60 1.83 6.44 2.34
GMFlow 1.65 4.49 1.07 1.45 4.06 18.99 2.56

BubbleML follows the FAIR data principles [51] as outlined in Appendix A.2. It is essential to
validate simulations against experimental observations due to inherent approximations in numerical
solvers and simplified models of real-world phenomena. Appendix A.4 provides a detailed validation
of the BubbleML dataset.

4 Benchmarks of BubbleML: Optical Flow and SciML

4.1 Optical Flow

Generation of Optical Flow Dataset. Optical flow computes the velocity field of an image based
on the relative movement of objects between consecutive frames. This method holds significant
implications for downstream tasks, such as extracting side-view boiling statistics and applying SciML
to real-world experimental data. Although many datasets capturing spatiotemporal dynamical systems
can be repurposed to create optical flow datasets, the inherent non-rigidity of bubbles introduces
unique physical phenomena that are not present in other datasets. For instance, consider the scenario
where a bubble detaches from a heater surface: the bottom region of the bubble exhibits significantly
higher velocity compared to the top region, resulting in a velocity gradient that forces the bubble into
a spherical shape. At higher heater temperatures, deformation and detachment processes might occur
more frequently, leading to different flow patterns and bubble behaviors illustrated in Figure 1.

We create an optical flow dataset from BubbleML to learn bubble dynamics. Liquid and vapor
phases are distinguished using ϕ. In the generated image sequences, bubble trajectories are tracked
across consecutive timesteps. Note that the optical flow dataset only includes bubble velocities at
each timestep. Excluding liquid velocities focuses the learning task on capturing observable objects
(bubbles). The bubble velocities in non-dimensional units are converted to pixels per frame units (see
Appendix B.1) before being written to the widely used Middlebury [34] flow format, resulting in a
sequence of images and flow files that resemble the Sintel dataset [36]. For training and validation of
optical flow models, PyTorch dataloaders are provided for the generated dataset 3. This allows for
easy integration and fine-tuning of existing optical flow models using the BubbleML dataset.

Learning Bubble Dynamics. We evaluate and fine-tune two state-of-the-art optical flow models,
RAFT [52] and GMFlow [53], using the BubbleML optical flow dataset (B). We consider three
different pre-trained models for each method: the first model is trained exclusively on FlyingChairs
(C), the second is trained on FlyingChairs and FlyingThings3D (C+T), and the third model is fine-
tuned for the Sintel Benchmark (C+T+S). To assess the performance of the trained models, we
measure the end-point error. Table 2 summarizes the results for one dataset. Refer to Appendix B for
results on the other datasets.
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Initially, the pre-trained models exhibit subpar performance on the BubbleML data. To address this,
each model is fine-tuned for 3-4 epochs with a low learning rate of 10−6. After fine-tuning, we
observe a significant improvement in predictions for the test data (see Figures 7 and 8 in Appendix B).
While all fine-tuned models tend to converge to similar levels of accuracy for pool boiling datasets,
fine-tuning the pre-trained FlyingChairs models (C) on the BubbleML (B) dataset gives the best
results. This could be attributed to the similar nature of the datasets consisting of 2D objects in
motion. In the case of flow boiling, the best results are achieved by fine-tuning models initially
trained for the Sintel benchmark (C+T+S). Flow boiling images have an extremely high aspect ratio
(8:1), which is similar to the Sintel (3:1) and the KITTI (4:1) datasets. Note that although training the
models on the boiling dataset for more epochs improves performance on our specific task, it adversely
affects the models’ generalization capabilities, leading to increased errors on the other datasets.

Open problems. Error analysis (see Appendix B.3) highlights the shortcomings of state-of-the-art
optical flow models in accurately capturing the turbulent dynamics of bubbles. Although fine-tuning
improves the overall performance, the high errors at the bubble boundaries remain an ongoing
challenge. This underscores the need for novel optical flow models that incorporate physical insights
to accurately model the complex and chaotic behavior of boiling. BubbleML bridges the gap for
physics-informed optical flow datasets.

4.2 Scientific Machine Learning

SciML Prelimaries. SciML baseline experiments use neural PDE solvers to learn temperature and
flow dynamics. We focus on two classes of neural PDE solvers: (a) Image-to-image models, widely
used in computer vision tasks, such as image segmentation [54]. These may not always be suitable as
PDE solvers, since they are limited to fixed resolution, but they remain competitive in many baselines
[55, 28]. (b) Neural operators are neural networks that learn a mapping between infinite-dimensional
function spaces. As they map functions to functions, neural operators are discretization invariant and
can be used on a higher resolution than they were trained [15]. The seminal neural operator is the
Fourier Neural Operator (FNO) [13]. Refer to Appendix C for further details.

For both classes of models, we employ the auto-regressive formulation of a forward propagator,
denoted as F . For timesteps {t1, . . . , tmax} discretized such that tk+1 − tk = ∆t, the forward
propagator F maps the solution function u at k consecutive time steps {tm−k, . . . , tm−1} to the
solution at time tm. For brevity, we use u([tm−k, tm−1]) = {u(tm−k), . . . , u(tm−1)}. The operator
F can be approximated using a neural network Fθ parameterized by θ. This network is trained using
a dataset of N ground truth solutions D = {u(n)([0, tmax]) : n = 1 . . . N}. By applying a standard
gradient descent algorithm, we find parameters θ̂ minimizing some loss function of the predictions
Fθ̂{u

(n)([tm−k, tm−1])} and the ground truth solutions u(n)(tm). Thus, given solutions for k initial
timesteps of an unseen function u, we can obtain an approximation Fθ̂{u([0, tk−1])} ≈ u(tk =
tk−1 +∆t). Using this approximation for tk, we can step forward to get Fθ̂{u([t1, tk])} ≈ u(tk+1).
This process is called rollout and is repeated until reaching tmax. While in principle, rollout can be
done for arbitrary time, the quality of approximation worsens with each step [28, 56]. We implement
several strategies that attempt to mitigate this deterioration [57, 58]. However, achieving a long and
stable rollout is still an open problem.

Baseline Implementations. We implement several baseline image-to-image models—including
UNetbench and UNetmod—and neural operators—including FNO, UNO, F-FNO, G-FNO, and T-FNO.
Detailed descriptions and comparisons of the models are included in Appendix C.1.

Training Strategies. Detailed descriptions for each of the training strategies we used are listed in
Appendix C.2. We implement teacher-forcing training [59], temporal bundling, and the pushforward
trick [57]. Models trained with the pushforward trick are prefixed with “P-”. A discussion of
hyperparameter settings can be found in Appendix C.3.

Metrics. We draw inspiration from PDEBench and adopt a large set of metrics that include the
Root Mean Squared Error (RMSE), Max Squared Error, Relative Error, Boundary RMSE (BRMSE),
and low/mid/high Fourier errors [17]. These metrics provide a comprehensive view of the physical
dynamics, which may be missed when only using a global loss metric. For instance, when predicting
temperature, we find that the max error can often be very high due to the presence of sharp transitions
between hot vapor and cool liquid. Even a one-pixel misalignment in the model’s prediction can
cause the reported temperature to be the opposite extreme. Metrics that report a global average
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(i.e., RMSE) could mask these errors because they get damped by the average. We incorporate an
additional physics metric: the RMSE along bubble interfaces (IRMSE). Accuracy along both the
domain and immersed boundaries is of significant importance. Boundary conditions determine if the
solution to a PDE exists and is unique. In the case of the multiphysics BubbleML dataset, accurate
modeling of the system requires satisfying the conditions at the liquid-vapor interfaces accurately.

Learning Temperature Dynamics. One application of SciML using the BubbleML dataset is
to learn the dynamics of temperature propagation within a system. In this context, the system’s
velocities serve as a sourcing function, influencing the temperature distribution. Notably, UNet-based
models perform best across all datasets (see Figure 3b-d). For a complete listing of error metrics
for each model and dataset pairing, refer to Appendix C.4. UNet models may have some advantage
in predicting the interfaces and boundaries (IRMSE and BRMSE) because they naturally act as
edge-detectors. The temperature also propagates smoothly, so it is likely unnecessary to use global
filters like the FNO variants. In contrast, FNO models rely on fast Fourier transforms and weight
multiplication in the Fourier space, which, while capable of handling global and local information
simultaneously, might not be as effective at capturing local, non-smooth features. Several recent
studies report similar observations about auto-regressive UNet and FNO variants [28, 55, 56].

Figure 3: Temperature and Heat Flux Prediction. (a) Cross-validated heat flux q/qmax estimates
for subcooled and saturated boiling. (b), (c), and (d) show results for the fully trained forward
propagator. In (b), accuracy degradation is minimal, with spikes occurring during timesteps of violent
turbulence caused by rapid bubble detachment from the heater surface. (c) and (d) compare frames
from the Flash-X simulation and predictions by the forward propagator for subcooled boiling.

The trained model can be a valuable tool to get fast estimates of heat flux, discussed in section
3.2. Heat flux is influenced by steep temperature gradients and dynamic temporal changes which
presents a challenging problem. To further validate our models, we perform cross-validation to predict
the heat flux trends observed in Figure 5. For each heat flux prediction, we holdout a simulation
and train a forward propagator on the remaining simulations within the dataset. Even with partial
training–50 epochs for subcooled boiling models and 100 epochs for saturated boiling models–we
achieve compelling results. The heat flux predictions by UNetbench remarkably track the expected
trend, as seen in Figure 3a.

Learning Fluid Dynamics. As an additional benchmark, we use the BubbleML dataset to train
models to approximate both velocity and temperature dynamics. A challenging problem! Detailed
results are in Appendix C.5. These follow similar training settings to the temperature-only models.
Strikingly, we observe nearly the opposite results to predicting only temperature: the UNetbench model
struggles when predicting both velocity and temperature fields jointly, while the UNetmod and the
FNO variants perform comparatively better. All the models have difficulty capturing the trails of
condensation that form in the temperature field. The vapor trails form but dissipate more quickly than
expected. An example rollout of UNetmod, trained using the pushforward trick, is shown in Figure 4.
We see that the flow closely aligns with the ground-truth simulation.

Open Problems. We reiterate several open problems in SciML that BubbleML offers an avenue
to explore. The first is the creation of a new class of models that can learn multiple interrelated
physics. We find that while UNet architectures work well at predicting temperature and FNO variants
work well at predicting velocity, neither excels at joint prediction of temperature and velocity. The
CNN-based UNet architectures slightly outperform FNO and its variants when predicting temperature,
potentially due to CNN’s capacity to naturally act as edge-detectors, and thus handle non-smooth
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Figure 4: Velocity and Temperature Rollout. The left figure shows the first 80 timesteps of P-
UNetmod’s rollout, where color indicates velocity and streamlines illustrate direction of flow. Both
the flow magnitude and direction align exceptionally well with the ground truth. On the right, (a) and
(b) show the rollout errors for temperature and velocity predictions. The prefix “P-” denotes that the
model is trained with the pushforward trick [57]. Notably, UNetmod starts with slightly better initial
accuracy, but it degrades more quickly than the model trained with the pushforward trick. P-UNetmod
behaves more stably during rollout.

interfaces more easily. On the other hand, FNO variants perform quite well at predicting velocities but
still do not perform particularly well at temperature estimation, especially in capturing condensation
trails. This is related to the second problem: developing neural operators that can handle non-
smooth and irregularly shaped interfaces. FNO variants seem to encounter difficulties in modeling
temperature fields, which have sharp jumps along bubble interfaces where the temperature transitions
from cool liquid to hot vapor. Conversely, the velocity field appears relatively smooth and thus may
be composed of lower frequencies better captured by FNO variants. However, these models still
miss sharp and sudden changes in velocity along bubble interfaces that are important for accurately
modeling long-range dynamics. The third problem is improving stability during long rollouts. This is
explored within the context of other datasets [28, 56], but it is particularly relevant for BubbleML.
For instance, in subcooled boiling, after bubbles depart from the surface, they undergo condensation
and generate vortices that gradually dissipate as they move upstream. To model these extended
temporal processes accurately, autoregressive models must be stable across long rollouts. However,
we observe that models experience instability, leading them to slowly diverge from the ground truth.
The BubbleML dataset presents an opportunity to study these challenges in SciML.

5 Conclusions and Limitations

This paper introduces BubbleML, which addresses a critical gap in ML research for multiphase
multiphysics systems. By employing physics-driven simulations, the dataset provides precise ground
truth information for a number of boiling scenarios, encompassing a wide range of parameters.
BubbleML is validated against experimental observations and trends, establishing its reliability in
multiphysics phase change research. The two BubbleML benchmarks demonstrate applications in
improving the accuracy of optical flow estimation and SciML modeling encountered in multiphase
systems. Importantly, BubbleML extends its impact beyond its immediate applications. It resonates
with broader challenges in SciML, serving as a foundational platform to study several open problems.

Limitations. Combining datasets might pose challenges due to their varying sizes. Because the
resolution scales proportionally with the domain size, the constant relative spacing between grid cells
allows the UNet model to be effectively trained on the merged boiling dataset. However, this approach
does not extend to FNO, requiring domain decomposition methods [60] or downscaling strategies
[61] to accommodate variable domain sizes. Note that the dataset is also exclusively composed of
simulations due to the unavailability of experimental data with velocity, pressure, and temperature
fields. Future work will involve collaboration with experimentalists to augment the dataset.
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A Additional BubbleML details

A.1 Dataset URLs and Links

Dataset: Links to download all the BubbleML datasets in Table 1 are available on the GitHub
homepage. The dataset homepage is hosted at https://hpcforge.github.io/BubbleML/. All future
versions of the dataset with the new links will be uploaded here.

Code: Code for training and evaluation of all the benchmark models are available within the same
GitHub repository.

Model Weights: Weights for all the benchmark models are available in the model zoo. All the
relevant benchmark results can be accessed on the same page.

DOI: The BubbleML dataset has a DOI from Zenodo: https://doi.org/10.5281/zenodo.8039786.

Documentation: We provide detailed descriptions for the fields tracked in the simulation data:
https://github.com/HPCForge/BubbleML/blob/main/bubbleml_data/DOCS.md. The documentation
discusses the layout of the data, important metadata, and some potential pitfalls.

Tutorials: We provide example Jupyter notebook to enable reproducibility of the benchmarks and
findings in this study: https://github.com/HPCForge/BubbleML/tree/main/examples. These tutorials
cover accessing simulation data, dataset schema, querying simulation parameters, and training a
Fourier Neural Operator—discussed in Section C.1—using PyTorch.

A.2 Maintenance and Long Term Preservation

The authors of BubbleML are committed to maintaining and preserving this dataset. The authors
will likely make extensions as we use BubbleML for future research. Ongoing maintenance also
encompasses tracking and resolving issues identified by the broader community after release. User
feedback will be closely monitored via the GitHub issue tracker. All data is hosted on AWS, which
guarantees reliable and stable storage. Depending on usage, we may migrate to archival storage for
long-term preservation.

Findable: All data is stored in an Amazon AWS S3 instance. All present and future data will share a
global and persistent DOI https://doi.org/10.5281/zenodo.8039786.

Accessible: All data and descriptive metadata can be downloaded from the public links listed on the
GitHub homepage. For added convenience, we provide a bash script for users to download the entire
dataset at once.

Interoperable: All BubbleML data is provided in the form of standard HDF5 files that can be read
using many common libraries, such as h5py for Python. Relevant metadata is stored with each
simulation.

Reusable: BubbleML is released under the Creative Commons Attribution 4.0 International License.

A.3 Justification of simulation parameters

We discuss the rationale guiding the selection of simulation parameters in Table 1, addressing both
the quantity of simulations and their resolutions/timesteps.

Number of simulations: The studies performed in BubbleML encompass diverse two-phase boiling
phenomena. The number of simulations is determined based on the distribution of the variable being
studied, keeping other factors constant. For example, in the case of saturated boiling, we choose a wall
temperature range from 60◦C to 120◦C, with uniform intervals of 5◦C, resulting in 13 simulations.
This range captures the boiling transition from the bubbly regime to chaotic dynamics as the heat flux
approaches criticality. However, when studying the effects of gravity, the scaling factor, Fr−2 (Fr
is the Froude Number), is chosen from the range 10−4 to 1 using a logarithmic scale resulting in 9
simulations. This scale is essential to cover the vastly different gravity conditions spanning from the
Earth’s surface to the International Space Station.

Domain size: Exploring phenomena across varying scales and geometries is common practice. Such
variations in sizes enable the exploration of a broad spectrum of heat transfer dynamics, bubble

16

https://github.com/HPCForge/BubbleML
https://hpcforge.github.io/BubbleML/
https://github.com/HPCForge/BubbleML
https://github.com/HPCForge/BubbleML/tree/main/model-zoo
https://zenodo.org/record/8039786
https://github.com/HPCForge/BubbleML/blob/main/bubbleml_data/DOCS.md
https://github.com/HPCForge/BubbleML/tree/main/examples
https://zenodo.org/record/8039786


dynamics, and phase change behaviors. The domain and heater sizes are chosen to replicate typical
ranges in experiments [62, 63] while also taking into account the computational costs of simulations.

Spatial resolution: The domain resolution depends on the grid size of an individual 2D block. A
block with spatial dimensions of 0.5× 0.5 (in non-dimensionalized units) is discretized into a grid of
size 16× 16. This resolution is determined based on grid sensitivity studies conducted for a single
bubble case to ensure high-fidelity simulations [31]. This results in the spatial resolution sizes in
Table 1.

Temporal resolution and timesteps: The temporal discretization in the majority of BubbleML
datasets is set at 1 non-dimensional unit, equivalent to 0.008 seconds for FC-72. Additionally, we
include several datasets with a finer discretization of 0.1 non-dimensional time. In both cases, we
intentionally chose a discretization that is much larger than what the CFL condition mandates for the
Flash-X solver. A significant advantage of neural PDE solvers is their ability to maintain reasonable
approximations while taking much larger timesteps than traditional numerical simulations. However,
this choice introduces a trade-off between dataset size and ease of use. The datasets with a 1 time
unit discretization are potentially more accessible but might present challenges in achieving accurate
results. Conversely, the datasets with a 0.1 time unit discretization are less accessible and may require
distributed training. Yet, they are likely to achieve more accurate results due to more training data
(i.e., more timesteps) and the presence of fine-grained physics.

A.4 Dataset Validation

Saturated and subcooled boiling. We first validate two distinct boiling phenomena. Saturated
boiling refers to the state of a liquid when it reaches its boiling point, known as the saturation
temperature, Tsat. At this temperature, the liquid is in equilibrium with its vapor phase, and bubbles
start forming at the heated surface. The liquid is on the verge of vaporization, and any further
increase in temperature can lead to the formation of vapor bubbles. This bubble formation is called
nucleate boiling; a far more effective way to transfer heat than natural convection on its own. On
the other hand, subcooled boiling is a complex process with evaporation and condensation occurring
simultaneously. The heat flux imposed on the wall produces a thermal layer around it in which
bubbles may nucleate and grow. However, condensation occurs as a bubble migrates into the bulk
liquid region with temperature under saturation point, Tbulk < Tsat. Experimental findings [64]
indicate that the heat flux increases linearly with the heater temperature, Twall until reaching CHF,
marking the transition from nucleate pool boiling to film boiling.

Figure 5: Bubble dynamics for saturated and subcooled pool boiling at different wall temperatures.
(a) ONB during saturated boiling is marked by a bubbly flow regime. (b) CHF behavior, indicated
by chaotic bubble dynamics and vapor film covering the heater surface. (c) Normalized heat flux,
q/qmax, plotted against temperature difference between heater and liquid saturation temperature
(Tsat = 58◦C) aligns with the boiling curve for FC-72 in [64].

Figure 5 presents the bubble dynamics in two different regimes of saturated pool boiling: onset of
nucleate boiling (ONB) and CHF. ONB occurs at low wall superheat and exhibits structured bubbly
flow with consistent shape and size of departing bubbles from the heater surface. In contrast, the
CHF regime is characterized by chaotic bubble dynamics. Remarkably, the heat flux, q at the heater
surface for both subcooled and saturated boiling shown in Figure 5c closely match the experimental
boiling curve, specifically for Si(100) surface [64]. Beyond CHF, the heat flux reaches a plateau,
indicating a stasis marked by the presence of large pockets of vapor cover on the heater surface, as
shown in Figure 5b.
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Figure 6: Gravity scaling of subcooled pool boiling: Bubble dynamics (black lines) and temperature
distribution (contours) on (a) Earth gravity, a/g = 1.0, t1 < t2 < t3 and (b) low gravity, a/g = 0.001.
(c) Wall heat flux vs. gravity for 2D simulations and its comparison to the scaling model in [62].

Boiling at low gravity. Boiling is the most efficient mode of heat transfer on Earth and serves as a
cooling mechanism for various thermal applications. However, in low gravity environments such as
the International Space Station (ISS), the dynamics of bubble growth, merger, and departure, which
significantly impact thermal efficiency, are influenced by the interplay between surface tension and
gravity. Quantifying these effects is crucial for developing phase change heat transfer systems in such
environments.

Figure 6 provides an overview of simulations conducted to compare against the gravity-based heat
flux model proposed in [62, 63]. These simulations cover a range of gravity levels, Fr = 1− 100.
The gravity scaling, a/g = 1

Fr2 , is used to scale values relative to the Earth’s gravity (g). Gravity
separates pool boiling into two distinct regimes: buoyancy dominated boiling (BDB) and surface
tension dominated boiling (SDB). The transitional acceleration, atrans, which depends on the size of
the heater, serves as the boundary between these two regimes.

In BDB, bubbles periodically detach from the heater surface when buoyancy takes over surface
tension. Figure 6 illustrates the temporal evolution of temperature and the liquid-vapor interface
during bubble departure events for a/g = 1. After departing from the surface, the bubbles undergo
condensation due to subcooling, and generate vortices that gradually dissipate as they move upstream
toward the outflow. This dissipation occurs as the vapor completely condenses into liquid. Decreasing
gravitational acceleration results in larger departing bubbles and reduces the wall heat flux, q. The
scaling of q with respect to gravity, qa/qg, follows the slope mBDB . In SDB, the dynamics are
dominated by the presence of a central bubble that remains on the heater surface and acts as a vapor
sink for smaller satellite bubbles, as depicted in Figure 6 for a/g = 0.001. The figure also captures
the transient behavior of the central bubble, which fluctuates in size due to the balance between
evaporation and condensation leading to different types of vortical structures. The heat flux drops
sharply by a value Kjump, which depends on the size of the central bubble [32], and the slope,
mSDB = 0. The gravity scaling of heat flux computed from simulations accurately matches the
expected trend from the model [62, 63], validating the simulation results.

B Optical Flow

B.1 Dataset

The BubbleML velocity data is in non-dimensional units (refer to appendix D). The non-dimensional
velocities are first converted to real-world units by multiplying them with the characteristic velocity
of the simulation. The velocities are then multiplied by a scaling factor (number of pixels per unit
length in the image) and then divided by the frames per second value. This converts the velocities to
pixels per frame units compatible with state-of-the-art optical flow models.

B.2 Benchmark Models

We consider two state-of-the-art optical flow models, RAFT [52] and GMFlow [53].

1. RAFT, Recurrent All-Pairs Field Transforms (RAFT), processes per-pixel features and
forms multi-scale 4D correlation volumes between all pixel pairs. The flow field is iteratively
updated through a recurrent unit that performs lookups on the correlation volumes. RAFT
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begins with a feature encoder that extracts a feature vector for each pixel. This is followed by
a correlation layer that produces a 4D correlation volume for all pairs of pixels. Subsequently,
this data is pooled to create lower resolution volumes. Finally, a GRU-based update operator
utilizes the data from the correlation volumes to iteratively refine the flow field, starting its
calculations from zero.

2. GMFlow reformulates optical flow as a global matching problem, which identifies the
correspondences by directly comparing feature similarities. It extracts dense features
from a convolutional backbone network, uses a transformer for feature enhancement, a
correlation and softmax layer for global feature matching, and a self-attention layer for flow
propagation. It also has a refinement step to exploit higher resolution features, reusing the
GMFlow framework for residual flow estimation.

B.3 Learning Bubble Dynamics Results

Analysis. For pool boiling test images, the models trained on FlyingChairs and fine-tuned on Boiling
images (C+B) achieve the best performance, as seen from Tables 2, 3, and 4. However, for flow
boiling test images, a different trend emerges. As observed in Tables 5 and 6, the lowest errors are
achieved by fine-tuning the Sintel benchmark models (C+T+S+B).

Figures 7 and 8 show a visual comparison between the outputs of the best fine-tuned and pre-trained
models and the corresponding ground truth optical flows for RAFT and GMFlow respectively. In
many instances (highlighted in red), the pre-trained models fail to capture the direction of movement
of bubbles which are visibly corrected by fine-tuning. However, as seen in the ground truth optical
flows, the bubble boundaries generally have different values than the interior regions. This gradient
is responsible for the dynamic changes in bubble shapes between consecutive frames. The end
point errors at these bubble-liquid interfaces remain significantly large even after fine-tuning. The
bubble-liquid interface is the most important region, where a highly accurate optical flow prediction
is necessary to enable downstream tasks such as scientific machine learning on experimental boiling
data. This suggests the need to incorporate physics-informed learning rules and architectures into
optical flow models to improve the interface end point errors.

Table 3: Results on optical flow data (B) generated from PB-Subcooled simulations. It consists
of around 1100 training image pairs and around 300 test image pairs. It is to be noted that heater
temperatures lower than 90◦C are not used due to the lack of trackable bubbles in many frames.

Model Method Chairs(Val) Things(Val) Sintel(Train) KITTI(Train) Boiling(Test)
Clean Clean Final F1-EPE F1-all

C RAFT 0.82 9.03 2.19 4.49 9.83 37.57 2.41
GMFlow 0.92 10.23 3.22 4.43 17.82 56.14 1.92

C+B RAFT 0.89 11.64 2.58 5.17 14.01 47.53 0.63
GMFlow 1.34 12.23 3.93 5.27 22.83 64.41 0.63

C+T RAFT 1.15 4.39 1.40 2.71 5.02 17.46 1.91
GMFlow 1.26 3.48 1.50 2.96 11.60 35.62 4.76

C+T+B RAFT 1.24 6.45 1.54 2.82 7.35 20.27 0.70
GMFlow 1.46 4.04 1.66 3.11 14.50 44.35 0.67

C+T+S RAFT 1.21 4.69 0.77 1.22 1.54 5.64 6.07
GMFlow 1.53 4.09 0.95 1.28 3.04 13.61 9.21

C+T+S+B RAFT 1.35 6.49 0.87 1.48 1.79 6.31 0.64
GMFlow 1.66 4.43 1.04 1.42 3.99 18.83 0.65

Compute Resources. All models are fine-tuned using a single NVIDIA V100 GPU. The implemen-
tations use the recommended versions of PyTorch and other libraries used in the official repositories
of GMFlow and RAFT.
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Table 4: Results on optical flow data (B) generated from PB-Gravity simulations. It consists of
around 1400 training image pairs and around 360 test image pairs.

Model Method Chairs(Val) Things(Val) Sintel(Train) KITTI(Train) Boiling(Test)
Clean Clean Final F1-EPE F1-all

C RAFT 0.82 9.03 2.19 4.49 9.83 37.57 3.30
GMFlow 0.92 10.23 3.22 4.43 17.82 56.14 2.40

C+B RAFT 0.95 10.98 2.78 5.76 15.52 49.88 0.90
GMFlow 1.42 12.57 4.06 5.41 23.61 66.38 0.90

C+T RAFT 1.15 4.39 1.40 2.71 5.02 17.46 2.75
GMFlow 1.26 3.48 1.50 2.96 11.60 35.62 3.60

C+T+B RAFT 1.31 6.65 1.64 2.93 8.39 21.36 0.96
GMFlow 1.41 3.95 1.64 2.97 44.07 14.41 0.97

C+T+S RAFT 1.21 4.69 0.77 1.22 1.54 5.64 4.74
GMFlow 1.53 4.09 0.95 1.28 3.04 13.61 5.49

C+T+S+B RAFT 1.35 6.44 0.90 1.49 1.81 6.27 0.92
GMFlow 1.63 4.43 1.03 1.40 4.29 20.93 0.92

Table 5: Results on optical flow data (B) generated from FB-Inlet Velocity simulations. It
consists of around 1200 training image pairs and around 300 test image pairs.

Model Method Chairs(Val) Things(Val) Sintel(Train) KITTI(Train) Boiling(Test)
Clean Clean Final F1-EPE F1-all

C RAFT 0.82 9.03 2.19 4.49 9.83 37.57 16.01
GMFlow 0.92 10.23 3.22 4.43 17.82 56.14 21.44

C+B RAFT 1.21 14.99 3.62 6.78 22.07 60.64 10.13
GMFlow 1.50 13.96 4.52 5.89 23.45 65.96 7.01

C+T RAFT 1.15 4.39 1.40 2.71 5.02 17.46 25.14
GMFlow 1.26 3.48 1.50 2.96 11.60 35.62 19.39

C+T+B RAFT 1.62 9.09 2.19 3.77 13.81 32.13 9.19
GMFlow 1.45 4.15 1.78 3.05 15.74 48.34 7.24

C+T+S RAFT 1.21 4.69 0.77 1.22 1.54 5.64 21.23
GMFlow 1.53 4.09 0.95 1.28 3.04 13.61 47.88

C+T+S+B RAFT 2.18 9.32 1.54 2.90 2.57 10.93 9.68
GMFlow 1.72 4.80 1.18 1.65 4.69 24.56 6.88

Table 6: Results on optical flow data (B) generated from FB-Gravity simulations. It consists of
around 1000 training image pairs and around 250 test image pairs.

Model Method Chairs(Val) Things(Val) Sintel(Train) KITTI(Train) Boiling(Test)
Clean Clean Final F1-EPE F1-all

C RAFT 0.82 9.03 2.19 4.49 9.83 37.57 20.42
GMFlow 0.92 10.23 3.22 4.43 17.82 56.14 14.05

C+B RAFT 1.14 12.65 3.30 6.13 17.94 53.76 4.45
GMFlow 1.30 13.02 4.05 5.41 23.17 65.33 4.24

C+T RAFT 1.15 4.39 1.40 2.71 5.02 17.46 21.04
GMFlow 1.26 3.48 1.50 2.96 11.60 35.62 13.37

C+T+B RAFT 1.41 6.85 1.97 3.89 10.96 27.82 4.24
GMFlow 1.37 3.89 1.71 3.05 14.29 45.03 3.94

C+T+S RAFT 1.21 4.69 0.77 1.22 1.54 5.64 21.04
GMFlow 1.53 4.09 0.95 1.28 3.04 13.61 22.84

C+T+S+B RAFT 1.59 7.29 1.13 2.14 2.22 9.34 4.12
GMFlow 1.62 4.42 1.04 1.43 3.86 17.76 3.93
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Figure 7: Comparison of the best performing pretrained RAFT models with finetuned RAFT models
on Pool Boiling and Flow Boiling images. In each row, (a) is the ground truth optical flow, (b) the
optical flow predictions from the pretrained model, and (c) the optical flow predictions from the
finetuned model. (d) shows the normalized end-point error at every pixel for the pretrained model
output. (e) shows the normalized end-point error at every pixel for the finetuned model output
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Figure 8: Comparison of the best performing pretrained GMFlow models with finetuned GMFlow
models on Pool Boiling and Flow Boiling images. In each row, (a) is the ground truth optical flow,
(b) the optical flow predictions from the pretrained model, and (c) the optical flow predictions from
the finetuned model. (d) shows the normalized end-point error at every pixel for the pretrained model
output. (e) shows the normalized end-point error at every pixel for the finetuned model output

Figure 9: Flow field color coding used in the above images. The displacement of every pixel is the
vector from the center of the square to this pixel.
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C Scientific Machine Learning

C.1 Benchmark Models

We focus on two classes of neural PDE solvers: Image-to-image models and neural operators. The
Image-to-image models are variants of UNet, commonly used in computer vision tasks, such as
image segmentation. These models are not always suitable as neural PDE solvers, where training
data generated from numerical simulations may require using different resolutions. However, modern
versions of UNet are still competitive in many benchmarks [55, 28].

1. UNetbench is a simple variant of the original UNet architecture from 2015, which was
modified in PDEBench [17] to use batch normalization. We also replace the tanh activation
with GELU [17, 54, 65].

2. UNetmod is a modern variant of UNet that gets impressive as a PDE solver. It has been
modified to use wide residual connections and group normalization [55, 66, 67].

Neural operators have found great success as PDE solvers [15]. Typically, given an initial condition
u0, a neural operator is a functionM : [0, tmax] × A → A, where A is an infinite dimensional
function space, that satisfiesM(t, u0) = ut [13, 15]. I.e., they map some initial condition to any
(discretized) time up to tmax. Training a model in this form demands many valid initial conditions
and solved simulations to form a large training set. However, generating such a dataset proves
infeasible in the case of BubbleML due to the complexity and computational cost of the simulations.
To overcome this obstacle, we adopt the autoregressive approach, even for neural operators, a practice
also observed in [28, 56, 57].

1. FNO is the Fourier Neural Operator [13, 15]. FNO learns weights in Fourier space to act as
a resolution-invariant global convolution. This seminal work has been extended by many
other neural operators. One notable downside is the memory requirements: each of the
Fourier domain weight matrices consumes O(H2MD), where H is the hidden size, M is
the number of Fourier modes used after truncating high frequencies, and D is the problem
dimension. In the case of BubbleML, D is 2 or 3.

2. UNO is a U-shaped variant of FNO [68]. This mimics the skip connections of a standard
UNet but replaces the convolutional layers with Fourier blocks. We use an 8-layer architec-
ture that mimics the vanilla UNet. The encoder reduces the input size and Fourier modes but
increases the number of channels. The decoder increases the input size and Fourier modes
while decreasing the number of channels. Since the number of Fourier modes decreases,
much of the network only accounts for very low frequencies.

3. F-FNO is the Factorized Fourier Neural Operator [58]. As the name suggests, F-FNO
factorizes the Fourier transform over problem dimensions. This reduces the number of
parameters per Fourier space weight matrix to O(H2MD). This enables using more
modes, scaling to deeper models, or learning higher dimensional problems. Further, F-FNO
suggests changing the structure of the residual connections, so that they are applied after the
non-linearity.

4. G-FNO is the Group-Equivariant Fourier Neural Operator [69], which extends group
convolutions to the frequency domain. The proposed G-Fourier layers are equivariant to
rotation, reflection, and translation. They also preserve the resolution invariance of neural
operators. The Fourier space weight matrix has O(H2MDS) parameters, where S is the
number of elements in the “stabilizer” of the group under consideration [69]. We focus on the
symmetry group p4, which captures 90◦ rotations and translation. It’s worth noting that the
BubbleML simulations are not rotation equivariant due to the global effects of temperature
and gravity. However, it is not uncommon for models that bake in some assumption of
equivariance to perform well, even in cases where such assumptions are not entirely valid.
Despite this incompatibility, we observe that G-FNO can still be successfully applied on
BubbleML and achieves performance that matches or surpasses the standard FNO.

5. T-FNO is the “Tuckerized” Fourier Neural Operator [70], which replaces FNO’s dense
weight matrix with a low-rank approximation. Tucker decomposition significantly reduces
the number of parameters while maintaining accuracy. Notably, T-FNO has been shown
to improve model performance in low-data regimes [70]. This is particularly relevant for
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BubbleML, where the complexity of simulations limits the size of the available dataset. The
concept of decomposing the weight matrix can potentially be extended to other models, such
as G-FNO, to yield comparable results.

C.2 Training Strategies

We implement several popular training strategies designed to make neural PDE solvers robust to
instability during rollout. One source of this instability is distribution shift, which occurs when the
model takes its prior outputs as input. The errors in the model’s predictions accumulate, and the
model is likely to diverge from the ground truth during long rollouts.

Teacher-forcing is the default training strategy [59]. The input to the model is always the ground
truth of the previous timesteps. I.e., to predict the solution u(t), the model input is the ground-truth
solutions u([t− k, t− 1]).

Gaussian noise is applied on iterations that the pushforward trick is unused. Several papers claim
that adding noise is a simple method to help the model become more robust to distribution shift
during longer rollouts [58, 71, 72]. Similar to F-FNO, when used, we add noise with zero mean and
standard deviation of 0.01. As Gaussian noise is spread uniformly across frequencies, it may also
help the model account for high frequencies [28].

Pushforward trick. Algorithm 1 shows sample pseudo-code for the pushforward trick [57]. The
model is trained by performing multiple inferences for successive timesteps. Similar to using
Gaussian noise, this trick helps the model be robust to distribution shifts during rollouts. The
advantage is that the errors introduced during the pushforward steps better match the distribution of
errors that accumulate during rollouts. Thus, we are essentially training the model to correct for its
own distribution shift during rollout. We use a ramp-up when applying the pushforward trick: the
percentage of training iterations completed is used as the likelihood that we perform pushforward
steps. Initially, there is a 0% chance of pushing forward. After 50% of training iterations, there is a
50% chance of applying the pushforward trick. We found this to be necessary and that applying the
pushforward trick on every iteration would fail.

Algorithm 1 Pushforward Trick.

Require: input is the model’s input; N is the number of pushforward steps
1: for n ∈ {0, . . . , N} do
2: input← model(input) ▷ Step through N timesteps
3: end for
4: input← model(input) ▷ Track gradients for only the final forward pass.

Temporal bundling is used so that the model outputs the solution for multiple future timesteps with
one inference [57]. By having the model output the solution for multiple future timesteps, we can
reduce the number of times the model is used. Since some error is introduced by each inference
during rollout, temporal bundling should reduce the rate that error is accumulated. This is again
beneficial for maintaining accuracy and stability during long rollouts. With a temporal bundle of size
k, the forward propagator outputs a vector F(u([tn−k, tn−1])) = u([tn, tn+k−1]).

Algorithm 2 Main Training Loop, with Pushforward Trick.

Require: data, the set of simulations; N , the number of pushforward steps
1: sample t from {tk, tmax}
2: input← data([t− k∆t, t−∆t]) ▷ Sample k timesteps to use as input
3: if N = 0 then
4: input← input +N (0, 0.01) ▷ Add Gaussian noise when not “pushing forward.”
5: end if
6: output = PushForwardTrick(input, N )
7: target← data([t+Nk, t+ (N + 1)k − 1]) ▷ Grab target for result of N pushforward steps
8: loss(output, target)
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Table 7: Generic hyperparameter settings for the temperature experiments.
Hyperparameter Value

Number of Epochs 250
Batch Size 8
Optimizer AdamW

Weight Decay 0.01
Base LR 1e-3 (or 5e-4)

LR Warmup Linear, 3%
LR Scheduler Step
Step Factor 0.5

Step Patience 75 Epochs
History Size 5
Future Size 5

Table 8: Generic hyperparameter settings for the flow experiments.
Hyperparameter Value

Number of Epochs 25
Batch Size 16
Optimizer AdamW

Weight Decay 1e-4
Base LR 5e-4

LR Warmup Linear, 3%
LR Scheduler Cosine Annealing

Min LR 1e-6
History Size 5
Future Size 5

C.3 Hyperparameter Settings

We mostly use generic hyperparameter settings that we found work well across all models. Each
individual model, however, has its own specific parameters, such as hidden channels, Fourier modes,
etc. These parameters are tuned on the subcooled Pool Boiling dataset and reused for the other
datasets. The settings for the temperature and flow experiments can be found in Tables 7 and 8. All
models are trained using AdamW [73]. For each temperature model, we use 3% of the total iterations
for learning rate warmup to reach the base learning rate. For the remaining iterations, we apply a
learning rate decay. For UNetmod, we reduce the base learning rate to 5e-4 in order to avoid instability
we experienced during some training runs. We also perform gradient clipping to clip the gradient
l2-norm to be at most one. For data augmentation, we perform horizontal reflections only for pool
boiling.

The Fourier models that are resolution invariant are trained at half resolution and evaluated at full
resolution. We found that training at the full resolution gave similar results, but took much longer or
required distributed training. The Fourier models all take the xy-coordinate grid as input [69]. So,
the input is (x, y, T ([t− k, t− 1]), v([t− k, t− 1])), where T is the temperature map and v is the
velocity map. Each Fourier model uses the 64 lowest frequency modes, except UNO, which uses the
32 lowest frequencies in the bottom of the “U” where the resolution is too small to use 64 modes. As
the domain is non-periodic, we do Fourier continuation by padding the domain with zeros [13]. FNO
is tuned with varying number of hidden channels. We achieve the best results with four layers and 64
hidden channels per layer. For G-FNO, we use the same settings, but halve the number of hidden
channels to account for the increase in size of the weight tensor.

C.4 Learning Temperature Dynamics Results

We show the complete listing of results for predicting temperature dynamics in Tables 9, 10, 11, 12,
and 13. As a general trend, we see that UNetbench consistently performs the best. In some metrics,
UNetmod closely matches or is better than UNetbench, but it tends to have higher errors at bubble
interfaces and domain boundaries. The FNO variants also perform well, but slightly worse than
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the UNet architectures. The better performance of UNet architecture might stem from the nature
of convolutions to function as effective edge detectors. Thus, the UNet variants can handle sharp
interfaces between liquid and vapor. Since the Fourier layers implicitly assume periodicity, they
tend to act as “smoothers”. Qualitatively, they appear to soften the sharp interfaces, resulting in
errors along the region surrounding the bubbles. Furthermore, it’s important to note that in FNO,
frequency truncation primarily preserves the low-frequency modes. While this is well-suited for
modeling and capturing general patterns and large-scale dynamics, it may not adequately represent
the small-scale structures present around bubble interfaces, the heater surface, and condensation trails.
There is existing work that makes similar observations [55, 56]. In our efforts to train FNO for the
solution of complex PDEs with high-frequency information, we have experimented with increasing
the number of effective Fourier modes to 2/3 of the training data resolution [74]. These results also
underscore the importance of regularization in low-data regimes. Among the FNO variants, those
that effectively reduce the number of parameters while retaining model expressiveness (T-FNO and
F-FNO) outperformed their larger, dense counterparts (FNO, UNO, and G-FNO). Simply reducing
the number of parameters in these three models did not lead to substantially better results. This
observation highlights the potential challenges these models may encounter when applied in contexts
where the training dataset is relatively limited, as is the case for this problem.

Table 9: Temperature Prediction: Pool Boiling Subcooled.
UNetbench UNetmod T-FNO F-FNO G-FNO FNO UNO

Rel. Err. 0.036 0.051 0.052 0.050 0.064 0.070 0.062
RMSE 0.035 0.049 0.050 0.048 0.062 0.068 0.059

BRMSE 0.073 0.146 0.118 0.124 0.142 0.149 0.145
IRMSE 0.113 0.157 0.189 0.155 0.236 0.269 0.220
Max Err. 2.1 1.937 2.32 2.21 2.825 2.806 2.659
F. Low 0.281 0.348 0.373 0.472 0.507 0.625 0.440
F. Mid 0.266 0.386 0.390 0.375 0.519 0.559 0.453
F. High 0.040 0.059 0.055 0.057 0.061 0.063 0.068

Table 10: Temperature Prediction: Pool Boiling Saturated.
UNetbench UNetmod T-FNO F-FNO G-FNO FNO UNO

Rel. Err. 0.035 0.039 0.052 0.053 0.066 0.078 0.072
RMSE 0.035 0.039 0.052 0.052 0.065 0.076 0.071

BRMSE 0.082 0.147 0.165 0.163 0.218 0.214 0.214
IRMSE 0.052 0.083 0.125 0.095 0.152 0.140 0.116
Max Err. 1.701 1.785 2.055 1.788 1.793 2.106 2.23
F. Low 0.257 0.241 0.373 0.416 0.463 0.633 0.568
F. Mid 0.268 0.273 0.377 0.399 0.496 0.606 0.532
F. High 0.023 0.042 0.053 0.052 0.070 0.062 0.069

Table 11: Temperature Prediction: Pool Boiling Gravity.
UNetbench UNetmod T-FNO F-FNO G-FNO FNO UNO

Rel. Err. 0.042 0.051 0.062 0.061 0.103 0.104 0.081
RMSE 0.040 0.049 0.059 0.058 0.098 0.099 0.077

BRMSE 0.070 0.139 0.150 0.131 0.188 0.209 0.184
IRMSE 0.108 0.201 0.266 0.239 0.412 0.457 0.335
Max Err. 2.92 2.846 3.626 3.22 3.307 3.946 3.667
F. Low 0.491 0.466 0.500 0.578 1.035 1.103 0.746
F. Mid 0.275 0.326 0.440 0.423 0.704 0.724 0.548
F. High 0.033 0.049 0.054 0.049 0.061 0.067 0.077

C.5 Learning Flow Dynamics Results

Table 14 shows the predicted temperature, x velocity, and y velocity during rollout of 200 timesteps
on the pool boiling subcooled dataset. We observe an interesting phenomenon: UNetbench goes from
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Table 12: Temperature Prediction: Flow Boiling Gravity.
UNetbench UNetmod T-FNO UNO

Rel. Err. 0.055 0.095 0.134 0.157
RMSE 0.051 0.088 0.123 0.144

BRMSE 0.080 0.240 0.267 0.301
IRMSE 0.091 0.214 0.351 0.379
Max Err. 2.560 2.800 3.951 3.990
F. Low 0.263 0.388 0.591 0.602
F. Mid 0.281 0.419 0.551 0.692
F. High 0.149 0.276 0.389 0.449

Table 13: Temperature Prediction: Flow Boiling Inlet Velocity. All models have substantially
higher error compared to the other datasets. This is likely caused by the higher velocity. Since the
temporal discretization is quite coarse, each bubble will take a large “jump” between frames that is
difficult to capture accurately.

UNetbench UNetmod T-FNO UNO
Rel. Err. 0.106 0.122 0.202 0.225
RMSE 0.097 0.111 0.184 0.205

BRMSE 0.271 0.315 0.486 0.471
IRMSE 0.178 0.193 0.252 0.319
Max Err. 2.900 2.862 3.527 3.992
F. Low 0.571 0.584 1.061 0.981
F. Mid 0.511 0.566 1.084 1.334
F. High 0.264 0.315 0.494 0.523

being the best model at predicting temperature, to being among the worst. This is the simplest model,
so it is understandable that its limited capacity prevents it from learning more complex functions.
In comparison, UNetmod performs incredibly well. T-FNO and F-FNO also continue to very well.
The best performing model is P-UNetmod, which was trained using the pushforward trick. It achieves
the best score in all metrics, except, surprisingly, for the maximum error. UNO experiences some
divergence. Initially, it makes good predictions (perhaps better than the UNet architectures), but
over long rollouts, its predictions tend toward infinity. Since UNO is the model that experiences the
most striking divergence, we compare its 1D radially averaged power spectrum with UNetmod and
P-UNetmod in Figure 10. We are able to reproduce findings that show that autoregressive Fourier
models may experience aliasing errors, causing them to diverge [56].

Figure 10: 1D Radially Averaged Power Spectrum of the simulation temperature and model rollout
temperature. We see that initially, all of the models follow the simulations frequency fairly well, but
UNO quickly diverges. This phenomena has been reported [56] as being aliasing errors. The plots are
on log-scale, so curves below the simulation’s are more accurate than curves above the simulation.
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Table 14: Coupled Velocity and Temperature Prediction: Pool Boiling Subcooled0.1. P-UNetmod
was trained using the pushforward trick. It gets the best results during rollout. Notably, F-FNO
performs better than UNetbench and UNetmod . This is a sharp contrast to the temperature predictions,
where the UNet variants were far better. UNO diverged during rollout. This is likely because is
mostly uses low frequencies. The error in the high frequencies accumulates during rollout, and it
diverges.

Metric UNetbench UNetmod P-UNetmod T-FNO UNO F-FNO

Temp.

Rel. Err. 0.108 0.074 0.040 0.066 0.322 0.067
RMSE 0.105 0.072 0.039 0.064 0.051 0.065

BRMSE 0.248 0.211 0.113 0.142 0.050 0.237
IRMSE 0.178 0.191 0.129 0.212 0.077 0.201
Max Err. 2.83 2.340 2.741 2.566 7.492 2.488
F. Low 1.407 0.495 0.244 0.531 4.902 0.498
F. Mid 0.740 0.583 0.280 0.518 1.594 0.507
F. High 0.090 0.076 0.051 0.061 0.442 0.083

x Vel.

Rel. Err. 0.681 0.553 0.429 0.642 1.834 0.547
RMSE 0.021 0.015 0.012 0.018 0.051 0.015

BRMSE 0.023 0.023 0.022 0.023 0.050 0.024
IRMSE 0.051 0.049 0.043 0.049 0.077 0.050
Max Err. 0.294 0.320 0.353 0.32 0.574 0.334
F. Low 0.329 0.225 0.142 0.258 0.677 0.189
F. Mid 0.115 0.105 0.079 0.110 0.328 0.107
F. High 0.012 0.012 0.011 0.012 0.092 0.012

y Vel.

Rel. Err. 0.563 0.400 0.311 0.415 1.170 0.397
RMSE 0.021 0.015 0.012 0.016 0.044 0.015

BRMSE 0.015 0.012 0.010 0.011 0.035 0.013
IRMSE 0.046 0.046 0.038 0.045 0.066 0.047
Max Err. 0.292 0.272 0.280 0.290 0.288 0.289
F. Low 0.387 0.190 0.132 0.180 0.660 0.176
F. Mid 0.128 0.112 0.085 0.111 0.240 0.106
F. High 0.011 0.010 0.009 0.010 0.067 0.010
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D Physical and non-dimensional values

D.1 Fluid properties

Table 15 provides a comprehensive list of physical properties relevant to multiphase flow. These
properties are presented with their respective symbols, units, and descriptions. It is important to
consider the properties of the liquid and vapor phases separately in multiphase flows, as they exhibit
distinct characteristics due to the phase change phenomenon. Additionally, the temperatures of the
heater and liquid are also taken into account, as they significantly influence bubble dynamics and flow
behaviors. The saturation temperature, which marks the initiation of bubble generation, is determined
by the specific fluid being studied.

Table 15: Physical properties with symbol and unit
Symbol Unit Description

ρl kg/m3 Liquid density
ρv kg/m3 Vapor density
µl N · s/m2 Dynamic viscosity of liquid
µv N · s/m2 Dynamic viscosity of vapor
Cp,l J/kg ·K Specific heat capacity of liquid
Cp,v J/kg ·K Specific heat capacity of vapor
kl W/m ·K Thermal conductivity of liquid
kv W/m ·K Thermal conductivity of vapor
hvl J/kg Latent heat
g m/s2 Gravitational acceleration
σ N/m Surface tension

Twall K Heater temperature
Tbulk K Bulk temperature
Tsat K Saturation temperature

D.2 Conversion to Non-dimensional parameters

Table 16 provides a comprehensive list of non-dimensional variables used in this study, including
their symbols, definitions, and descriptions. For example, the non-dimensional time is obtained by
dividing the characteristic length scale by the characteristic velocity scale. These non-dimensional
variables are necessary to solve the non-dimensionalized governing equations such as the continuity,
momentum, and energy equations. Additionally, non-dimensional properties such as density, dynamic
viscosity, specific heat capacity, and thermal conductivity are also considered in the context of
multiphase flow. Notably, representative parameters in fluid mechanics, thermodynamics, and heat
transfer, such as the Reynolds number (Re), Froude number (Fr), Prandtl number (Pr), Stefan
number (St), Weber number (We), and Peclet number (Pe), are used to obtain simulation results.
By employing non-dimensionalization, the effects of different physical quantities can be studied
independently of their specific units, facilitating a deeper understanding of the underlying phenomena.

E Simulation Details

E.1 Multiphase Simulations

Numerical simulations of multiphase flows with phase changes have been studied using various
techniques to model the behavior at the liquid-vapor interface and track its evolution over time. Two
commonly used methods for handling boundary conditions related to surface tension and evaporation
are the ghost fluid method (GFM) and the continuum surface force method (CSF). The GFM enforces
a sharp jump in pressure, velocity, and temperature across the interface, while the CSF diffuses
the forcing within the vicinity of the interface for a smoother transition. The choice between these
approaches involves a trade-off between accuracy and stability, with GFM offering higher accuracy
but lower stability compared to CSF. Interface tracking is typically achieved implicitly using level-set
or volume of fluid (VOF) techniques.
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Table 16: Formulae used for conversion of real world values to non-dimensional values
Symbol Definition Description

ρ∗ ρv/ρl Non-dimensional density
µ∗ µv/µl Non-dimensional viscosity
C∗

p Cp,v/Cp,l Non-dimensional specific heat capacity
k∗ kv/kl Non-dimensional thermal conductivity
l0

√
σ/g∆ρ Characteristic length scale

u0

√
gl0 Characteristic velocity scale

t0 l0/u0 Characteristic time scale
T ∗
wall (Twall − Tbulk)/(Twall − Tbulk) = 1 Non-dimensional heater temperature

T ∗
bulk (Tbulk − Tbulk)/(Twall − Tbulk) = 0 Non-dimensional bulk temperature
T ∗
sat (Tsat − Tbulk)/(Twall − Tbulk) Non-dimensional saturated temperature
Re ρlu0l0/µl Reynolds number
Fr u0/

√
gl0 Froude number

Pr µlCp,l/kl Prandtl number
St Cp,l(Twall − Tbulk)/hvl Stefan number
We ρlu

2
0l0/σ Weber number

Pe Re · Pr Peclet number

Researchers have employed these methods to study and model various aspects of multiphase flows
with phase changes. For example, Gibou et al. [75] used a level-set method with sharp interfacial jump
conditions within the framework of the GFM to model homogeneous two-dimensional evaporation
and film boiling. Son and Dhir [76, 77] extended this approach to perform heterogeneous pool
boiling calculations involving single and multiple bubbles. Majority of their initial work focused
on model development and verification using two-dimensional (2D) simulations, since real world
three-dimensional (3D) calculations were expensive due to limitations of the software framework.

Efforts have also been made to perform high-fidelity 3D simulations of pool boiling by combining
different techniques. Yazadani et al. [78] conducted critical heat flux (CHF) calculations on earth
gravity using a combination of VOF and CSF methods. Sato et al. [79, 11], on the other hand used
the level-set method in combination with CSF for their simulations. These studies highlighted the
computational cost associated with boiling simulations which had to be mitigated by performing
low resolution calculations. More recently, Dhruv et al. [31, 32] used a combination of level-set and
GFM methods for gravity scaling analysis of pool boiling at finer resolution than previous studies
using adaptive mesh refinement (AMR) within the framework of FLASH. These simulations were
applied to study effects of gravity on boiling heat transfer which lead to verification of experiment
based heat flux models and enabled the quantification of turbulent heat flux associated with bubble
dynamics during bubbly and slug flow [32]. The implementation of multiphase models within
FLASH has transitioned to Flash-X, which leverages state-of-art AMR techniques and heterogeneous
supercomputing architectures to significantly improve performance of boiling calculations. The
BubbleML dataset is curated from simulations carried out with the Flash-X framework. Figures 11
and 12 illustrate the boundary conditions and describe the parameters of the simulations comprising
the dataset.

An important note is that simulations still heavily rely on experimental observations to determine
input conditions such as nucleation site distribution, bubble nucleation frequency, and solid-liquid-
vapor contact angle dynamics [31]. As a result, simulations serve as an effective tool to understand
and quantify trends in boiling regimes, rather than attempting to replicate experiments precisely. This
opens up an opportunity for the integration of data-driven ML techniques, which can leverage diverse
datasets to make informed predictions for boiling phenomena.

E.2 Fluid parameters

The input configuration file of a simulation requires the inclusion of certain parameters, which
remain constant for a specific fluid. For our simulations using FC-72 (Perfluorohexane, C6F14), the
non-dimensional values for this fluid are provided in Table 17. It is important to note that parameters
corresponding to any specific real-world fluid must be converted to these non-dimensional values
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Figure 11: Parameters for 2D pool boiling simulations

Figure 12: Parameters for 2D flow boiling simulations
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before being input into the simulation configuration files. This conversion allows for consistent and
standardized representation of fluid properties in the simulation, enabling accurate and meaningful
results to be obtained.

Table 17: Non-dimensional constants for FC-72, the fluid used in BubbleML
Parameter Variable Name Non-dimensional Value

Inverse Reynolds Number, 1
Re ins_invReynolds 0.0042

Non-dimensional density, ρ∗ mph_rhoGas 0.0083
Non-dimensional viscosity, µ∗ mph_muGas 1.0
Non-dimensional thermal conductivity, k∗ mph_thcoGas 0.25
Non-dimensional specific heat capacity, C∗

p mph_CpGas 0.83
Inverse Weber Number, 1

We mph_invWeber 1.0
Prandtl Number, Pr ht_Prandtl 8.4
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