
Appendix
Appendix A provides proofs of lemmas.
Appendix B provides additional details on the CEO problem for Gaussian sources.
Appendix C provides an additional experiment of NDPCA with more sources.
Appendix D provides details of the datasets.
Appendix E provides implementation details.
Appendix F provides an ablation study with norms on training loss, the DPCA module, and the

views in locate and lift.

A Proofs of Lemmas

A.1 Bounds of DPCA

Lemma (Bounds of DPCA Reconstruction). Given a zero-mean data matrix and its covariance,
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, and XX>
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matrices EDPCA, DDPCA, the difference of the reconstruction losses is bounded by
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where �i and ei are the i-th largest eigenvalue and eigenvector of XX>
, Tr is the trace function,

and m is the dimension of the compression bottleneck.

Proof. The lower bound is intuitive. We know that DPCA cannot outperform PCA since distributed
coding cannot outperform joint coding and PCA is the optimal linear encoding. The reconstruction
loss of PCA is always not greater than the loss of DPCA, thus the lower bound is 0. Now consider
the upper bound:
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Finally, we use the matrix perturbation theory [44] to calculate the first-order approximation of the
effect of �X on the singular values of Xdiag. The perturbation theory assumes that the perturbation
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�X is relatively small compared to Xdiag. Then, we know:
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Note that the encoding and decoding matrices of DPCA look like:

DDPCA =


D1 0
0 D1

�
, EDPCA =


E1 0
0 E2,

�

where E1, E2, D1, D2 are matrices obtained from each source with DPCA.

Figure 5: Bound from Lemma 3.1: The obtained upper bound is always larger than the difference of losses of
DPCA and PCA.
We examine the correctness of our bound with random data matrices in Fig. 5. We can see that the
gap between DPCA and PCA decreases as the Frobenius norm of �X decreases. The upper bound
also has the same trend, while it is always larger than the exact value. Note that in Fig. 5, all axes are
in log scale.

A.2 Why Robust Task?

We now characterize the effect of using task-aware compression and a pre-trained, robust task. We
assume that the robust task performs similarly to the original, non-robust task. We also know that the
robust task has a lower Lipschitz constant than the non-robust one [45, 46]. We denote the robust task
model by �⇤ and the non-robust task model by �. We define task-aware autoencoder as

Dawa, Eawa = argmin
D,E

k�⇤(x)� �⇤ �D � E(x)k22

subject to E(x) 2 R�,

and task-agnostic autoencoder as

Dagn, Eagn = argmin
D,E

kx�D � E(x)k22

subject to E(x) 2 R�,

where � denotes function composition. For simplicity, we further define

x̂awa = Dawa � Eawa(x), x̂agn = Dagn � Eagn(x).

Then, we prove the following lemma:
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Lemma A.1 (Why task-aware compression and a robust task). Assume robust task model �⇤
and

non-robust task � only differ in:

8x, k�⇤(x)� �(x)k  ✏. (9)

That is, the robust task and the normal task have a bounded performance gap. Assume that �⇤
is a

Lipschitz function with constant L⇤
, and � is a bi-Lipschitz function with constant L. Namely,
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We show that the task losses of task-aware, robust models and task-agnostic, non-robust models are

bounded by
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Proof. We consider the difference between the two task losses. By the triangle inequality,
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On the other hand, subtracting (10) and (11), we get
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Finally, combining (13) and (14), we get

k�⇤(x)� �⇤(x̂awa)k2 � L⇤kx� x̂awak2 +
1
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Lemma A.1 characterizes how close the task losses of task-aware robust models and task-agnostic
non-robust models are. The reason that robust task models are preferable to non-robust models is
that robust task models have smaller Lipschitz constants. In other words, when noise caused by
communication or reconstruction perturbs the input of the models, the output is less sensitive, so the
output of the perturbed task is closer to the original output.

With regard to task-aware autoencoders, it is obvious that they are preferable to task-agnostic ones
since the former minimizes task losses. Task-agnostic autoencoders aim to reconstruct the full image,
but most pixels in an image are not related to the task, so task-agnostic models are more bandwidth
inefficient than task-aware models. Of course, when one has sufficient bandwidth to transmit a
whole image perfectly, task-agnostic models will perform equally to task-aware models. In this case,
kx� x̂awak2 = kx� x̂agnk2 = 0 in (12).
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B The Gaussian CEO Problem

The Gaussian CEO problem [27, 28] refers to the problem of distributed inference from noisy
observations. The objective is to reconstruct the source from noisy observations rather than the
noisy observations themselves, which motivated our first experiment of CIFAR-10 denoising. In
the original setting, a White Gaussian source X of variance P is observed through two independent
Gaussian broadcast channels Yj = X + Zj for i = 1, 2 where Z1 ⇠ N (0, N1) and Z2 ⇠ N (0, N2).
The observations Y1 and Y2 are separately encoded with the aim of estimating X such that the mean
square error distortion between the estimate X̂ and X is D.

The rate-distortion region RCEO(D) for the quadratic Gaussian CEO problem is the set of rate pairs
(R1, R2) that satisfy
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Considering the CIFAR-10 denoising experiment, we have P = 0.3125, and for a target distortion
of PSNR 20 dB, we have D = 0.01. For the sake of analysis, we assume the CIFAR-10 source to
be Gaussian and find the lower bounds on rates R1 and R2. We begin by solving for the auxiliary
variables that satisfy (17). Then, in the region of feasible auxiliary rates, we look for the pair of
(r1, r2) that minimize the sum lower bound on R1 + R2. Solving this for N1 = 0.01 and N2 = 1,
we get R1 � 3.44 and R2 � 0.002. Similarly, for N1 = 0.01 and N2 = 0.1, we get R1 � 2.45
and R2 � 0.41. Under the assumption of Gaussian sources, this clearly demonstrates that the rates
for both sources are non-zero. Also, the rate allocated to a source is inversely proportional to the
noise. Therefore, R1 > R2 when source 1 is less noisy, implying that higher bandwidth is allocated
to source 1 since it contains more information and is more important.

C NDPCA with 4 sources:

To showcase the capability of NDPCA under more than 2 sources, we examine it on the most
complicated dataset amomng the 3–Airbus detection. Views 1 and 2 have resolutions of (160⇥ 224)
pixels, whereas views 3 and 4 have (288 ⇥ 224) pixels. Same as the previous experiments, we
intentionally set the views to different sizes so that the importance to the task is unequal, resulting in
different bandwidth allocatation among the sources in Fig. 6.

Figure 6: NDPCA with 4 data sources: (a) The performance of NPCA compared to DAE with 4 data sources.
NDPCA is better than DAE, which aligns with our result with 2 data sources. (b) Distribution of total available
bandwidth (latent space) among the 4 views for NDPCA. The difference in resolution emphasizes the distinct
importance of each view in object detection, therefore Z3 and Z4 have greater dimensions than Z1 and Z2.
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D Details of the Datasets

D.1 CIFAR-10 denoising:

We started with the standard CIFAR-10 dataset and normalized the images to [0, 1]. Two different
views are created by adding different levels of Gaussian noise, N (0, 0.12) and N (0, 1). The pre-
trained task model is created by training a denoising autoencoder that takes both views, concatenates
them along the channel dimension, and produces a clean image. The autoencoders need to learn
features that are important for this task model.

D.2 Locate and lift:

We collected 20, 000 pairs of actions and the corresponding images of both views for our training
set. The actions are 4 dimensional, controlling the x, y, z coordinate movements and the gripper of
the robotic arm. We randomly cropped the images from 128⇥ 128 to 112⇥ 112 pixels to make our
autoencoder more robust. The expert agent is pre-trained by the same data augmentation as well.

D.3 Airbus detection:

We first cropped all original images of 2560 ⇥ 2560 pixels (Fig. 7) into 224 ⇥ 224 pixels with 28
pixels overlapping between each cropped image. We then eliminated the bounding boxes that are less
than 30% left after cropping.

Figure 7: Original image of airbus detection. The original images are 2560⇥ 2560 pixels, and we cropped
them into smaller pieces in 224⇥ 224.
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E Implementation Details

E.1 CIFAR-10 denoising:

For the CIFAR-10 dataset, we used the standard CIFAR-10 dataset and applied different levels of
AWGN noise to create two correlated datasets. We used the CIFAR-10 experiments as a proof of
concept to try different architectures and loss functions and other techniques to finalize our framework.
We choose �task = 1 for the task-aware setting and �rec = 1 for the task-agnostic setting. We run 4
random seeds on NDPCA and all baselines to evaluate the performance.

E.2 Locate and lift:

For the locate and lift experiment, we trained our autoencoder with the same random cropping setting
as in Sec. D, which cropped the images from 128 ⇥ 128 to 112 ⇥ 112 pixels. During testing, we
randomly initialized the location of the brick and center-cropped the images from 128 ⇥ 128 to
112⇥ 112 pixels. We scaled all images to 0 to 1 and ran 5 random seeds on NDPCA and all baselines
to evaluate the performance. For the task-aware setting, �task = 500, and �rec = 1000 for the
task-agnostic. setting

E.3 Airbus detection:

For the Airbus detection task, we used the original Yolo paper for our object detection model together
with the detection loss [31]. Our experiments with the latest state-of-the-art Yolo v8 model [47]
showed that there is no big difference in the Airbus detection dataset in terms of run time and accuracy.
Since the size of the original dataset is not enough to train an object detection model, we used the
data augmentation proposed in Yolo v8, mosaic, to increase the size of the dataset. Mosaic randomly
crops 4 images and merges them to generate a new image. We used random resized crop, blur,
median blur, and CLAHE enhancement during training, each with probability 0.05 by functions in
the Albumentations package [48]. We increased the size of the Airbus dataset from 5904 to 21808
with mosiac and trained the Yolo detection model. Finally, we trained our autoencoder with the same
dataset, but downsample the images to 112⇥ 112 pixels so that the autoencoder is faster to train. For
the task-aware setting, �task = 0.1, and �rec = 0.5 for the task-agnostic setting. We run 2 random
seeds on NDPCA and all baselines to evaluate the performance.

E.4 Neural Autoencoder Architecture and Hyperparameters
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(b) Decoder architecture.

Figure 8: ResNet Autoencoer: The encoder processes inputs through r convolution layers and r ⇥N residual
blocks, followed by 3 fully connected layers with ReLU activation. The decoder processes latent representations
in the reverse order from the encoder with 2⇥ upsamplings.

We used the ResNet encoder shown in Fig. 8a and the decoder in Fig. 8b for all experiments. We used
different numbers of filters and numbers of residual blocks for our experiments, shown as C and r. We
denote m as the number of latent dimensions. The numbers of filters are C1 = 32, C2 = 64, C3 =
128, C1 = 8, C2 = 16, C3 = 32, C4 = 64, and C1 = 16, C2 = 32, C3 = 64, C4 = 128, and
the numbers of residual blocks are r = 0, r = 1, r = 1 for CIFAR-10 denoising, locate and lift,
and Airbus detection. For CIFAR-10 denoising, we use the Adam optimizer with a learning rate of
0.0002, and for the other two experiments, we use the Adam optimizer with a learning rate of 0.0001.
For the sake of training speed, when training DAE and JAE, we first trained a large network with
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Locate and lift Airbus detection

Ground Truth

Task-aware

Task-agnostic

Figure 9: Weighted task-loss: Weighted task-aware images faintly reconstruct the original images while
restoring task-relevant features with high-frequency noise. In Airbus detection, location of Airbuses is captured
with shiny high-frequency pixels in row 3.

mmax with each random seed. Then, we fixed the network parameters and trained concatenate 3
fully connected layers on each encoder and decoder network to compress and decompress the data to
smaller m.

E.5 Balancing Task-aware and Task-agnostic Loss

NPDCA has a loss function consisting of 2 terms, as shown in (8):

Ltot = �task kŶ � Y k2F| {z }
task loss

+�rec

⇣
kX̂1 �X1k2F + kX̂2 �X2k2F + . . . kX̂K �XKk2F

⌘

| {z }
reconstruction loss

.

(8 revisited)
Previously, we tested two extreme cases of (8): task-aware when �task > 0,�rec = 0, and task-
agnostic when �task = 0,�rec > 0. Of course, one can use different weighted sums of the 2 terms in
(8), which we call weighted task-aware. We show the resulting reconstructed image in Fig. 9, whose
weights are a mixture of half of the two other methods. Weighted task-aware images have both blurry
reconstructions of the original images and task-relevant features. Unsurprisingly, the task loss and the
reconstructed loss of weighted task-aware images are between pure task-aware and task-agnostic, that
is, we can use the weights in the loss function to trade off compressing human perception features
against task-relevant features. Interestingly, we can see that the task-aware images look similar to the
images without Airbuses (last 2 columns), and when there are Airbuses, the task-aware images look
different. It means that the features of no Airbuses are pretty much the same in the latent space, thus
resulting in similar images in pixel space. Hence we can conclude that task-aware features are not
random noise, they are meaningful features only to the task model but not to our eyes.

E.6 Storage and Training Complexity

Model CIFAR-10 Locate and lift Airbus detection

Storage (MB) Train (hr) Storage (MB) Train (hr) Storage (MB) Train (hr)

NDPCA 8.3 0.25 16.4 5.0 33.0 13.0
DAE 5⇥ 8.4 5⇥ 0.21 4⇥ 16.3 4⇥ 5.0 4⇥ 22.5 4⇥ 11.5
JAE 5⇥ 10.2 5⇥ 0.22 4⇥ 11.4 4⇥ 3.5 4⇥ 32.9 4⇥ 10.5

Table 1: Storage and training complexity: NDPCA has slightly more storage and training overload than
other models for a single bandwidth but can operate across different bandwidths. We multiply the number of
bandwidths tested in Fig. 3 to the storage size and training time of DAE and JAE as they require different models
for different compression levels.

19



One key feature of NDPCA is that it only needs one model to operate in different bandwidths.
Therefore, we only need to train and store one model at the edge devices and the central node.
We compare the complexity of storage and training in Table 1. Although NDPCA has a larger
storage size and longer training time than other models, it can operate across different bandwidths.
According to Table 1, if all models operate in more than 1 bandwidths, NDPCA saves more storage
and training overload because other models have more than 50% of NPDCA’s overload. For CIFAR-
10 denoising, we tested the training time on an RTX 4090, and for the locate and lift and Airbus
detection experiments, we tested the training time on an NVIDIA RTX A5000.

F Ablation Study

Figure 10: Ablation study of the nuclear norm and cosine similarity: Adding the nuclear norm or cosine
similarity to the loss function does not improve the performance of the model when compressing latent
representations to lower dimensions.

F.1 Cosine similarity and nuclear norm

In Fig. 10, we show that adding nuclear norm or cosine similarity in the training loss (8) does not
help the model perform when we use DPCA to project latent representations into lower dimensions.
We compared our proposed NDPCA with the DPCA module against NDPCA without the DPCA
module but with the penalization of the nuclear norm and cosine similarity added. The weights of
all the additional terms are 0.1. From Fig. 10, we conclude that the DPCA module can increase the
performance better than the other two.

Figure 11: Ablation study of DPCA module: The proposed DPCA module effectively increases the perfor-
mance in lower bandwidths, while achieving the same performance at larger bandwidths.

F.2 DPCA module

In Fig. 11, we show that the proposed DPCA module can help the neural autoencoder learn linear
compressible representations, as described in Sec. 4. We see that with the DPCA module, NDPCA
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can increase the performance in lower bandwidths, while saturating at the performance close to the
model without the module. We conclude that with the DPCA module, NDPCA learns to generate
low-rank representations, so the performance is better in lower bandwidths. However, when the
bandwidth is higher, the bandwidth can almost fully restore the representations, so the two methods
perform similarly.

F.3 Single view performance of locate and lift

In the locate and lift experiments, the reinforcement learning agent leverages information from both
views as input to manipulate. Here, we detail why the 2 views are complementary to accomplish the
task. The success rate of an agent is 76% with only the arm-view and 45% with the side-view. When
combining both, the success rate is 83%. The reason why the views are complementary is that the
side-view provides global information on the position of the arm and the brick, but sometimes the
brick is hidden behind the arm. The arm-view captures detailed information from a narrow view of
the desk. Once the arm-view captures the brick, it is straightforward to move toward it and lift it.
The arm view is more important because with only the arm-view, the agent can randomly explore
the brick, but with only the side-view, the brick might be vague to see and thus harder to lift. Of
course, with both views, the robotic arm can easily move toward the vague position of the brick and
use arm-view to lift it.
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