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Abstract

Efficient compression of correlated data is essential to minimize communication
overload in multi-sensor networks. In such networks, each sensor independently
compresses the data and transmits them to a central node. A decoder at the central
node decompresses and passes the data to a pre-trained machine learning-based
task model to generate the final output. Due to limited communication bandwidth,
it is important for the compressor to learn only the features that are relevant to the
task. Additionally, the final performance depends heavily on the total available
bandwidth. In practice, it is common to encounter varying availability in band-
width. Since higher bandwidth results in better performance, it is essential for the
compressor to dynamically take advantage of the maximum available bandwidth at
any instant. In this work, we propose a novel distributed compression framework
composed of independent encoders and a joint decoder, which we call neural dis-
tributed principal component analysis (NDPCA). NDPCA flexibly compresses data
from multiple sources to any available bandwidth with a single model, reducing
compute and storage overhead. NDPCA achieves this by learning low-rank task
representations and efficiently distributing bandwidth among sensors, thus provid-
ing a graceful trade-off between performance and bandwidth. Experiments show
that NDPCA improves the success rate of multi-view robotic arm manipulation
by 9% and the accuracy of object detection tasks on satellite imagery by 14%
compared to an autoencoder with uniform bandwidth allocation.

1 Introduction

Efficient data compression plays a pivotal role in multi-sensor networks to minimize communication
overload. Due to the limited communication bandwidth of such networks, it is often impractical to
transmit all sensor data to a central server, and compression of the data is necessary. It is important
for the sensors to compress the respective data independently, to avoid communication overload in
the network. Information theory literature refers to this setting as distributed source coding [|1], where
the goal is to recover the original data with minimal distortion. In many cases, the data collected by
the sensors is only processed by a downstream task model, e.g., an object detection model, but not by
humans, and hence the original distributed source coding goal of minimizing reconstruction error is
no longer applicable. Instead, the goal should be to maximize the performance of the downstream
task model. Additionally, in practice, data collected by multi-sensor networks is often correlated
e.g. stereo cameras with overlapping fields of view. To improve communication efficiency, it is
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Figure 1: Task-aware distributed source coding with NDPCA. X1, ..., X}, are correlated data sources.
Encoders F1, .. ., E) independently compress data to latent representations Z1, . . . , Z. Using linear matrices,

the DPCA module projects the representations to any lower dimension at the encoder and projects them back to
the original data space at the decoder, which allocates the bandwidth of sources based on the importance of the
task ®. The goal is to find the optimal encoders and decoder that minimize the final task loss.

important for the compression framework to take advantage of the correlation and avoid transmission
of redundant data. Combining both objectives, the final goal of the distributed compression framework
is to learn relevant features that maximize the task performance, while avoiding the transmission of
redundant features by exploiting the correlation between sources. Together, we refer to the distributed
compression of task-relevant features as task-aware distributed source coding.

However, existing compression methods fail to combine the following three aspects: 1. Existing
distributed compression methods perform poorly in the presence of a task model. Although neural
networks have been shown to be capable of compressing stereo images [2}3|] and correlated images
[4], existing methods focus on reconstructing image data, but not for downstream tasks. 2. Existing
task-aware compression methods cannot take advantage of the correlation of sources. Previous
works only consider compressing task-relevant features of single source [5+9], but not multiple
correlated sources. 3. All existing methods for 1 & 2, especially those based on neural networks,
only compress data to a fixed level of compression but not to multiple levels. Thus, they cannot
operate in environments with different demands of compression levels and require a separate model
trained for each compression level. Here, we note that we use the term bandwidth to indicate the
information bottleneck in the dimension of transmitted data. Based on the choice of quantization, it
is straightforward to convert the latent dimension to other popular metrics such as bits per pixel (bpp)
in the case of image sources. Additionally, we consider the scenario of total bandwidth constraint for
the uplink, which is typical for wireless networks [10].

We design neural distributed principal component analysis (NDPCA)-a distributed compression
framework that can transmit task-relevant features at multiple compression levels. We consider the
case where a task model at the central node requires data from all sources and the bandwidth in the net-
work is not consistent over time, as shown in Fig.|1| In NDPCA, neural encoders E1, Es, ..., Ex first
independently compress correlated data X7, Xs, ..., Xx to latent representations Zy, Zs, ..., Zx.
A proposed module called distributed principal component analysis (DPCA) further compresses these
representations to any lower dimension according to the current bandwidth and decompresses the
data at the central node. Finally, a neural decoder at the central node decodes the representations
Zl, ZA% R Zk to Xl, Xg, ... ,XK and feeds them into a task. Task-aware compression aims to
minimize task loss, defined as the difference in task outputs with and without compression, such
as the difference in object detection results. Due to the significant training cost involved, we avoid
training the task model, which is usually a large pre-trained neural network.

To highlight our proposed method, NDPCA learns task-relevant representations with a single model
at multiple compression levels. It includes a neural autoencoder to generate uncorrelated task-relevant
representations in a fixed dimension. It is desirable to learn uncorrelated representations to prevent
the transmission of redundant information. It also includes a module for linear projection, DPCA, to
allocate the available bandwidth among sources based on the importance of the task, by observing
the respective principal components, and then further compressing the representations to any desired
dimension. By harmoniously combining the neural autoencoder and the linear DPCA module,
NDPCA generates representations that are more compressible in limited bandwidths, providing a
graceful trade-off between performance and bandwidth.



Contributions: Our contributions are three-fold: First, we formulate a task-aware distributed source
coding problem that optimizes the compression for a given task instead of reconstructing the sources
(Sec.[2). Second, we provide a theoretical justification for the framework by analyzing the case of
a linear compressor and a linear task (Sec.|3). Finally, we propose a task-aware distributed source
coding framework, NDPCA, that learns a single model for different levels of compression to handle
any type of source and task(Sec.. We validate NDPCA with tasks of CIFAR-10 image denoising,
multi-view robotic arm manipulation, and object detection of satellite imagery (Sec.. NDPCA
results in a 1.2dB increase in PSNR, a 9% increase in success rate, and a 14% increase in accuracy
compared to an autoencoder with uniform bandwidth allocation, for the respective experiments
mentioned above.

2 Problem Formulation

We now define the problem statement more formally. Consider a set of K correlated sources.
Let z; € R™ denote the sample from source ¢ where i € {1,2,...,K}. Samples from each
source % are compressed independently by encoder E; to a latent representation z; € R™ such

that Zfil m; = m, where m is the total bandwidth available. A joint decoder D receives the

representations {z1, 22, . . ., 2  and reconstructs the sources {Z1, Z2, . . ., £ }. In the setting without
a task, the goal is to find a set of encoders and a decoder to recover the inputs {z1, x2, . .., 2y} with
minimal loss:
K
argmin Z Liec(xi, &) (Task-agnostic distributed source coding), )

E1,E3,...,Er,D i=1

where L. is the reconstruction loss, e.g., the mean-squared error loss.

In the presence of a task ®, it takes the reconstructed inputs to compute the final output

O(&1,22,...,%;). The goal is to find a set of encoders and a decoder such that the task loss

Lk is minimized, where ® (1, zo, . . ., zk) is the task output computed without compression. We

refer to this problem as task-aware distributed source coding, which is the main focus of this paper:
argmin = Ly (P(z1, 22, ..., 2), ®(D(E1(21), Ea(x2), ..., Ex(xk))))

Ey,Es,....E,,D (2)
(Task-aware distributed source coding),

where Ly, is the task loss, e.g., the difference of bounding boxes when the task is object detection.

Bandwidth allocation: In the previous formulations, we assume that the output dimensions of
encoders are known a priori. However, the dimensions are related to the compression quality of each
encoder, which is also a design factor. That is, given the total available bandwidth m, we first need
to obtain the optimal m; for each source ¢, then, we can design the optimal encoders and decoder
accordingly. Finding the optimal set of bandwidths for a given task is a long-standing open problem
in information theory [11], even for the simple task of a modulo-two sum of two binary sources [[12].
Also, existing works [4]|13}/14] largely assume a fixed latent dimension for sources and train different
models for different total available bandwidth m, which is, of course, suboptimal. In this paper,
our framework provides heuristics to the underlying key challenge of optimally allocating available
bandwidth, i.e., deciding m;, while adapting to different total bandwidths m with a single model.

3 Theoretical Analysis

We start with a motivating example of task-aware distributed source coding under the constraint of
linear encoders, a decoder, and a linear task. We first solve the linear setting using our proposed
method, distributed principal component analysis (DPCA). We then describe how DPCA compresses
data to different bandwidths and analyze the performance of DPCA. In this way, we gain insights
into combining DPCA with neural autoencoders in later Sec.

DPCA Formulation: We consider a linear task for two sources, defined by the task matrix ® €
RP*(n1+n2) \where the sources z; € R™ and x5 € R™ are of dimensions n; and no, respectively,
and the task output is given by y = ®x € RP, where = = [x] , 24 | T. Without loss of generality, we
assume the sources to be zero-mean. Now, we have N observations of two sources X; € R™*N and

X, € R"2*N and their corresponding task outputs Y = ®(X) € RP*N where X = [X| X, |T.



We aim to design the optimal linear encoding matrices (encoders) £ € R™*™ Fy € R™2*"2 and
the decoding matrix (decoder) D € R(m+n2)x(mi+m2) that minimizes the task loss defined as the
Frobenius norm of (X ) — ®(X), where X is the reconstructed X . We only consider the non-trivial
case where the total bandwidth is less than the task dimension, m = mj 4+ mso < p, i.e., the encoders
cannot directly calculate the task output locally and transmit it to the decoder. For now, we assume
that m, and ms are given, and we discuss the optimal allocation later in this section.

Letting Z; = E1X; € R™ XN and Zy = Ey X, € R™2*N denote the encoded representations and
M = ®D denote the product of the task and decoder matrices, we solve the optimization problem:

B}, E;,M* = argmin ||Y — M Z||3 (32)
Eq,Ey,M
_|Z| _ |[EiXa
s 2= 7] =[x (3b)
zZZ" =1, (3c)
Y=®DZ=MZ, Y =20 {X;] . (3d)

Note that solving M is identical to solving the decoder D since we can always convert M to D by
the generalized inverse of task ®. The encoders 1 and F project the data to representations Z; and
Z in (3b). We constrain the representations to be orthonormal vectors in (3¢) as in the normalization
in principal component analysis (PCA) for the compression of a single source [15]. This constraint
lets us decouple the problem into subproblems later in (5). Finally, in (3d), the decoder D decodes
Z1 and Zs to X 1 and X. o and passes the reconstructed data to task ®.

Solution: We now solve the optimization problem in . For any given E, 5 (thus, a given Z), we
can optimally obtain M* =Y Z"(ZZ")~! =Y ZT by linear regression. Now, we are left to find
the optimal encoders F, F. First, a preprocessing step removes the correlation part of X; from Xo

by subtracting the least-square estimator X5 (X1 ):
Xo = Xo — Xo(X1) = Xo — Xo X (X1 X] )71 X1 )

The orthogonality principle of least-square estimators |16} p.386] ensures that X X , =0 . We

XMNno

decouple the objective in with respect to F1, E» by the orthogonality principle and :
in |[Y - M*Z|2=|Y|3;- M2 =|Y|3 - VX[ E] |3 - Yo X, By ||3
EH1HJ{312” Iz =11Yll2 gllaEXZ M)z = [1Y[I3 H]{:?}XH 1.X By 13 II}E3L2X|| 2Xy By I3,

(5)
where Y = ®X = [®,®,] [X| X[ ] " =V} + Y,. We then have two subproblems from :
B} = argmax ||®, X, X, B/ || E} = argmax || @, X, X, Ey ||?
Er 6) B, o @)
st. E1Xh X\ E] =1, st. EyXoXy) By =1,,.

The two subproblems are the canonical correlation analysis [[17], which can be solved by whitening
FE1 X1, Fs Xo and singular value decomposition (see [17] for details).

Dynamic bandwidth: So far, we solved the case for fixed bandwidths m and my. We now describe
ways to determine the optimal bandwidth allocation given a current total bandwidth m. To do
so, DPCA solves @ and with m; = n; and my = ng and obtains E}, E5 and all pairs of
canonical directions and correlations. Canonical directions and correlations can be analogized to a
more general case of singular vectors and values. Similar to PCA, the sums of squares of canonical
correlations are the optimal values of @ and , so DPCA sorts all the canonical correlations
in descending order and chooses the first m pairs of canonical correlations and directions. These
canonical correlations determine the optimal encoders E7, E5 and decoder D*, which indirectly
solves m1 and mo. Intuitively, the canonical correlations indicate the importance of a direction to the
task, and we prioritize the transmission of directions by importance. For simplicity, we only consider
the case of 2 sources. DPCA can easily compress more sources simply by constraining all Zs to be
independent and thus decoupling the original problem (3) to more subproblems.

Performance analysis of DPCA: When DPCA compresses new data matrices with encoder £ and
E7%, the preprocessing step is invalid as the encoders cannot communicate with each other. So for



DPCA to perform optimally while skipping the step, the two data matrices need to be uncorrelated,
namely, XQ(X 1) = 0, because in such case the preprocessing step removes nothing from the
data sources. Given that correlated sources lead to suboptimality of DPCA, we characterize the
performance between the joint compression, PCA, and the distributed compression, DPCA, under
the same bandwidth in Lemma with the simplest case of reconstruction, namely, ® = I,,. In this
setting, the canonical correlation analysis is relaxed to the singular value decomposition, which is
later used for NDPCA in Sec.[4]

Lemma 3.1 (Bounds of DPCA Reconstruction). Given a zero-mean data matrix and its covariance,

X1 (n14n2)x N T_ Covys 0 0 Covia
X= |: :|€R ' ’ XX 0 COV22 + COV21 0 ’

Xaiag AX

assume that AX is relatively smaller than X X 7, and X X T is positive definite with distinct eigenval-
ues. For PCA’s encoding and decoding matrices Epca, Dpca and DPCA’s encoding and decoding
matrices Eppca, Dppca, the difference of the reconstruction losses is bounded by

ni+na

0 < [ X — Dopca Eppea(X)[I3 = [|X — DecaBrea(X)[I3 =~ > Xie] AXe;.

1=m-+1

where \; and e; are the i-th largest eigenvalue and eigenvector of XX 7, Tr is the trace function,
and m is the dimension of the compression bottleneck.

The proof of Lemma|3.1]is in Appendix Note that AX is the correlation of sources, so as
IAX | F gets smaller, the difference of PCA and DPCA is closer to 0. That is, as the covariance
decreases, DPCA performs more closely to PCA, which is the optimal joint compression.

To summarize, uncorrelated data matrices X, ..., Xx are desired for DPCA. If so, DPCA opti-
mally decides the bandwidths of all sources based on the canonical correlations, representing their
importance for the task. One application of DPCA is that encoders can use the remaining unselected
canonical directions to improve compression when the available bandwidth is higher later.

4 Neural Distributed Principal Component Analysis

The theoretical analysis in the previous section indicates that DPCA has two drawbacks: it only
compresses data optimally if sources are uncorrelated, and it only works for linear tasks. However,
DPCA dynamically allocates bandwidth to sources based on their importance. On the other hand,
neural autoencoders are shown to be powerful tools for compressing data to a fixed dimension but
cannot dynamically allocate bandwidth. This contrast motivates us to harmoniously combine a
neural autoencoder to generate representations and then pass them through DPCA to compress and
find the bandwidth allocation. We refer to the combination of a neural autoencoder and DPCA as
neural distributed principal component analysis (NDPCA). With a single neural autoencoder and a
matrix at each encoder and decoder, NDPCA adapts to any available bandwidth and flexibly allocates
bandwidth to sources according to their importance to the task.

Outline: NDPCA has two encoding stages, as shown in Fig.|1} First, the neural encoder at each
k-th source encodes data X}, to a fixed-dimensional representation Z;, for k € [K]. Then the
DPCA linear encoder adapts the dimension of 7, via linear projection according to the available
bandwidth and the correlation among the sources as per @ Similarly, the decoding of NDPCA is
also performed in two stages. First, the DPCA linear decoder reconstructs the K fixed-dimensional
representations Z 1, Zg, .. Z K, based on which the joint neural decoder generates the estimate of
data X 1, Xz e X K. These estimates are then passed to the neural task model ® to obtain the final
task output Y. Note that since we have a non-linear task model here, we envision that the neural
encoders generate non-linear embedding of the sources, while the DPCA mainly adapts the dimension
appropriately as needed; the role of the DPCA here is to reliability reconstruct the embedding Zs,
which corresponds to the case described in Lemma with the task matrix ® as identity.

Training procedure: During the training of NDPCA, the weights of the task are always frozen
because it is usually a large-scale pre-trained model that is expensive to re-train. We aim to learn the



K neural encoders and the joint neural decoder which minimize the loss function:

Lior = Avasi [V = Y1} +0veee (150 = X[} + 1Ko = Xollp + - [ Xxc = XiclE) . ®)
N————

task loss

reconstruction loss

In the task-aware setting when A... = 0, the neural autoencoder fully restores task-relevant features,
which is the main focus of this paper. When \;,q = 0, the neural autoencoder learns to reconstruct
the data X, which is the task-agnostic setting later compared in Sec.

We now discuss how to encourage NDPCA to work well under various available bandwidths with
DPCA during the training phase. We begin by making observations on the desired property of the
neural embeddings arising from the limitations of the DPCA: (1) uncorrelatedness: Lemmashows
that DPCA is more efficient when the correlation among the intermediate representations is less. (2)
linear compressibility: we encourage the neural autoencoder to generate low-rank representations,
which can be compressed by only a few singular vectors, making them more bandwidth efficient.

We tried to explicitly encourage the desired properties with additional terms in , but they all
adversely affect the task performance. To obtain uncorrelated representations, we tried penalizing the
cosine similarity between the representations. We also tried similar losses that penalize correlation, as
per [18H21], but none improves the task performance. We observed that the autoencoder automatically
learns representations with small correlation, and any explicit imposition of complete uncorrelatedness
is too strong. For linear compressibility, we tried penalizing the convex low-rank approximation—the
nuclear norm—of the representations, as per [22,|23]. However, we observe a similar trend in the
final task performance as the network tends to minimize the nuclear norm while harming the task
performance. For the comparison of the resulting performance, see Appendix

In this regard, we propose a novel linear compression module that allows us to adapt to DPCA during
training rather than using additional terms in the loss. We introduce a random-dimension DPCA
projection module to improve performance in lower bandwidths. It projects representations Z to
a low dimension randomly chosen, simulating projections in various available bandwidths during
inference. It can be interpreted as a differentiable singular value decomposition with a random
dimension, described in Alg. For encoding, it first normalizes the representations and performs
singular value decomposition on all sources. Then, it sorts the vectors by the singular values and
randomly selects the number of vectors to use for projection. For decoding, it decodes with the
selected singular vectors again and denormalizes the data. Note that during training, we only run
Alg. on a batch. This module helps to improve the overall performance over a range of bandwidths,
and we show the ablation study of this module in Appendix

Inference: With the training data, the DPCA projection module first saves the mean of representations
Z and the encoder and decoder matrices in the maximum bandwidth. It only needs to save for the
maximum bandwidth because its rows and columns are already sorted by the singular values, which
represent the importance of each corresponding vector. During inference, when the current bandwidth
is m, it chooses the top m rows and columns of the saved encoders and decoder matrices to encode
and decode representations. No retraining is needed for different bandwidths. Only the storage of a
neural autoencoder and a linear matrix at each encoder and decoder is needed.

Robust task model: We pre-train the task model with randomly cropped and augmented images to
make the model less sensitive to noise in the input image space, namely, the model has a smaller
Lipschitz constant. This augmentation trick is based on [8]]. A robust task model has a smaller
Lipschitz constant, so it is less sensitive to the input noise injected by decompression when we
concatenate it with the neural autoencoder. For a detailed analysis of the performance bounds
between robust task and task-aware autoencoders, see Appendix

5 Experiments

We consider three different tasks to test our framework: (a) the denoising of CIFAR-10 images [24],
(b) multi-view robotic arm manipulation [25], which we refer to as the locate and lift task, and (c)
object detection on satellite imagery [26]. Across all the experiments, we assume that there are two
data sources, referred to as views, each containing partial information relevant to the task. We present
our results based on the testing set and refer to our proposed method, task-aware NDPCA, as NDPCA
for simplicity. NDPCA includes a single autoencoder with a large dimension of representations



(a) CIFAR-10: view 1 is less (b) Locate and lift: Side-view (c) Airbus detection: view 1

corrupted and thus contains (column 1) faintly captures the ab- and view 2 observe different
more information about the solute position of objects, in con- parts of the complete view
original images. trast to the arm-view (column 2). with overlap.

Figure 2: Datasets: (column 1) view 1. (column 2) view 2. In all experiments, both views are correlated, but
one view is more important than the other as it contains more information relevant to the task.

Z € R?*mmax_ [t then compresses representations and allocates bandwidth via DPCA, as discussed
previously. We show that NDPCA can bridge the performance gap between distributed autoencoders
and joint autoencoders, defined below, to allocate bandwidth and avoid transmitting task-irrelevant
features. We also provide experiments of NDPCA with more than 2 data sources in Appendix to
demonstrate NDPCA’s capability in more complicated settings.

Baselines: .We compare  Algorithm 1 Projection into a random low dimension using DPCA
NDPCA against three ma-

jor baselines. First is !
the task-aware joint autoen-
coder (JAE), where a sin-
gle pair of encoder and

. Input: A size b batch of latent representations Z; € R®*™ from each
source ¢, min and max bandwidth mmin, 7max
2. Output: Compressed representation Z;" of each source, reconstructed

representation Z for all sources

decoder compresses both function ENCODE(Z;, mmin, 17ima)

. . . 4 for each source 7 do
views. JAE is considered | Z; + Z; — Mean(Z;) > Normalize representations
an upper bound of NDPCA ¢ i, Vi, Hi < SVD(Z;) > Singular value decomposition
since it can leverage the .. end for
correlation between both s,V <« Cat(s;), Cat(V;) > Concatenate singular values and vectors
views while avoiding en- o m <+ Rand(mmin, Mmax) > Randomly choose projection dimension
coding redundant informa- 1o s™, V™ «— argmax([s, V], m) > Select the top m values of s
tion. Next is the task- 1t for each source i do
aware vanilla distributed 12 V"« {V|V e V™,V € V;} b Select m vectors from sources
autoencoder (DAE), where ' deZm =Z;x V™ > Project Z; to lower dimensions

. 14: end for

two encoders independently 15: return Zyo, < Cat(Z]") > Return Compressed representation

epcode the correspoqdmg 16 end function
views to equal bandwidths g0 tion DECODE(Z™)

and a joint decoder decodes 4. for each source i do

the data. DAE is considered . Z; Z" x Cat(V,™ )T > Decompressed representation
a lower bound of NDI_)CA 20: Zi Zi + Mean(Z;) > Denormalize representations
since both encoders utilize ,;.  epd for

the same bandwidth regard- 5. return Z « Cat(Z 1) > Return reconstructed representations

less of the importance of 23. end function
the views for the task, while
NDPCA allocates bandwidths in a task-aware manner. Last is the task-agnostic NDPCA which differs
from NDPCA in the training loss of reconstructing the original views. Due to the novelty of the
problem formulation, we cannot make a fair comparison with any of the existing approaches. For
instance, focus purely on distributed compression of images for reconstruction and human
perception, whereas @ focus on task-oriented compression but are limited for a single source.
Additionally, none of the previous works consider datasets of unequal importance, again making any
performance comparison unfair. Hence we focus mainly on an ablation study style of comparison of
NDPCA, clearly highlighting and validating the advantages of our approach.

CIFAR-10 denoising: We first consider a simple task of denoising CIFAR-10 images using two
noisy observations of the same image, shown in Fig.(a). We use CIFAR-10 as a toy example to
clearly highlight the advantage of NDPCA in the presence of sources with unequal importance to the
task. Due to the simplistic nature of the classification task, which only requires 4 bits (digit 0-9) as
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Figure 3: Top: Performance Comparison for 3 different tasks. Our method achieves equal or higher performance
than other methods. Bottom: Distribution of total available bandwidth (latent space) among the two views for
NDPCA (ours). The unequal allocation highlights the difference in the importance of the views for a given task.

the information bottleneck, we choose denoising as our “task”, making it more suitable to showcase
the performance across a range of available bandwidth. Here, the importance of each observation, or
view, for the task is simply the noise level. For view 1, we consider an image corrupted with additive
white Gaussian noise (AWGN) with a variance of 0.1%. And view 2 is highly corrupted by AWGN
with a variance of 1. All the images were normalized to [0, 1] before adding the noise. We compressed
the noisy observations and passed the reconstructed images through a pre-trained denoising network.
We then computed the final peak signal-to-noise ratio (PSNR) with respect to the clean image. Since
the noise levels of both views are unequal, the importance of the task is unequal as well. The optimal
bandwidth allocation should not be equal, thus showing the advantage of NDPCA. Although view 1
contains more information, not all bandwidth should be allocated to view 1. This problem is called
the CEO problem . In fact, even if one view is highly corrupted, we should still leverage that
view and never allocate 0 bandwidth to it. We discuss why it is the case in Appendix

Locate and lift: For the manipulation task, we consider a scenario in which a simulated 6 degrees-of-
freedom robotic arm controlled by a reinforcement learning agent inputs two camera views to locate
and lift a yellow brick. We call the view from the robotic arm "arm-view" and the one recording the
whole desk "side-view", as shown in Fig. (b). The two views are complementary to completing the
task, details discussed in Appendix We trained the agent in a supervised-learning manner. We
collected a dataset of observation and action pairs and trained an agent from the dataset. Then,
we defined task loss as the Lo norm of actions from images with and without compression and trained
NDPCA to minimize the task loss through the agent. Literature calls this training method "behavior
cloning" as it learns from demonstrations. Behavior cloning causes a drop in performance,
but this paper only focuses on the performance degradation caused by compression, so we treat the
behavior cloning agent with uncompressed views as the upper bound of our method.

Airbus detection: This task considers using satellite imagery to locate Airbuses. Satellites observe
overlapping images of an airport and transmit data to Earth through limited bandwidth, as shown in
Fig.(c). We crop all images in the dataset into smaller pieces (224 x 224 pixels). The two data
sources are the upper 160 pixels (source 1) and the lower 104 pixels of the image (source 2) with 40
pixels overlapped. Our object detection model follows the paper "You Only Look Once" (Yolo) .
The task loss here is the difference between object detection loss with and without compression.

Results: Our key results are: (1) Task-aware NDPCA outperforms task-agnostic NDPCA, and (2)
bandwidth allocation should be related to the importance of the task. Across all experiments, shown
in Fig. a)-(c), we see that task-aware NDPCA performs much better than task-agnostic NDPCA



and DAE, which equally allocates bandwidths. We see from Fig. [3|that task-aware NDPCA provides
a graceful performance degradation with respect to available bandwidth, with no additional training
or storage of multiple models. On the other hand, DAE and JAE require retraining for every level of
compression, so every sample point in the plot is a different model.

Fig.a) shows the results of denois-
ing CIFAR-10 with NPDCA trained at
(Mmin, Mmax) = (8,64). Although
view 1 is more important than view 2,
DAE can only equally allocates band-
width to both sources. NDPCA com-
presses the data and flexibly allocates
bandwidths, as shown in[3d), where
we can see that Z; has more band-
width than Z5. NDPCA results in 1.2
dB gain in PSNR compared to DAE
when m = 64.

Fig. B{b) shows the results of the lo-
cate and lift task with NPDCA trained
at (Mmin, Mmax) = (8,48). We set
the length of an episode as 50 time
steps and measure the success rate
in 100 episodes. We show the upper
bound, a behavior cloning agent with-

Figure 4: Task-aware v.s. task-agnostic: Ground-truth bounding
boxes are red (row 1), while detected boxes of task-aware are yellow
. . . (row 2). Nothing is detected in the task-agnostic setting (row 3).
out compression, in gray dotted lines. Task-agnostic images are perceptible to human eyes, while task-

The arm Vview 1s more 1mportant 48 aware images capture task-relevant features, thus imperceptible to
it captures the precise location of the  human eyes.

brick, and as expected, NDPCA allo-
cates more bandwidth to the arm-view (Z5), as seen in Fig.e). We see that NDPCA has a 9%
higher success rate compared to DAE when m = 24.

Fig.c) shows the results of the Airbus detection with NPDCA trained at (mmin, Mmax) = (8, 40).
We measured the mean average precision (mAP) with 40% confidence score and 50% intersection
over the union as the thresholds. We show the uncompressed upper bound in gray dotted lines.
NDPCA results in up to 14% gain in mAP50 compared to DAE. In Fig.(f), we plotted the ratio
of the areas of both views, while equally splitting the overlapping part, in a dashed black line.
Surprisingly, NDPCA’s empirical allocation of bandwidth is highly aligned with the theoretical ratio,
supporting that it captures the importance of the task and allocates bandwidth according to it.

Comparison of NDPCA with JAE: JAE uses the information from both views simultaneously to
capture the best joint embedding for the task. In an ideal scenario, JAE will be the upper bound for
the performance and hence easily performs better than DAE across all the experiments. Interestingly,
in Fig.b) and (c), we see that NDPCA outperforms not only DAE but also JAE as well. We
attribute it to the better representations present in higher-dimension latent space. It turns out that
learning a high-dimensional representation and then projecting to a lower dimension space, like
NDPCA, is more efficient compared to directly learning a low-dimensional representation, like JAE.
This projection from higher dimensional to lower dimensional is similar to pruning large neural
networks to identify effective sparse sub-networks. . We also note that Low-Rank Adaptation
(LoRA) technique for large language models can be thought of as a similar approach.

Task-aware v.s. task-agnostic: We plotted the reconstructed images of task-aware (A, = 0) and
task-agnostic (Aiasxk = 0) NDPCA in Fig. Task-aware images are imperceptible to human eyes
since they restore features of a non-linear task model, aligning with the results in 8] Fig. 4]. For
discussion of non-zero A¢.sk and ..., we refer readers to Appendix

Limitations: In general, autoencoders are poor at generalizing to out-of-distribution data and the
drawback translates to NDPCA as well. When the testing set is noticeably different from the training
set, the performance of NDPCA can get noticeably lower. Additionally, during training, DPCA
performs the singular value decomposition in the training set. The decomposition operation can
become ill-conditioned and unstable if the batch size is too small. An alternative approach could be a



parametric low-rank decomposition such as LoRA [34] or using adapter networks |35], although the
complexity increases and the compatibility with DPCA remains to be explored.

6 Related Work

Information theoretic perspective: Slepian and Wolf ef al. are the first to obtain the minimum
bandwidth of distributed sources to perfectly reconstruct data [36]. However, they use exponentially
complex compressors while assuming that the joint distribution of sources is known, which is
impractical. In the presence of a task, finding the rate region of two binary sources has remained an
open problem, even for modulo-two sum tasks [12]. In terms of imperfectly reconstructing data with
neural autoencoders, previous works consider compression of the original data to a fixed dimension
[13}|37], while our work focuses on compressing data to any bandwidth with a task model.

Task-aware compression: Real-world data, such as images or audio, are ubiquitous and high-
dimensional, while downstream tasks that input the data only utilize certain features for the output.
Task-aware compression aims to compress data while maximizing the performance of a downstream
task. Previous works analyze linear task [5], image compression [6+8}|38|, future prediction [9], and
data privacy [39//40], while ours compresses distributed sources under limited bandwidth.

Neural autoencoder: Previous works show the ability of neural autoencoders to generate meaningful
and uncorrelated representations. Instead of adding additional loss terms during training like [[18+
21/|41]], we use a random projection module to help a neural autoencoder learn uncorrelated and
linear-compressible representations. Other works focus on designing new neural architectures for
multi-view image compression [4}|14], while ours focuses on the framework to compress data to
different compression levels. We choose autoencoders instead of variational autoencoders [42}|43]
because we focus on the compression of fixed representations rather than generative tasks from latent
distributions. Also, autoencoders are more compatible with DPCA than variational autoencoders.

7 Conclusion and Future Work

We proposed a theoretically grounded linear distributed compressor, DPCA, and analyzed its per-
formance compared to the optimal joint compressor. Then, we designed a distributed compression
framework called NDPCA by combining a neural autoencoder and DPCA to allocate bandwidth
according to their importance to the task. Experiments on CIFAR-10 denoising, locate and lift, and
Airbus detection showed that NDPCA near-optimally outperforms task-agnostic or equal-bandwidth
compression schemes. Moreover, NDPCA requires only one model and does not need to be retrained
for different compression levels, which makes it suitable for settings with dynamic bandwidths.

Avenues for future research include settings where the information flow is not unidirectional but
bidirectional, such that the encoders and the decoder can communicate to compress data better.
Discovering representations in a more complex space using kernel PCA instead of linear PCA and
exploration of more complex non-linear correlations are also left as interesting future work. Another
interesting direction to expand the work would be analyzing the robustness of the representations,
both in the latent space with respect to corruption such as additive white Gaussian noise (AWGN)
as well as with respect to the downstream task model. The current framework learns task-relevant
features that are tied to the task model but the performance is expected to drop significantly when
the task model is updated or changed. Hence, it is desirable to incorporate robust and transferable
properties into the features learned.
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