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Abstract

The predictive ability of supervised learning algorithms hinges on the quality of
annotated examples, whose labels often come from multiple crowdsourced an-
notators with diverse expertise. To aggregate noisy crowdsourced annotations,
many existing methods employ an annotator-specific instance-independent noise
transition matrix to characterize the labeling skills of each annotator. Learning an
instance-dependent noise transition model, however, is challenging and remains
relatively less explored. To address this problem, in this paper, we formulate the
noise transition model in a Bayesian framework and subsequently design a new
label correction algorithm. Specifically, we approximate the instance-dependent
noise transition matrices using a Bayesian network with a hierarchical spike and
slab prior. To theoretically characterize the distance between the noise transi-
tion model and the true instance-dependent noise transition matrix, we provide
a posterior-concentration theorem that ensures the posterior consistency in terms
of the Hellinger distance. We further formulate the label correction process as a
hypothesis testing problem and propose a novel algorithm to infer the true label
from the noisy annotations based on the pairwise likelihood ratio test. Moreover,
we establish an information-theoretic bound on the Bayes error for the proposed
method. We validate the effectiveness of our approach through experiments on
benchmark and real-world datasets.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable performance in various tasks [1, 2], and
they have proven to be useful in handling sizable labeled data. Acquiring large accurately annotated
datasets, however, is usually expensive and time consuming. To enhance the efficiency of annotation,
in many applications, crowdsourcing [3] is employed as an alternative way for data labeling, where
the labels are provided by multiple annotators with varying and imperfect labeling skills, and thus, the
collected labels suffer from unavoidable noise. As deep models have a strong memorization power,
using these noisy labels as the ground truth deteriorates the performance of DNNs [4, 5], and most
importantly, yields erroneous learning results. Further, potentially substantial disagreement among
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the annotators for each instance presents extra challenges in the application of traditional supervised
learning algorithms. Hence, in the crowdsourcing scenario, to effectively train DNNs on noisy labeled
datasets, a fundamental question is how to aggregate the noisy crowdsourced annotations and infer
the latent true labels [6].

One naive approach to aggregate the crowdsourced labels is simply by computing the majority vote,
which can be ineffective when the number of annotators is not large enough or the labeling task is
difficult [7, 8]. Recent research has developed more powerful techniques for inferring the ground truth
labels [7, 9–11], among which the annotator-specific noise transition matrix, aka annotator confusion,
plays an important role by modeling the labeling process for each individual annotator. To estimate the
transition matrix, available research [8, 11–13] usually makes the instance-independent assumption
that for annotator r, given the true label y, the corruption process is independent of the input x, i.e.,
P(ỹ(r) = l|y = k,x) = P(ỹ(r) = l|y = k), where x denotes the random variable for instance/feature,
ỹ(r) represents the noisy label given by annotator r, and y is the underlying ground truth label. This
assumption, however, is often violated in applications. Instance-dependent annotation noise is more
realistic and appropriate for real-world datasets, as suggested by the example that factors such as the
quality of ultrasound images and the domain expertise of human annotators can greatly influence the
actual diagnostic process in medical analysis [14, 15]. For annotator r, the transition matrix τ (r)(x)
is a matrix-valued function, with the (k, l) element defined as τ (r)kl (x) = P(ỹ(r) = l|y = k,x).
Unfortunately, the case of instance-dependent annotation noise remains challenging and less explored.
Most existing works considering instance-dependent noise are designed for the single annotator case
[16–18]. For the case with multiple annotators, existing methods investigate the human annotation
process and use different models to estimate instance-dependent noise matrices. Approaches in
[3, 19–22] use traditional classification models such as logistic regression, while others [23–25]
cater to large datasets and deep models. Methods in [3, 19–22] and [24, 25] are heuristic in nature
and lack theoretical guarantees in estimating instance-dependent noise matrices. [23] makes some
theoretical progress in justifying the use of the trace regularisation, and extends the work of [8] which
establishes the theory only for settings with an instance-independent noise matrix. The theory in [23]
is constrained to individual samples rather than the population setting. Importantly, the theoretical
characterization of the distance of the noise model and the true annotator confusion remains absent
from the literature.

In this paper, we address this notable problem by framing it within the Bayesian paradigm. We
formulate the instance-dependent annotator-specific label transition matrix, and further propose
a novel algorithm to infer the underlying ground truth by aggregating the noisy annotations.
To model the noise transition matrix, we invoke the Bayesian generalized linear mixed effects model
(GLMM), which can be learned by deploying anchor points within the deep learning framework
[12, 26, 27]. To facilitate the fact that the number of anchor points learned from the noisy training
data is relatively small compared to the sample size, we employ a hierarchical spike and slab
prior on the network parameters. This approach offers an interpretable mechanism for variable
selection and allows us to establish the theoretical result within the deep learning setup. Our study
reveals that the proposed noise transition model is close to the underlying true transition matrix
with respect to the Hellinger distance in the Bayesian framework. Such a result is established for
independently, nonidentically distributed (i.n.i.d.) observations, substantially extending the existing
sparse Bayesian theories within the deep learning paradigm. Further, we develop a label correction
method using the pairwise likelihood ratio test to aggregate and infer the ground truth from the
noisy crowdsourced annotations. This development is carried out by formulating the label correction
process as a hypothesis testing problem and utilizing the proposed Bayesian model in place of the
unknown transition matrix in the pairwise likelihood ratio test (LRT). More importantly, with the
posterior consistency result, we also derive information-theoretic bounds on the Bayes error for the
proposed algorithm even without access to the underlying true noise transition matrix.

This research brings forth several noteworthy advancements: (1) We formulate the annotator-specific
noise transition matrix in the Bayesian framework (Section 3.1). This method offers a practical
and flexible framework to address real-world problems with noisy annotators. (2) We theoretically
characterize the closeness of the proposed model and the underlying annotator confusions with
respect to the Hellinger distance. (Section 3.2). (3) We develop a novel label correction algorithm by
aggregating the noisy annotations using the pairwise likelihood ratio test, and identify information-
theoretic bounds on the Bayes error (Section 3.3). The effectiveness of the proposed algorithm is
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confirmed by the application to both synthetic and real-world noisy datasets (Section 5). Code is
available at https://github.com/hguo1728/BayesianIDNT.

2 Problem Setup

Objective and Data. Consider a classification task with a feature space X ⊂ Rp and a label space
Y = [K], where p is the dimension of the features, K is the number of classes, and [k] represents
{1, ..., k} for any positive integer k. Our goal is to develop a classifier h : X 7→ Y , which can
accurately predict the true label for a test instance. However, in applications, the true label y ∈ Y is
often not observed for each input vector x ∈ X . Instead, we receive a set of noisy crowdsourced labels
ỹ = {ỹ(1), .., ỹ(R)} from R distinct annotators, where ỹ(r) ∈ Y represents the label given by the rth
annotator for r ∈ [R]. Thus, a noisy dataset D of size N is defined as D = {xi, ỹ(1)i , .., ỹ

(R)
i }Ni=1,

where for each instance xi, the true label yi is unobserved. Under this setting, we aim to learn a
reliable classifier h by utilizing the noisy crowdsourced dataset D.

In practice, on commercial crowdsourcing platforms, large-scale labels can often be collected from
independent human annotators. We thereby make a common assumption that the R annotators
independently label the instances [7, 8]. The conditional probability of the R noisy labels, given an
instance, can then be formulated as

P(ỹ(1), .., ỹ(R)|x) =
R∏
r=1

P(ỹ(r)|x) =
R∏
r=1

∑
k∈Y

{
P(ỹ(r)|y = k,x)P (y = k|x)

}
, (1)

where for k ∈ Y , P(y = k|x), called the base model [28], denotes the conditional probability of
the latent true label y given x, which can be modeled by the output of a DNN parameterized by a
parameter vector, say ϑ; and P(ỹ(r)|y = k,x) is the noise transition model for the rth annotator
[8], satisfying

∑K
l=1 P(ỹ(r) = l|y = k,x) = 1 for any x ∈ X and k ∈ [K]. For ease of theoretical

presentation, we assume the accessibility to all the annotations from the R workers for now, and
consider more general situations in the experimental part in Section 5; extensions to accommodating
the case where each instance is only annotated by a subset of annotators are straightforward.

Notation. In this paper, sets are denoted by calligraphic upper case letters, and vectors and matrices
are denoted by bold lower and upper case letters, respectively. For a vector v, vj denote its jth
element, and v⊤ denotes its transpose. For v = (v1, ..., vd)

⊤, we denote ∥v∥q = (
∑d
j=1 |vj |q)1/q

for q > 0, ∥v∥∞ = maxj |vj |, and ∥v∥0 =
∑d
j=1 1(vj ̸= 0), with 1(·) denoting the indicator

function. The L2 norm of v is also denoted by ∥v∥ for simplicity. For a matrix V , we use Vi,j
to represent its (i, j) element. Let (Ω,G, µ) denote the measure space under consideration, where
Ω is a set, G is the σ-field of subsets of Ω, and µ is the associated measure. For a measurable
function f : Ω → Rd, we write ∥f∥q ≜ ∥f∥Lq(Ω) when there is no ambiguity of the domain, where

∥f∥Lq(Ω) =
(∫

Ω

∑d
j=1 |fj(x)|qdµ

)1/q
for q > 0. For two sequences, {an} and {bn}, we write

an ⪯ bn if there exists a positive constant C such that an ≤ Cbn for large enough n, and we write
an ≍ bn if an ⪯ bn and bn ⪯ an.

3 Main Results

3.1 Instance-dependent transition matrix with multiple annotators

Annotator-specific instance-dependent noise transition model. Given an instance x, the condi-
tional probability mass function of noisy annotations can be characterized by R instance-dependent
matrices of dimension K × K, termed transition matrices or annotator confusions [8, 13], with
the kth row of the rth matrix denoted

(
P(ỹ(r) = 1|y = k,x), . . . ,P(ỹ(r) = K|y = k,x)

)
. Thus, the

distribution of noisy annotation depends on the instance in different ways due to the differences in
the annotator r and the underlying true label y, which can be characterized by a Bayesian generalized
linear mixed effects model (GLMM) [29, 30] in the deep learning framework.
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Specifically, conditioned on the true label y = k and the feature vector x, we treat the noisy label
ỹ(r) from annotator r as a random variable generated from the distribution:

ỹ(r)|{y = k,x} ∼ Cat(s(k,r)), (2)

where s(k,r) = (s
(k,r)
1 , ..., s

(k,r)
K )⊤ ∈ SK−1 with SK−1 = {(s1, ..., sK)⊤ ∈ RK : sj ≥ 0 for j ∈

[K] and
∑K
j=1 sj = 1} representing the (K − 1)-dimensional simplex, and Cat(s(k,r)) represents a

categorical distribution specified by the parameter vector s(k,r). We extend existing works on mixed
effects neural networks (MNN) [31, 32] by employing two nonlinear transformations ψ1 and ψ2 to
incorporate different effects in the instance-dependent noise transition model, and set

s(k,r) = G(ω
(k,r)
0 ) with ω

(k,r)
0 = A

(r)
0 ψ1(x) +B

(k)
0 ψ2(x), (3)

where A
(r)
0 = (α

(r)
10 , ...,α

(r)
K0)

⊤ and B
(k)
0 = (β

(k)
10 , ...,β

(k)
K0)

⊤ are the regression weights; ψ1(x)
and ψ2(x) can be modeled by some suitable networks; and G is a function mapping RK to SK−1,
which, in practice, is chosen to be the softmax function in the final layer. Utilizing two different
network components ψ1 and ψ2 enables us to flexibly reflect possibly different effects of the annotator
expertise (r) and the ground truth (k) in the annotation process, which can be interpreted as the input
in mixed effects models.

Approximating the transition matrices. The proposed instance-dependent noise transition model
can be learned by leveraging anchor points [12, 26, 27], or instances that are similar to anchor points
learned from noisy training data [33]. An instance x is defined to be an anchor point of class k if it
belongs to the kth class almost surely, that is, P(y = k|x) = 1, and hence, P(ỹ(r)|x) = P(ỹ(r)|y =
k,x). For k ∈ [K], let D0,k be the set of anchor points of the kth class and the associated noisy
annotations, i.e., D0,k = {{xi, ỹi} : P(yi = k|xi) = 1}. Define D0 = D0,1 ∪ D0,2 ∪ . . . ∪ D0,K ,
and let n denote the subsample size of the learned anchor points, i.e., the cardinality of D0. Paired
variables {xi, ỹi} in D0 are independent, but not necessarily identically distributed (i.n.i.d). We
write the input dimension p as pn from now on to emphasize that its dependence on n is allowed.

In applications, overfitting can occur when the subsample size n of the learned anchor points is
relatively small compared to the main sample size N . To address this issue, we propose to learn
ψj(x) with a sparse Bayesian DNN, denoted ψj(x;θ(j)), where θ(j) represents the vector of all
involved parameters in the network with j = 1, 2. Furthermore, invoking the sparse Bayesian setting
allows us to rigorously characterize the distance between the proposed model and the underlying true
transition matrices, as presented in Theorem 1 of Section 3.2.

3.2 Bayesian analysis and posterior consistency result

Prior specification. To implement sparse Bayesian analysis, we utilize the spike and slab prior [34]
on the network parameters, offering an interpretable mechanism for variable selection. The spike and
slab model is formulated by constructing a prior hierarchy of the involved parameters and selects
nonzero coefficients according to the posterior inclusion probability. Marginally, these priors are
mutually independent and have a mixture distribution consisting of a flat distribution (slab) and a
distribution concentrated at zero (spike). Parameters with a small posterior mean will be set to zero
to achieve sparsity.

Specifically, for network ψj(x;θ(j)), we write θ(j) as θ(j) = (θ
(j)
1 , ..., θ

(j)
Jj

)⊤ with Jj denoting the

length of θ(j) for j = 1, 2. For k ∈ [Jj ], we treat θ(j)k as a random variable generated from the
following prior hierarchy:

γ
(j)
k ∼ Bernoulli(λnj), (4a)

θ
(j)
k |γ(j)k ∼ γ

(j)
k π1(θ

(j)
k ;σ2

nj) + (1− γ
(j)
k )π0(θ

(j)
k ; cnjσ

2
nj), (4b)

where γ(j)k ∈ {0, 1} indicates whether or not θ(j)k is nonzero, cnj is specified as a very small
positive number, σ2

nj and cnjσ2
nj are the parameters related to the variances of distributions π1(·) and

π0(·), respectively, and λnj ∈ (0, 1) determines the ratio of the mixture distribution. As cnj → 0,
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π0(θ
(j)
k ; cnjσ

2
nj) becomes the degenerate distribution at zero. The marginal distribution of θ(j)k is

then determined by

θ
(j)
k ∼ λnjπ1(θ

(j)
k ;σ2

nj) + (1− λnj)π0(θ
(j)
k ; cnjσ

2
nj), (5)

which is presented as π(j)(·) for short; and this is taken as the prior distribution of θ(j)k .

To further incorporate the effects of the true label information and the randomness from different
annotators in (3), we place the following probabilistic structure on the generic weights for A(r)

0 and
B

(k)
0 in (3), A(r) = (α

(r)
1 , ...,α

(r)
K ) and B(k) = (β

(k)
1 , ...,β

(k)
K ):

α
(r)
j ∼ N (0,Σ(r)

α ) and β
(k)
j ∼ N (0,Σ

(k)
β ). (6)

for j, k ∈ [K] and r ∈ [R], where Σ(r)
α and Σ

(k)
β are nonnegative definite matrices. We use π(r)

A (·)
and π(k)

B (·) to denote the prior distribution of A(r) and B(k) in (6). Here the regression weights A(r)

and B(k) can be seen as fully connected layers on top of ψ1(x;θ
(1)) and ψ2(x;θ

(2)), respectively.
The conditions on the aforementioned priors are given in Appendix A.3.

Prior and posterior probability measure. Let θ =
(
θ(1)⊤,θ(2)⊤, vec(B(1))⊤, . . . , vec(B(K))⊤,

vec(A(1))⊤, . . . , vec(A(R))⊤
)⊤

∈ Θ stand for the vector of all involved parameters in the noise
transition model, with Θ denoting the parameter space. We use θ0 to represent the true value of θ,
which is an interior point of Θ. The foregoing specification of the prior distribution places a prior
probability measure, denoted Π(·), on θ. With the data D0, the posterior probability measure Π(·|D0)
is given by

Π(G|D0) =

∫
G
pnθ(D0)dΠ(θ)∫

Θ
pnθ(D0)dΠ(θ)

for any G ∈ G, (7)

where G is the σ-field on Θ, and pnθ is the joint probability density or mass function for the observations
in D0 under θ. Let Pnθ(·) denote the probability measure associated with pnθ(·), and write Pn0 (·) ≜
Pnθ0

(·). Hence, the data D0 is generated from Pn0 (·) in our setup.

Let f denote the unknown density of x. For {x, ỹ} ∈ D0,k, let f (k,r)0 and f (k)0 respectively represent
the underlying true distributions for ỹ(r) and ỹ, given {y = k,x}, determined by (2) and (3); and let
f
(k,r)
θ and f (k)θ denote the corresponding distributions characterized by the model indexed by θ. We

let pθ,i ≜ f
(ki)
θ f denote the probability density or mass function of the ith component in D0 under θ,

with ki ∈ [K] denoting the class that the instance belongs to almost surely. Then, the joint probability
density or mass function pnθ is calculated as pnθ ≜

∏n
i=1 pθ,i. The following theorem describes the

closeness of the proposed noise transition model and the true annotator confusions with respect to the
Hellinger distance within the Bayesian framework.
Theorem 1. Suppose Conditions A.1-A.4 in Appendix A.2 and B.1-B.3 in Appendix A.3 are satisfied.
Let d(·, ·) and dn(·, ·)denote the Hellinger distance given in Definition 1 and the semimetric defined
in (16) in Appendix B.1, respectively. Then there exists a sequence of constants {ϵ2n}∞n=1 with
ϵ2n = O(ϖn1 +ϖn2 + ζn) and log(1/ϵ2n) ≺ nϵ2n, satisfying 0 < ϵ2n < 1, ϵn → 0 and nϵ2n → ∞ as
n→ ∞, such that 2,

Π
{
θ ∈ Θ : dn(θ,θ0) > Mnϵn|D0

}
→ 0 (8)

in Pn0 probability for everyMn → ∞, where {ϖjn} is a sequence of nonnegative numbers converging
to 0 as n → ∞ for j = 1, 2 as given in (14), and {ζn}∞n=1 is a sequence given in Appendix A.3

2The anchor point assumption can be relaxed and Theorem 1 can be extended to a more general setting. For
any given δ ∈ (0, 1), we define the δ-pseudo anchor point for class k as P(y = k|x) ≥ 1− δ and denote D̄δ

as the set of all δ-pseudo anchor point accordingly. Then, the following result holds: Π{θ ∈ Θ : dn(θ, θ0) >
Mnϵn+Cδ|D̄δ} → 0 in Pn

0 probability for every Mn → ∞, where C is a positive constant. From the modified
theory, as δ approaches 0 slowly, the Hellinger distance of the transition model and the true transition probability
converges to zero at a slow rate. In other words, the transition model will still converge even if the collection of
a set of anchor points is not guaranteed, albeit at a slow rate.
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depending on the structures of ψ1(·|θ(1)) and ψ2(·|θ(1)) with ζn → 0 as n → ∞. If we further
assume that |D0,k|/|D0| > ς1 for some positive constant ς1, with | · | representing the cardinality of
a set, then for any k ∈ [K] and r ∈ [R]

Π
{
θ ∈ Θ : d(f

(k,r)
θ , f

(k,r)
0 ) > Mnϵn|D0

}
→ 0, (9)

in Pn0 probability for any Mn → ∞.

Intuitively, Theorem 1 reveals that the sparse noise transition model is close to the underlying true
transition matrix with respect to the Hellinger distance under mild conditions. Notably, our posterior
consistency result extends the existing theories in sparse Bayesian learning [35–37] to the setup of
i.n.i.d observations. Moreover, this result on the convergence rate of the posterior measure allows
us to infer the underlying true label from the noisy annotations with a theoretical guarantee on the
bounds of the Bayes error, which will be discussed in detail in the following section.

3.3 Pairwise likelihood ratio test for label correction

The asymptotic result (9) in Theorem 1 indicates that for each annotator, the underlying true instance-
dependent transition matrix can be accurately modeled under the Bayesian framework. This enables
us to aggregate and infer the ground truth label from noisy crowdsourced annotations.

A novel label correction algorithm. To highlight the idea, we first assume that the noise transition
matrix P(ỹ(r)|y = k,x), or fk,r0 (·), is known. To simplify the notation, for each xi in the noisy
dataset D, denote τ (r)i,kl ≜ τ

(r)
kl (xi) ≜ P(ỹ(r) = l|y = k,xi) for i ∈ [N ] and k, l ∈ [K]. We assign

class prior [38] ℏℏℏi = (ℏi,1, ..., ℏi,K)⊤ for the ground truth label for the ith task, where the ℏi,k for
k ∈ [K] are nonnegative weights satisfying

∑K
k=1 ℏi,k = 1. For each instance, with the class prior

and the noise transition matrices, the label correction process can be formulated as a hypothesis
testing problem, where different hypotheses are generated from different choices of the true label
values. Specifically, selecting the label for the instance xi from {g, g′}, with 1 ≤ g < g′ ≤ K, is
equivalent to choosing from the two competitors P(ỹ|y = g,xi) and P(ỹ|y = g′,xi). We thereby
consider the following hypothesis testing problem: Hg : ỹi|{yi,xi} ∼ P(ỹ|y = g,xi) versus Hg′ :
ỹi|{yi,xi} ∼ P(ỹ|y = g′,xi). By the Neyman-Pearson Lemma [39], the Bayes testing error is
minimized by the likelihood ratio test, and the decision region for hypothesis Hg is given byỹ :

ℏi,gP(ỹ|y = g,xi)

ℏi,g′P(ỹ|y = g′,xi)
=

ℏi,g
∏R
r=1

∏K
l=1

{
τ
(r)
i,gl

}I(ỹ(r)=l)

ℏi,g′
∏R
r=1

∏K
l=1

{
τ
(r)
i,g′l

}I(ỹ(r)=l) > 1

 .

Building from the abovementioned reformulation of the label correction process, we now propose an
algorithm to infer the underlying ground truth by aggregating noisy crowdsourced annotations with
the help of the annotator confusions. Formally, we propose the following label correction method by
setting the estimated label of xi to be yi ≜ g if

ℏi,g
∏R
r=1

∏K
l=1

{
τ
(r)
i,gl

}1(ỹ
(r)
i =l)

ℏi,g′
∏R
r=1

∏K
l=1

{
τ
(r)
i,g′l

}1(ỹ
(r)
i =l)

> Ω for any g′ ̸= g, (10)

where Ω ≥ 1 is a pre-specified threshold.

Information-theoretic bounds on the Bayes error. To theoretically justify the effectiveness of
the proposed label correction method (10), we derive information-theoretic bounds on the Bayes
error, given the instances. Let D = {xi, yi}n̄i=1 denote the collection of instances with estimated
labels, where n̄ represents the size of D. We write y = {yi}n̄i=1 and the corresponding true label
is denoted y = {yi}n̄i=1. A loss measured by the accuracy of the estimated labels is given by
L(y,y) = 1

n̄

∑n̄
i=1 1(yi ̸= yi). Let P(·|y; τ ) denote the joint probability distribution of {ỹi}, given

y and τ , and let E(·|y; τ ) denote the associated expectation operator, where τ ≜ {τ i}n̄i=1 ≜ {τ (r)
i :
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r ∈ [R]}n̄i=1 represents the collection of the corresponding transition matrices τ (r)
i having τ (r)i,kl as its

(k, l) element. Then, the Bayes risk is defined as [40]

ℜBayes(ℏℏℏ,L) = inf
y

 ∑
y∈[K]n̄

ℏ(y)E{L(y,y)|y; τ}

 , (11)

or ℜBayes for short, where ℏ(y) is the joint prior probability of y calculated from ℏℏℏ ≜ {ℏℏℏi}n̄i=1. The
following theorem identifies bounds for the Bayes risk.

Theorem 2. Let DKL

(
τ
(r)
i,g∗∥τ

(r)
i,g′∗

)
denote the Kullback-Leibler (KL) divergence for discrete

distributions τ (r)
i,g∗ and τ

(r)
i,g′∗, where, for i ∈ [n], r ∈ [R], and g, g′ ∈ [K], τ (r)

i,g∗ and τ
(r)
i,g′∗ stand for

the gth and g′th rows of τ (r)
i , respectively. For ℏℏℏ = {ℏℏℏi}ni=1 and τ = {τ i}ni=1, define

DKL(ℏℏℏ, τ ) =
1

n̄

n̄∑
i=1

R∑
r=1

K∑
g=1

K∑
g′=1

ℏi,gℏi,g′DKL

(
τ
(r)
i,g∗∥τ

(r)
i,g′∗

)
and

C
(i)
gg′ = − min

0≤λ≤1

1

R

[
−λ log

(
Ωℏi,g
ℏi,g′

)
+

R∑
r=1

log

{
K∑
l=1

(
τ
(r)
i,gl

)1−λ (
τ
(r)
i,g′l

)λ}]
.

For i ∈ n̄ and g ∈ [K], let I(g)Ω (ℏℏℏi, τ i) = ming′ ̸=g C
(i)
gg′ . Then the Bayes error defined in (11) is

bounded as follows:

1

n̄

[
1−

DKL(ℏℏℏ, τ ) + 1
n̄ log(2−

∏n̄
i=1 maxk∈[K] ℏi,k){∑n̄

i=1 log(maxk∈[K] ℏi,k)
}
/n̄

]

≤ℜBayes(ℏℏℏ,L) ≤
K − 1

n̄

n̄∑
i=1

K∑
g=1

ℏi,g exp
{
−RI(g)Ω (ℏℏℏi, τ i)

}
.

Remark 1. Theorem 2 establishes information-theoretic bounds on the Bayes error ℜBayes for arbitrary
priors ℏℏℏi with i ∈ [n], which theoretically quantifies the combined impact of the prior knowledge and
annotators’ expertise on label accuracy using algorithm (10). The lower bound is proved in light of
the concept of f -informativity [40–42], and is stronger than the commonly-used Bayes lower bound
based on Fano’s inequality [43, 44]. The proof of the upper bound considers the inference procedure
of y and applies Markov’s inequality. The details are given in Appendix B.

Remark 2. The quantity C(i)
gg′ in Theorem 2 reflects how the identified upper bound of the Bayes error

may be influenced by the prior ℏℏℏi and the ability of the R annotators to distinguish between labels
g and g′ for instance i. If we set ℏℏℏi to be the uniform prior and let Ω = 1, C(i)

gg′ will degenerates to

the average of the Chernoff information between {τ (r)
i,g∗}Rr=1 and {τ (r)

i,g′∗}Rr=1[45, 46], which is a
statistical divergence measuring the deviation between two probability distributions.

Result under the sparse Bayesian model. The label correction method (10) is not immediately
applicable if we have no access to the underlying true annotator confusions, which is usually the
case in real-world applications. To get around the issue induced from the unknownness of the true
noise transition probability f (k,r)0 , we consider the model f (k,r)θ given in Theorem 1 and write the
corresponding transition matrices as τ (r)i,kl ≜ τ

(r)
kl (xi) ≜ f

(k,r)
θ (ỹ|xi)

∣∣
ỹ=l

for k, l ∈ [K] and r ∈ [R].

We then replace the τ (r)i,gl in (10) with τ (r)i,gl to determine corrected labels. With a slight abuse of
notation, we still use D = {xi, yi}n̄i=1 to denote the set of instances with estimated labels but let
ℜBayes denote the resulting Bayes error. We let Dx = {xi}ni=1 represent the set of the considered
instances. Combining Theorems 1 and 2 yields the following corollary.

Corollary 3. Suppose that the conditions in Theorem 1 are satisfied, and further assume that
f(xi) > ς2 for xi ∈ Dx and minr∈[R],i∈[n],k,l∈[K] τ

(r)
i,kl ≥ ς3, where f(·) is the probability density
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function of x, and ς2 and ς3 are some positive constants. Then, for any ϵ > 0,

Π

[
θ : ℜBayes ≤

K − 1

n̄

n̄∑
i=1

K∑
g=1

ℏi,g exp
{
−RI(g)Ω (ℏℏℏi, τ i) + ϵ

} ∣∣∣∣D0

]
−→ 1

in Pn0 probability as n→ ∞, where I(g)Ω (ℏℏℏi, τ i) is given in Theorem 2 for i ∈ [n̄] and g ∈ [K].

4 Algorithm

Learning the noise transition model. In the warm-up stage, we train the base models on noisy
training data and obtain the set of anchor points D0 [26]. With D0, we first obtain the maximum a
posteriori (MAP) estimate of network parameters of the transition model θ by maximizing the log
posterior distribution of θ, with the constant term omitted,

θ̂ = argmax
θ

{
n∑
i=1

log pθ,i + log π(θ)

}
, (12)

where pθ,i is the probability mass function of the ith component in D0 given before Theorem 1, and
π(θ) is the probability density function of θ relative to the prior probability measure Π(·). Given the
MAP estimate θ̂, according to the prior hierarchy (4), the posterior inclusion probability of the kth
parameter in the network ψj(·;θ(j)) is calculated as

P(γ(j)k = 1|θ̂) =
λnjπ1(θ̂

(j)
k ;σ2

nj)

λnjπ1(θ̂
(j)
k ;σ2

nj) + (1− λnj)π0(θ̂
(j)
k ; cnjσ2

nj)
(13)

for k ∈ [Jj ] with j = 1, 2. If the posterior inclusion probability is smaller than a pre-specified
threshold, chosen to be 0.5 in our experiments, the associated parameter is zet to be zero. We then
fine tune the sparse network and obtain the noise transition model.

Training the classifiers with corrected labels. With the noise transition model trained, we then
train the base models with the label correction algorithm proposed in Section 3.3. Specifically, we
train two base classifiers to reciprocally provide class priors for each instance in the label correction
process. In the tth epoch, for instance xi, if yi satisfies the condition (10) for the pre-specified
threshold Ωt, we put {xi, yi} in Dt. The base models are then updated on the collected dataset Dt.
The complete pseudocode of our algorithm is included in Appendix C.

5 Experiments

Datasets. We assess the effectiveness of our method on three image datasets with synthetic annota-
tions, MNIST [47], CIFAR-10 [48], and CIFAR-100 [48], and two datasets with human annotations,
CIFAR-10N [49] and LabelMe [50, 51]. Detailed information can be found in Appendix C. For all
the datasets except LabelMe, we leave out 10% of the training data as a noisy validation set.

Noise generation. For the three datasets, MNIST, CIFAR10, and CIFAR100, we consider three
groups of annotators with varying expertise, with an average labeling error rate of about 20%, 35%
and 50%, respectively. We abbreviate these three groups as IDN-LOW, IDN-MID, and IDN-HIGH,
which represent instance-dependent annotators with low, middle (“mid" for short), and high labeling
error rates, respectively. To generate noisy annotations, we independently simulate R = 5 annotators
for each group according to Algorihtm 2 in [12], with IDN-τ denoting that the noise rate is upper
bounded by τ for each annotator. For each instance, we then randomly choose one of the annotations
given by the R annotators, which is designed to evaluate the methods under incomplete annotator
labeling. We manually corrupt the three datasets according to the following three groups of annotators:

(I) IDN-LOW. IDN-10%, IDN-10%, IDN-20%, IDN-20%, IDN-30%;
(II) IDN-MID. IDN-30%, IDN-30%, IDN-40%, IDN-40%, IDN-50%;
(III) IDN-HIGH. IDN-50%, IDN-50%, IDN-60%, IDN-60%, IDN-70%.
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Experiment setup. The network structure for the MNIST dataset is chosen to be Lenet-5 [52]. We
choose ResNet-18 [2] for CIFAR-10 and CIFAR-10N, and ResNet-34 architecture [2] for CIFAR-100
dataset. As in [53], we employ the pretrained VGG-16 network followed by a fully connected layer
and a softmax output layer for the LabelMe dataset, using 50% dropout. More implementation details
can be found in Appendix C.

Competing methods. We compare the proposed method with the following state-of-art methods:
(1) CE (Clean), which trains the network with the standard cross entopy loss on the clean datasets;
(2) CE (MV), which trains the network using the labels from majority voting; (3) CE (EM) [9]; (4)
DoctorNet [54]; (5) GCE [55]; (6) Co-teaching [56]; (6) Co-teaching+ [57]; (7) BLTM [17]; (8)
MBEM [11]; (9) CrowdLayer [53]; (10) TraceReg [8]; (11) Max-MIG [7]; (12) CoNAL [58]; (13)
GeoCrowdNet (F) [13]; and (14) GeoCrowdNet (W) [13]. Among these methods, GCE, Co-teaching,
Co-teaching+, and BLTM are strong baselines dealing with single noisy label issues, and we adapt
them to the multiple annotations setting by utilizing the majority vote labels for loss computation.

Ablation study. In Figure 1, We plot the average estimation error for the noise transition matrices to
demonstrate the effectiveness of the proposed method in modeling the instance-dependent annotator
confusions. For instance xi with clean class label yi in the validation set, we analyse the yith row
rather than the whole noise transition matrix as in previous studies [16, 12]. Specifically, let τ̂ (r)(xi)
and τ (r)(xi) represent the estimated and the true noise transition matrix for annotator r, respectively.
The estimation error on instance xi is defined as err(r)i = maxl∈K |τ̂ (r)(xi)yi,l − τ (r)(xi)yi,l|,
where τ̂ (r)(xi)yi,l and τ (r)(xi)yi,l stand for the (yi, l) element in the corresponding matrices. The
average estimation error for annotator r is then calculated as 1

nv

∑nv

i=1 err
(r)
i with nv denoting the

size of the validation set. For each annotator, we compare the average estimation error of the proposed
method with six baselines, CrowdLayer [53], TraceReg [8], GeoCrowdNet (F) [13], GeoCrowdNet
(W) [13], MBEM [11], and BLTM [17], on the CIFAR10 dataset. In most of the cases, the proposed
method leads to smaller estimation error especially when the noise rate is high, which shows the
efficacy of the proposed sparse Bayesian model.
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Figure 1: Average estimation error of annotator-specific instance-dependent noise transition matrices
on CIFAR10. The error bar for standard deviation has been shaded.
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Figure 2: Average accuracy of learning CIFAR-10 dataset with varying number of annotators. The
error bar for standard deviation has been shaded.
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Table 1: Average accuracy of learning CIFAR-10, CIFAR-100, CIFAR-10N and LabelMe datasets

CIFAR-10 CIFAR-100 CIFAR-10N LabelMe
IDN-LOW IDN-MID IDN-HIGH IDN-LOW IDN-MID IDN-HIGH

CE (Clean) 88.60±0.79 58.75±0.55 88.60±0.79 91.45±0.23

CE (MV) 80.90±0.88 76.05±0.70 69.65±1.73 50.96±0.49 44.80±0.99 38.51±0.66 82.82±0.05 79.49±0.48

CE (EM) [9] 81.15±0.74 75.84±0.97 69.85±1.43 51.29±1.00 45.24±0.41 38.01±0.90 83.14±0.80 80.64±0.55

DoctorNet [54] 81.85±0.41 78.69±0.75 76.26±1.28 52.61±0.70 47.80±0.86 43.50±0.53 84.52±0.69 79.09±0.40

GCE [55] 82.78±0.51 78.08±1.18 72.99±1.92 55.88±1.32 48.46±0.86 40.53±0.83 85.25±0.46 80.27±0.27

Co-teaching [56] 83.20±0.53 80.80±0.79 82.02±0.42 53.27±0.42 47.58±0.43 45.49±0.72 85.90±0.50 80.24±0.71

Co-teaching+ [57] 81.27±0.44 78.26±0.27 72.10±0.98 53.31±0.81 48.15±0.36 42.07±0.66 82.31±0.89 81.67±0.56

BLTM [17] 81.06±0.23 77.34±0.51 70.64±3.19 52.21±0.70 46.90±0.85 41.26±1.59 82.62±0.17 80.44±1.05

MBEM [11] 82.37±0.77 78.05±0.83 71.43±2.43 52.20±0.07 45.26±0.50 38.92±0.69 85.49±0.43 80.10±1.09

CrowdLayer [53] 83.98±0.35 77.76±1.06 67.77±1.69 51.28±0.64 45.28±0.64 38.93±0.76 82.84±0.24 82.95±0.21

TraceReg [8] 83.49±1.68 78.69±1.04 70.39±1.68 51.60±0.99 45.16±0.45 39.01±0.83 83.16±0.24 82.93±0.15

Max-MIG [7] 81.00±0.72 75.90±0.52 70.96±0.96 51.76±1.11 44.93±0.71 38.70±0.49 85.12±0.36 83.25±0.26

CoNAL [58] 81.60±0.82 76.02±0.79 69.50±1.89 51.61±1.14 44.19±0.62 38.24±0.29 83.01±0.21 82.96±0.30

GeoCrowdNet (F) [13] 86.36±0.46 83.78±0.68 79.70±0.42 51.37±0.88 45.04±0.56 38.94±0.91 87.70±0.51 85.74±0.17

GeoCrowdNet (W) [13] 83.95±0.41 76.94±0.72 66.48±2.53 51.58±0.72 45.24±1.15 39.24±0.76 87.84±0.21 83.28±0.45

Ours 86.88±0.65 85.40±0.50 83.46±1.24 59.81±0.55 54.88±0.60 49.44±1.30 88.19±0.47 84.85±0.27

Classification accuracy. Table 1 presents the average test accuracy of 5 random trials on the
datasets of CIFAR-10, CIFAR-100, CIFAR-10N and LabelMe, together with the standard errors of
the test accuracies of the random trials, expressed after the plus/minus sign ±, where the two highest
accuraries are bold faced; standard errors of the accuracies are calculated based on repeating those
experiments 5 times, each with a different random seed. All the results demonstrate the superior
performance of the proposed method on both synthetic and real-world noisy datasets. Moreover,
to investigate the influence of the sparsity of annotations, we conduct more experiments with the
number of annotators varying from 5 to 100, and each instance only has one label. Figure 2 shows
the average accuracy with various numbers of annotators, which further exhibit the advantages of
the proposed method under different settings. Additional experimental results, including the test
accuracy on MNIST, the average estimation error on MNIST and CIFAR100, and the accuracy of the
corrected labels using algorithm (10), are deferred to Appendix C to save space.

6 Conclusion

In this paper, we address the challenge of training classifiers using noisy crowdsourced labels, a
common issue in various applications. We formulate the annotator-specific instance-dependent noise
transition matrix within the Bayesian framework, and theoretically characterize the closeness of the
proposed model and the true annotator confusions with respect to the Hellinger distance. Our result
is established for the setup of i.n.i.d. observations, which substantially broadens the application
scope of our method. Building on the convergence rate of the posterior measure, we propose a novel
algorithm to aggregate noisy annotations and infer the ground truth label based using pairwise LRT.
Additionally, we provide information-theoretic bounds on the Bayes error of the proposed algorithm.
Empirical evidence demonstrates the effectiveness of our algorithm on both synthetic and real-world
noisy datasets.

Limitations and Extensions

Our work can be further extended in different directions. It is interesting to generalize the setup here
to the hierarchical classification setup. Instance-dependent transition matrices can be further refined
with varying structures imposed and are learned with manifold regularization.
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Supplemental Materials
In the supplementary materials, we first summarize the regularity conditions on the underlying true
model and prior distributions of the network parameters in Section A. The proofs of Theorem 1,
Theorem 2, and Corollary 3 are provided in Sections B.2-B.4 with all the needed preliminaries
presented in Section B.1. Implementation details of the proposed method and additional experiment
results are exhibited in Section C, including the accuracy and number of selected labels using the
proposed label correction algorithm (10), the test accuracy on MNIST, the hyperparameter analysis
on CIFAR100, the classification accuracy on CIFAR100 with varying number of annotators, and the
average estimation error on CIFAR10 and CIFAR100 with varying number of annotators.

A Regularity Conditions

A.1 Network structure

To incorporate the sparse high dimensional setting [59], we utilize sparse Bayesian DNNs to re-
construct ψ1(x) and ψ2(x) in (3) [37, 60]. Specifically, to approximate ψj(x) with j = 1, 2, we
consider a network with Hnj − 1 hidden layers and a width vector L(j) = (L

(j)
0 , L

(j)
1 , ..., L

(j)
Hnj

)⊤,

where the width of the hth layer is denoted L(j)
h for h = 0, ...,Hnj with L(j)

0 = pn for the input layer
and L(j)

Hnj
≜M (j) for the output layer. Then the DNN with network architecture {Hnj ,L

(j)} is the
nonlinear function of the form:

ψj(x;θ
(j)) = W(j,Hnj)σ

(
...σ

[
W(j,h)σ

{
...σ(W(j,1)x+ b(j,1))...

}
+ b(j,h)

]
...
)
+ b(j,Hnj),

where for h = 1, ...,Hnj , W(j,h) is a L(j)
h × L

(j)
h−1 weight matrix, b(j,h) ∈ RL

(j)
h is the bias of

layer h, σ(·) is a nonlinear activation function, and θ(j) represents the Jnj × 1 vector formed from
stacking {W(j,h),b(j,h)}Hnj

h=1 from bottom to the top, with Jnj ≜
∑Hnj

h=1(L
(j)
h−1 × L

(j)
h + L

(j)
h ).

We treat weights and biases equally without distinguishing them in θ(j), and write θ(j) as θ(j) =

(θ
(j)
1 , ..., θ

(j)
Jnj

)⊤. Let γ(j) = (γ
(j)
1 , ..., γ

(j)
Jnj

)⊤ denote the indicator vector, with γ(j)k = 1(θ
(j)
k ̸= 0)

for k = 1, ..., Jnj . For ease of presentation, we use ψj(x;θ(j)) and ψj(x;θ(j),γ(j)) exchangeably to
represent the model for ψj(x), and let Fn = F(Hn1, Hn2,L

(1),L(2), C1, C2, ϵ1) denote the space
of all sparse networks that satisfy Condition A.3 in Appendix A.2 and are constrained by positive
constants C1, C2 and ϵ1.

To determine the parameters of the sparse DNNs ψj(x;θ(j),γ(j)) that best approximate ψj(x) for
j = 1, 2, we define

(θ(1)∗,γ(1)∗,θ(2)∗,γ(2)∗) = argmin
(θ(1),γ(1),θ(2),γ(2))∈Fn

∥ψ1(x;θ
(1),γ(1))−ψ1(x)∥L2(Ω)≤ϖn1

∥ψ2(x;θ
(2),γ(2))−ψ2(x)∥L2(Ω)≤ϖn2

{
|γ(1)|+ |γ(2)|

}
, (14)

where for j = 1, 2, ϖnj is an n-dependent positive constant satisfying ϖnj → 0 as n→ ∞3 We call
θ(1)∗, γ(1)∗, θ(2)∗, and γ(2)∗ the true parameters of θ(1), γ(1), θ(2), and γ(2), respectively.

A.2 Conditions for the sparse GLM

A.1 The input vector is standardized so that x ∈ Ω ⊂ [−1, 1]pn , where Ω is the support of x,
and the probability density f(·) of x satisfies that supx∈Ω |f(x)| ≤ C0 for some positive
constant C0.

A.2 The activation function σ(·) is 1-Lipschitz.

3In this definition, the L2 norm of the network approximation error is bounded. Consider a measure space
(Ω,G, µ) and 0 < p < q ≤ ∞, we have that ∥f∥p ≤ µ(Ω)1/p−1/q∥f∥q using Hölder’s inequality and
therefore, ∥f∥1 ≤ ∥f∥2 and L1(Ω, µ) ⊂ L2(Ω, µ) for probability measure µ. Thus, the L1 norm of the
network approximation error is also bounded, which will be used in the following proofs.
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A.3 The true sparse DNN model satisfies the following conditions.

A.3.1 For j = 1, 2, let rnj = ∥γ(j)∥1 denote the connectivity of γ(j), let Lnj =

max1≤h≤Hnj L
(j)
h denote the maximum layer width, and let snj represent the in-

put dimension of γ(j). Let ζn =
{
(rn1 + rn2)(Hn1 + Hn2) log n + (rn1 +

rn2)(logLn1+logLn2)+(sn1+sn2) log pn
}
/n. The true sparse DNN model satisfies

that ζn ≤ C1n
−ϵ1 for some constants C1 > 0 and 0 < ϵ1 < 1.

A.3.2 For j = 1, 2, ∥θ(j)∥∞ ≤ Enj , where positive constant Enj ≤ nC2 for some constant
C2 > 0.

A.4 Write the function G(·) in (3) as (G1(·), ..., GK(·))⊤. For x ∈ Ω, r ∈ [R] and k ∈ [K],
write ω(k,r) = A(r)Tψ1(x;θ

(1)) +B(k)Tψ2(x;θ
(2)).

A.4.1 For k ∈ [K] and r ∈ [R], in the neighbourhood of θ0,

sup
j,l∈[K]

∣∣∣∂Gj(ω)

∂ωl

∣∣
ω=ω(k,r)

∣∣∣ = C3 and sup
j∈[K]

∣∣∣Gj(ω(k,r))

Gj(ω
(k,r)
0 )

− 1
∣∣∣ = ϵ2

for some constants C3 > 0 and ϵ2 ∈ (0, 1), where the latter requirement can be
achieved if Gj(ω

k,r
0 ) > ς for some positive constant ς > 0.

A.4.2 For r ∈ [R] and j, k ∈ [K], ∥α(r)
j0 ∥∞ ≤ F1 and ∥β(k)

j0 ∥∞ ≤ F2, where F1 and F2 are
positive constants.

A.3 Conditions for the prior

B.1 For j = 1, 2, assume each element of θ(j) has independent continuous prior distribution, de-
noted π(j)

θ (·). Thus, its minimum value on the interval [−Enj−1, Enj+1] exits, and let π(j)
θ

denote it. For a sequence of positive constants I(j)n with log I
(j)
n = O(log n), let δnj and δ′nj

be two sequences of constants satisfying that δnj < 1/nJnj(c0I
(j)
n )Hnj (n/Hnj)

Hnj and
δ′nj < 1/nJnj(c0Enj)

Hnj (rnj/Hnj)
Hnj for some constant c0 > 1, respectively. Assume

that:
B.1.1 log(1/π

(j)
θ ) = O(Hnj log n+ logLnj);

B.1.2 π
(j)
θ ([−δnj , δnj ]) ≥ 1 − 1

Jnj
exp

[
− S

(j)
0

{
(Hn1 + Hn2) log n

+ logLn1 + logLn2 + log pn
}]

for some constant S(j)
0 > 2;

π
(j)
θ ([−δ′nj , δ′nj ]) ≥ 1− 1

Jnj
;

B.1.3 − log
{
Jnjπ

(j)
θ (|θ(j)1 | > I

(j)
n )
}
≻ (2 + ϵ

(j)
3 )nϵ2n for some positive constant ϵ(j)3 .

B.2 For k ∈ [K], let B
(k)

n and B(k)
n denote the largest and the smallest eigenvalues of Σ(k)

β , re-

spectively, and for r ∈ [R], let A
(r)

n and A(r)
n denote the largest and the smallest eigenvalues

of Σ(r)
α , respectively. Assume that for large enough n,

B.2.1 A
(r)

n ≤ S
(1)
1 M (1)q1 and A(r)

n ≥ S
(1)
1 {logM (1)}−1 for some positive constants S(1)

1 ,
S
(1)
2 and q1.

B.2.2 B
(k)

n ≤ S
(2)
1 M (2)q1 and B(k)

n ≥ S
(2)
2 {logM (2)}−1 for some positive constants S(2)

1 ,
S
(2)
2 and q2;

A.4 Remark

1. Assumption A.1 specifies that the hypothesis set we consider is a class of DNNs, which is a
common setting in the literature [61, 35].
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2. Assumption A.2 ensures that the underlying noise transition probability can be approximated
by a sparse model. Existing works [62–64] empirically show that large DNNs often contain a
large number of redundant parameters and propose methods for compressing neural networks
without affecting performance. Moreover, theoretical works [65, 66] in approximation theory
provide theories that guarantee uniform approximation rates for a broad family of function
classes. Similar assumptions can be found in [35, 67].

3. Assumption A.3 specifies the constraints on the prior distribution we use. As in our
experiments in Section 5, we may employ the spike-and-slab prior λnN (0, σ2

1n) + (1 −
λn)N (0, σ2

0n) for each element of the parameter vector θ(j) of the sparse Bayesian DNN
ψj(x;θ

(j)), with j = 1, 2; we take the normal prior N (0, σ2
n) for each element of the

regression weights. It can be verified that Condition B.1 in A.3 is satisfied if the values of λn,
σ1n, and σ0n are properly chosen [35]. In particular, the value of λn is related to the sparsity
of the model and we require it to satisfy that λn = O(1/Jnj [n

Hn1+Hn2(Ln1 + Ln2)pn)]
c)

for some positive constant c and j = 1, 2, which should be chosen by considering the
network structure and the number of data points, n. Moreover, by using techniques such
as Mill’s ratio [68], Condition B.2 in A.3 is satisfied if c1 < σn < c2 for some positive
constants c1 and c2, which are related to S(j)

1 , S(j)
2 , qj and M (j) for j = 1, 2 in Condition

B.2 [60, 67]. Similar assumptions can be found in [60, 35, 67].

B Proofs

In this section, we present the proofs of Theorem 1, Theorem 2, and Corollary 3. Specifically,
we provide all the need preliminaries in Section B.1, where the definitions and results in Sections
B.1.1-B.1.4 will be used in the proof of Theorem 1, and the information-theoretical definitions and
lemmas provided in Section B.1.5 will be utilized in the proof of Theorem 2 and Corollary 3.

B.1 Preliminaries

B.1.1 Definitions of some discrepancy measures

Definition 1 ([69]). Let f and f0 denote two conditional probability density/mass functions of ỹ,
given x. Let ν1(dx) denote the probability measure for x associated with the density f(x) and
let ν2(dỹ) =

⊗R
r=1 ν2,r(dỹ

(r)) be a dominating measure for f and f0, and hence, a dominating
measure of (x, ỹ) is taken as the product ν1(dx)ν2(dỹ).

(i) The Hellinger distance between f and f0 is defined as

d(f, f0) =

√∫ ∫
(
√
f −

√
f0)2ν2(dỹ)ν1(dx).

(ii) For any t > 0, define

dt(f, f0) =
1

t

{∫ ∫
f0

(
f0
f

)t
ν2(dỹ)ν1(dx)− 1

}
.

(iii) The Kullback-Leibler divergence between f and f0 is defined as

d0(f, f0) ≜ K(f, f0) =

∫ ∫
f0 log

(
f0
f

)
ν2(dỹ)ν1(dx).

(iv) For q > 1, define

Vq(f, f0) =

∫ ∫
f0

∣∣∣∣ log(f0f
)∣∣∣∣qν2(dỹ)ν1(dx).

For q = 2, the index of V2(·, ·) is omitted and the discrepancy measure is denoted V (·, ·).

[60] shows that (1) d(f, f0) ≤
√
d0(f, f0); (2) dt(f, f0) decreases to d0(f, f0) as t decreases to 0.
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B.1.2 Mathematical details about the regression weights

Adapting the proof in [69], we prove the following proposition.
Proposition 1. Assume that β ∼ N (0,Dβ), where Dβ is a positive definite matrix. Then, for any
given dim(β)× 1 vector of functions ϕ(x;θ) of x and θ, and for any constant ∆ > 0,

P {|(ϕ(x;θ)Tβ − ϕ(x;θ)Tβ0| < ∆}

> 8 exp

{
−{ϕ(x;θ)Tβ0}

2
+∆2

2B∥ϕ(x;θ)∥2

}
∆4

B
2∥ϕ(x;θ)∥4

,

where B and B are the largest and the smallest eigenvalues of Dβ, respectively.

Proof. The proof is established in two steps.

Step 1. We first prove that

P {|(ϕ(x;θ)Tβ − ϕ(x;θ)Tβ0| < ∆} > P (X − Y ≥ 2), (15)

where X ∼ Pois(∆1

2 ) and Y ∼ Pois(λ2 ), with ∆1 = ∆2

ϕ(x;θ)TDβϕ(x;θ)
and λ =

{ϕ(x;θ)Tβ0}2

ϕ(x;θ)TDβϕ(x;θ)
,

and X and Y are independent.

By the definition of the noncentral chi-squared distribution, it can be easily seen that T ≜
{ϕ(x;θ)Tβ−ϕ(x;θ)Tβ0}2

ϕ(x;θ)TDβϕ(x;θ)
is distributed according to the noncentral chi-squared distribution χ2

1(λ).
Thus, by utilizing the cumulative distribution function (CDF) of χ2

1(λ), we obtain that

P {|(ϕ(x;θ)Tβ − ϕ(x;θ)Tβ0| < ∆}
=P {T < ∆1}

=

∞∑
j=0

exp
(
−λ

2

)
(λ2 )

j

j!
Q(∆1; 1 + 2j),

where Q(·; 1 + 2j) is the CDF of χ2
1+2j , the central chi-squared distribution with 1 + 2j degrees of

freedom.

Noting that Q(∆1; 1 + 2j) > Q(∆1; 2 + 2j), by the result that Zj1 + ... + Zj,j+1 ∼ χ2
2+2j if

Zj1, ..., Zj,j+1
i.i.d.∼ χ2

2

d≡ exp( 12 ), we obtain that Q(∆1; 1 + 2j) > P{Zj1 + ... + Zj,j+1 < ∆1}.
According to the relationship between the Poisson counting process and exponential variables, we
have that the counting process with Zj1, ..., Zj,j+1 as inter-arrival times is the Poisson process with
rate 1

2 . Let N(∆1) denote the total number of occurrences or events that have happened up to

time ∆1. Then, N(∆1) follows the Poisson distribution with parameter ∆1

2 , i.e., N(∆1)
d≡ X , and

{Zj1 + ...+ Zj,j+1 < ∆1} = {N(∆1) > j + 1}. Consequently, we have that
∞∑
j=0

exp
(
−λ

2

)
(λ2 )

j

j!
Q(∆1; 1 + 2j) >

∞∑
j=0

exp
(
−λ

2

)
(λ2 )

j

j!
P{Zj1 + ...+ Zj,j+1 < ∆1}

=

∞∑
j=0

exp
(
−λ

2

)
(λ2 )

j

j!
P{N(∆1) > j + 1}

=

∞∑
j=0

exp
(
−λ

2

)
(λ2 )

j

j!
P{X ≥ j + 2}

=

∞∑
j=0

P(Y = j)P(X ≥ j + 2)

=

∞∑
j=0

P(X ≥ j + 2, Y = j)

= P{X − Y ≥ 2},
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where we use the distribution assumptions and the independence assumption for X and Y . Thus, (15)
is proved.

Step 2. Since X ∼ Pois(∆1

2 ) and Y ∼ Pois(λ2 ), and they are independent, we have that X − Y
follows the Poisson difference distribution (aka the Skellam distribution): for k = 0,±1,±2, ...,

P{X − Y = k} = exp

(
−∆1 + λ

2

)(
∆1

λ

) k
2

Ik(
√

∆1λ),

where Iν(z) =
∑∞
m=0

(z/2)ν+2m

m!Γ(ν+m+1) is the modified Bessel function of the first kind [70]. Using the
fact that Iν(z) > zν2νΓ(ν + 1) for z > 0 [71] and plugging in ∆1 and λ, we obtain that

P{X − Y ≥ 2} > P{X − Y = 2} > 8 exp

(
−∆1 + λ

2

)
∆2

1

=8 exp

{
−{ϕ(x;θ)Tβ0}

2
+∆2

2ϕ(x;θ)TDβϕ(x;θ)

}
· ∆4

{ϕ(x;θ)TDβϕ(x;θ)}2

≥8 exp

{
−{ϕ(x;θ)Tβ0}

2
+∆2

2B∥ϕ(x;θ)∥2

}
· ∆4

B
2∥ϕ(x;θ)∥4

,

where the last inequality follows from the fact that for a symmetric matrix D, sup∥u∥=1 u
TDu =

λmax(D) and inf∥u∥=1 u
TDu = λmin(D), where λmax(D) and λmin(D) represent the largest and

the smallest eigenvalues of D, respectively. This completes the proof.

B.1.3 Mathematical details about the sparse Bayesian DNNs

Consider a DNN with network architecture (Hn,L), where Hn − 1 is the number of hidden layers,
and L = (L0, L1, ..., LHn)

T is the width vector with L0 = pn for the input layer and LHn =M for
the output layer. For the corresponding indicator vector γ and for h = 1, ...,Hn, let rh denote the
number of nonzero connections to the hth hidden layer which includes the bias for the hth hidden
layer and the weights between the (h− 1)th and the hth layer, such that

∑
rh = |γ|1

.
= rn. For a

parameter vector θ, let Oh,j(θ,x) represent the output value of the jth node of the hth hidden layer
for j = 1, ..., Lh.
Lemma 1 ([37], Lemma S1). Consider a sparse DNN with parameter vector θ = (θ1, ..., θq)

⊤ with
dimension q, the corresponding indicator vector γ and the network architecture as mentioned above.
Suppose that Conditions A.1-A.2 in Section A.2 are satisfied and |θ|∞ ≤ En for a positive constant
En. Then, for 1 ≤ h ≤ Hn, the summation of the outputs of the hth layer is upper bounded by

Lh∑
j=1

Oh,j(θ,x) ≤ Ehn

h∏
k=1

rk.

Lemma 2 ([37], Lemma S2). Consider a sparse DNN ϕ(θ,x) with indicator vector γ satisfying the
conditions in Lemma 1, and a DNN ϕ(θ̄,x) with θ̄ ∈ A, where A is defined as

A = {θ̃ = (θ̃1, ..., θ̃q)
⊤ : |θj − θ̃j | < δ1 for j ∈ γ and |θj − θ̃j | < δ2 for j /∈ γ}

for given δ1 > 0 and δ2 > 0. Then

max
|x|∞≤1

∥ϕ(θ,x)− ϕ(θ̄,x)∥1 ≤δ1Hn(En + δ1)
Hn−1

Hn∏
h=1

rh

+ δ2

(
pnL1 +

Hn∑
h=1

Lh

)
Hn∏
h=1

{(En + δ1)rh + δ2Lh} .

B.1.4 A useful lemma

Assume Pn is a sequence of sets of probability densities and Pcn denotes the complement of Pn
for each n. Let ϵn be a sequence of positive numbers. An ϵn-cover of Pn with respect to (w.r.t.)
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distance d is a set {f1, ..., fk} ⊂ Pn such that for each f ∈ Pn, there exists j ∈ {1, ..., k} such
that d(f, fj) ≤ ϵn. The ϵn-covering number is the cardinality of the smallest ϵn-cover [72]. Let
N(ϵn,Pn, d) denote the ϵn-covering number of Pn w.r.t. the distance d.

Consider a vector of independently (not necessarily identically) distributed observations Dn, where
the ith component is generated from distribution Pθ,i with the density pθ,i relative to a σ-finite
measure νi on (Xi,Ai) for i ∈ [n], and θ is the vector of parameters in the parameter space Θ.
We define Pnθ to be the product measure

⊗n
i=1 Pθ,i on the corresponding product measurable space⊗n

i=1(Xi,Ai). Assume that Dn is generated from the true distribution Pnθ0
. We define the square of

the semimetric dn as in [73]:

d2n(θ,θ0) =
1

n

n∑
i=1

∫
(
√
pθ,i −

√
pθ0,i)

2dνi, (16)

which can be seen as the average of the squares of the Hellinger distances. For ϵ > 0, we define the
ϵ-neighborhood around θ0:

G∗
n(θ0, ϵ) =

{
θ :

1

n

n∑
i=1

Ki(θ,θ0) ≤ ϵ2;
1

n

n∑
i=1

Vi(θ,θ0) ≤ ϵ2

}
, (17)

where Ki(θ,θ0) = K(Pθ,i,Pθ0,i) and Vi(θ,θ0) = V (Pθ,i,Pθ0,i), defined in Definition 1.

Let Π(·) denote the prior probability measure on θ, and let Π(·|Dn) represent the associated posterior
measure given the data Dn. For ease of exposition, we put Π(Θ∗) for Π({θ ∈ Θ∗}) for any Θ∗ ⊂ Θ.
The following lemma is modified from Theorem 4 in [73] and will be used in the proof of Theorem 1.
Lemma 3. Suppose that for a sequence of sets Θn ⊂ Θ and for a sequence of positive numbers
{ϵn}∞n=1 such that ϵn → 0 as n→ ∞ and nϵ2n is bounded away from zero, the following conditions
hold for large enough n:

(a) supϵ>ϵn logN(ϵ/36, {θ ∈ Θn : dn(θ,θ0) < ϵ}, dn) ≤ nϵ2n;

(b) Π(Θ\Θn) = o(exp{−(r + 2)nϵ2n});

(c) Π(G∗
n(θ0, ϵn)) ≥ exp(−rnϵ2n)

for some constant r > 0. Then for any Mn > 0 Pnθ0
Π(θ : dn(θ,θ0) ≥ Mnϵn|Dn) → 0 as

Mn → ∞.

B.1.5 Useful information-theoretical definitions and lemmas

We give some useful information-theoretical definitions and lemmas in this subsection, which will be
used in the proof of Theorem 2 and Corollary 3.
Lemma 4 (Log sum inequality, [45]). For positive numbers, a1, .., an and b1, ..., bn,

n∑
i=1

ai log

(
ai
bi

)
≥

(
n∑
i=1

ai

)
log

(∑n
i=1 ai∑n
i=1 bi

)
,

with equality if and only if aibi equals for i = 1, ..., n.

Definition 2 ([74, 75]). Let P and Q be probability distributions on the set X , and let f : R+ −→ R
be a convex function satisfying f(1) = 0. Without loss of generality, assume that P and Q are
absolutely continuous with respect to the base measure µ. The f -divergence between P and Q is
then defined as

Df (P∥Q) :=

∫
X
q(x)f

(
p(x)

q(x)

)
dµ(x) + f ′(∞)P{q = 0},

where p and q are the densities of P and Q with respect to the measure µ, respectively, and f ′(∞)
represents limx→∞ f(x)/x.
Example 1. By taking different f functions, we provide some popular examples of f -divergences.

• Kullback-Leibler (KL) divergence: taking f(t) = t log t gives Df (P∥Q) ≜ DKL(P∥Q) =∫
p log(p/q)dµ, which is also denoted d0(p, q) in Definition 1.
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• The total variation distance: taking f(t) = 1
2 |t − 1| yields Df (P∥Q) ≜ ∥P − Q∥TV =

1
2

∫ ∣∣p
q − 1

∣∣qdµ = supA⊂X |P (A)−Q(A)|, which is also denoted d0(p, q) in Definition 1.

• The Hellinger distance: taking f(t) = (
√
t − 1)2 = t − 2

√
t + 1 leads to the squared

Hellinger distance Df (P∥Q) ≜ H2(P∥Q) =
∫
(
√
p − √

q)2dµ, which is also denoted
d2(p, q) in Definition 1.

• The χ2-divergence: taking f(t) = 1
2 (t − 1)2 produces the χ2-divergence Df (P∥Q) ≜

χ2(P∥Q) = 1
2

∫
(pq − 1)2dµ.

Lemma 5 ([75]). For the quantities defined in Example 1, the following relationships hold:

(i) For the Hellinger distance,

1

2
H2(P,Q) ≤ ∥P −Q∥TV ≤ H(P,Q)

√
1−H2(P,Q)/4.

(ii) Pinsker’s inequality: for any distributions P and Q,

∥P −Q∥2TV ≤ 1

2
DKL(P∥Q).

Definition 3 ([41, 40]). Let P = {Pθ : θ ∈ Θ} be a family of probability measures on a space X ,
indexed by θ ∈ Θ, and let ω be a probability measure on Θ. For each f satisfying the conditions in
Definition 2, the f -informativity, If (ω,P), is defined as

If (ω,P) := inf
Q

∫
Df (Pθ∥Q)ω(dθ),

where the infimum is taken over all possible probability measures Q on X . In particular, when
f(t) = t log t, the f -informativity is equal to the mutual information and is denoted by I(ω,P).

For each f satisfying the conditions in Definition 2, let ϕf : [0, 1]2 → R be the function defined as
follows: for a, b ∈ [0, 1]2, ϕf (a, b) is the f -divergence between the two probability measures P and
Q on {0, 1} given by P{1} = a and Q{1} = b. Then, ϕf (a, b) has the following expression:

ϕf (a, b) =


bf
(a
b

)
+ (1− b)f

(
1− a

1− b

)
for 0 < b < 1;

f(1− a) + af ′(∞) for b = 0;

f(a) + (1− a)f ′(∞) for b = 1.

(18)

The following lemma implies monotonicity and convexity properties of ϕf by taking it as a univariate
function with one argument of ϕf fixed at a given value.

Lemma 6 ([40]). For each f satisfying the conditions in Definition 2, consider ϕf defined in (18).
Then

(a). for every fixed b > 0, the map g(a) : a 7→ ϕf (a, b) is non-increasing for a ∈ [0, b] and g(a)
is convex and continuous in a;

(b). for every fixed a < 1, the map h(b) : b 7→ ϕf (a, b) is non-decreasing for b ∈ [a, 1].

Lemma 7 ([40]). Let P = {Pθ : θ ∈ Θ} be a family of probability measures on a space X and let
ω be a probability measure on Θ. Suppose that the loss function L is zero-one valued. Define the
Bayes error as ℜBayes(ω) = infd

∫
Θ
EL(θ, d(X))ω(dθ) with d : X → Θ denoting a mapping from

the sample space to the parameter space. For any f satisfying the conditions in Definition 2, we have
that

If (ω,P) ≥ ϕf (ℜBayes(ω),ℜ0),

where ϕf is given by (18), and ℜ0 is defined as ℜ0 ≜ infa∈Θ

∫
Θ
L(θ, a)ω(dθ).
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B.2 Proof of Theorem 1

We now establish the proof of Theorem 1 by checking the three conditions in Lemma 3 established
for the sparse Bayesian deep learning framework. We first provide a useful result on the discrepancy
measures for generalized linear models in Section B.2.1, and then verify the three conditions in
Sections B.2.2-B.2.4 following the proof techniques in [37, 67].

B.2.1 Discrepancy measures for generalized linear models

Paired variables in the set of anchor points D0 = D0,1 ∪ . . . ∪ D0,K in Section 3.1 can be seen as
independently (not necessarily identically) distributed, and we let Dn denote D0 in the following
derivations to emphasize its dependence on the sample size n. For {x, ỹ} ∈ D0,k with k ∈ [K], we
write the rth element of ỹ, ỹ(r), in the 1-of-K fashion, i.e., only the jth element is equal to 1 while
others are all 0 if ỹ(r) is the jth class, and then, the conditional probability density/mass function of
ỹ(r) induced by θ is given by

f
(k,r)
θ (ỹ(r)) = G⊤(ω(k,r))ỹ(r) =

(
G1(ω

(k,r)), ..., (GK(ω(k,r))
)
ỹ(r) (19)

for r ∈ [R]. We denote the joint conditional probability density/mass function of ỹ as f (k)θ (ỹ), given
by

f
(k)
θ (ỹ) =

R∏
r=1

f
(k,r)
θ (ỹ(r)), (20)

and in contrast, we denote the underlying true conditional probability density/mass functions for ỹ(r)

and ỹ as f (k,r)0 and f (k)0 , respectively.

Result 1. If Conditions A.4 in Section A.2 are satisfied, then, for any k ∈ [K],

K(f
(k)
θ , f

(k)
0 ) ≤ CK

R∑
r=1

Ex∥ω(k,r) − ω
(k,r)
0 ∥1; (21)

V (f
(k)
θ , f

(k)
0 ) ≤ CV

R∑
r=1

Ex∥ω(k,r) − ω
(k,r)
0 ∥1, (22)

for some positive constants CK and CV in the neighbourhood of θ0
4.

Proof. By Definition (1) (iii) and (20), we have that

K(f
(k)
θ , f

(k)
0 ) =

∫ ∫
f
(k)
0 log

(
f
(k)
0

f
(k)
θ

)
ν2(dỹ)ν1(dx)

=

R∑
r=1

∫ ∫
f
(k)
0 log

(
f
(k,r)
0

f
(k,r)
θ

)
ν2(dỹ)ν1(dx)

=

R∑
r=1

∫ ∫
f
(k,r)
0 log

(
f
(k,r)
0

f
(k,r)
θ

)
ν2,r(dỹ

(r))ν1(dx).

4These two distances can also be upper bounded by the L2 norm of ω2 − ω1 since the L1 norm and L2

norm are equivalent on Rp in the sense that |ω|2 ≤ |ω|1 ≤ √
p|ω|2.
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According to (19) and by taking the Taylor’s expansion of log
(
fk,rθ

)
at ω(k,r)

0 , we obtain that∫
f
(k,r)
0 log

(
f
(k,r)
0

f
(k,r)
θ

)
ν2,r(dỹ

(r))

=−
∫
f
(k,r)
0

(∂ log f (k,r)θ

∂ω

∣∣∣
ω=ω

)⊤

(ω(k,r) − ω
(k,r)
0 )

 ν2,r(dỹ(r))
=−

∫
f
(k,r)
0

[(
∂ log(G(ω)⊤ỹ(r))

∂ω

∣∣∣
ω=ω

)⊤

(ω(k,r) − ω
(k,r)
0 )

]
ν2,r(dỹ

(r))

=−
∫
f
(k,r)
0

[(
1

G(ω̄)⊤
∂G(ω̄)⊤

∂ω

)⊤

(ω(k,r) − ω
(k,r)
0 )

]
ν2,r(dỹ

(r)),

where ω̄ = (ω̄1, ..., ω̄K)⊤ is between ω(k,r) and ω
(k,r)
0 and

∂G(ω̄)⊤

∂ω
=

(
∂G1(ω̄)

∂ω̄
, ...,

∂GK(ω̄)

∂ω̄

)
=


∂G1(ω̄)
∂ω̄1

· · · ∂GK(ω̄)
∂ω̄1

...
...

∂G1(ω̄)
∂ω̄K

· · · ∂GK(ω̄)
∂ω̄K

 .

Since ỹ(r) is discretely distributed, according to (19) and Condition A.4.1, we further obtain that∫
f
(k,r)
0 log

(
f
(k,r)
0

f
(k,r)
θ

)
ν2,r(dỹ

(r))

=−
K∑
j=1

Gj(ω
(k,r)
0 )

Gj(ω)

{
∂Gj(ω̄)

∂ω

}⊤

(ω(k,r) − ω
(k,r)
0 )

≤ C3K

1− ϵ2
∥ω(k,r) − ω

(k,r)
0 ∥1.

Thus, the proof of inequality (21) is completed.

Similarly, we write V (f
(k)
θ , f

(k)
0 ) as:

V (f
(k)
θ , f

(k)
0 ) =

∫ ∫
f
(k)
0

{
log

(
f
(k)
0

f
(k)
θ

)}2

ν2(dỹ)ν1(dx)

=

∫ ∫
f
(k)
0

{
R∑

r=1

log

(
f
(k,r)
0

f
(k,r)
θ

)}2

ν2(dỹ)ν1(dx)

=

R∑
r=1

∫ ∫
f
(k,r)
0

{
log

(
f
(k,r)
0

f
(k,r)
θ

)}2

ν2,r(dỹ
(r))ν1(dx)

+
∑

r1 ̸=r2

∫ [∫
f
(k,r1)
0

{
log

(
f
(k,r1)
0

f
(k,r1)
θ

)}
ν2,r1(dỹ

(r1))

]

·

[∫
f
(k,r2)
0

{
log

(
f
(k,r2)
0

f
(k,r2)
θ

)}
ν2,r2(dỹ

(r2))

]
ν1(dx),

where the second term can be upper bounded by{
C3K

1− ϵ2

}2 ∑
r1 ̸=r2

Ex∥ω(k,r1) − ω
(k,r1)
0 ∥1∥ω(k,r2) − ω

(k,r2)
0 ∥1,

and for the first term, we have∫
f
(k,r)
0

{
log

(
f
(k,r)
0

f
(k,r)
θ

)}2

ν2,r(dỹ
(r)) =

K∑
j=1

Gj(ω
(k,r)
0 )

{
log

(
Gj(ω

(k,r)
0 )

Gj(ω(k,r))

)}2

.
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If Gj(ω
(k,r)
0 ) ≤ ∥ω(k,r))− ω

(k,r)
0 )∥1, we have that

Gj(ω
(k,r)
0 )

{
log

(
Gj(ω

(k,r)
0 )

Gj(ω(k,r))

)}2

≤ max{| log(1− ϵ2)|, | log(1 + ϵ2)|}∥ω(k,r))− ω
(k,r)
0 )∥1

according to Condition A.4.1. If Gj(ω
(k,r)
0 ) > ∥ω(k,r))− ω

(k,r)
0 )∥1, similar to the proof for (21),

we obtain that

Gj(ω
(k,r)
0 )

{
log

(
Gj(ω

(k,r)
0 )

Gj(ω(k,r))

)}2

=Gj(ω
(k,r)
0 )

[
1

Gj(ω)

{
∂Gj(ω̄)

∂ω

}⊤

(ω(k,r) − ω
(k,r)
0 )

]2

≤ Gj(ω
(k,r)
0 ){

(1− ϵ2)Gj(ω
(k,r)
0 )

}2 ·
(
C3∥ω(k,r) − ω

(k,r)
0 ∥1

)2

≤
(

C3

1− ϵ2

)2

∥ω(k,r) − ω
(k,r)
0 ∥1,

where ω̄ is between ω
(k,r)
0 and ω(k,r). Thus, the inequality (22) holds in the neighbourhood of

θ0.

B.2.2 Verification of Condition (c) in Lemma 3

Proof. For the sequence {ϵn}∞n=1 in Lemma 3, by (21) and (22) in Result 1 and (17), we obtain that

Π(G∗
n(θ0, ϵn)) ≥ Π

{
θ : Ex∥ω(k,r) − ω

(k,r)
0 ∥1 ≤ ∆n for k ∈ [K], r ∈ [R]

}
,

where ∆n = U1ϵ
2
n for some positive constant U1.

For simplicity of presentation, we now omit k and r in f (k,r)0 , f (k,r)θ , ω(k,r)
0 , ω(k,r), B(k) and A(r)

in this proof here. Note that
∥ω − ω0∥1 = ∥B⊤ψ2(x;θ

(2)) + A⊤ψ1(x;θ
(1))− B⊤

0 ψ2(x)− A⊤
0 ψ1(x)∥1

≤∥B⊤ψ2(x;θ
(2))− B⊤

0 ψ2(x)∥1 + ∥A⊤ψ1(x;θ
(1))− A⊤

0 ψ1(x)∥1
≤∥B⊤ψ2(x;θ

(2))− B⊤
0 ψ2(x;θ

(2))∥1 + ∥B⊤
0 ψ2(x;θ

(2))− B⊤
0 ψ2(x;θ

(2)∗)∥1
+ ∥B⊤

0 ψ2(x;θ
(2)∗)− B⊤

0 ψ2(x)∥1 + ∥A⊤ψ1(x;θ
(1))− A⊤

0 ψ1(x;θ
(1))∥1

+ ∥A⊤
0 ψ1(x;θ

(1))− A⊤
0 ψ1(x;θ

(1)∗)∥1 + ∥A⊤
0 ψ1(x;θ

(1)∗)− A⊤
0 ψ1(x)∥1.

Corresponding to each term above, we consider the following six terms:
(I) : Π{θ : Ex∥B⊤ψ2(x;θ

(2))− B⊤
0 ψ2(x;θ

(2))∥1 ≤ ∆n/6};
(II) : Π{θ : Ex∥B⊤

0 ψ2(x;θ
(2))− B⊤

0 ψ2(x;θ
(2)∗)∥1 ≤ ∆n/6};

(III) : Π{θ : Ex∥B⊤
0 ψ2(x;θ

(2)∗)− B⊤
0 ψ2(x)∥1 ≤ ∆n/6};

(I)′ : Π{θ : Ex∥A⊤ψ1(x;θ
(1))− A⊤

0 ψ1(x;θ
(1))∥1 ≤ ∆n/6};

(II)′ : Π{θ : Ex∥A⊤
0 ψ1(x;θ

(1))− A⊤
0 ψ1(x;θ

(1)∗)∥1 ≤ ∆n/6};
(III)′ : Π{θ : Ex∥A⊤

0 ψ1(x;θ
(1)∗)− A⊤

0 ψ1(x)∥1 ≤ ∆n/6}.

(23)

Corresponding to B(k) for (6), we write B = (β1, ...,βK) and B0 = (β10, ...,βK0). Then for (I),
we have that

Π
{
θ : Ex∥B⊤ψ2(x;θ

(2))− B⊤
0 ψ2(x;θ

(2))∥1 ≤ ∆n/6
}

=Π
{
(θ(1)⊤,B⊤)⊤ :

K∑
j=1

Ex|β⊤
j ψ2(x;θ

(2))− β⊤
j0ψ2(x;θ

(2))| ≤ ∆n/6
}

≥Π
{
(θ(1)⊤,B⊤)⊤ : Ex|β⊤

j ψ2(x;θ
(2))− β⊤

j0ψ2(x;θ
(2))| ≤ ∆n

6K
for j = 1, ...,K

}
=

[
Π

{
(θ(1)⊤,β⊤

1 )
⊤ : Ex|β⊤

1 ψ2(x;θ
(2))− β⊤

10ψ2(x;θ
(2))| ≤ ∆n

6K

}]K
,
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where the last equality holds since all columns of B have independent and identical prior.

Taking ∆ = ∆n

6K =
U1ϵ

2
n

6K , by Proposition 1, we have that for any given nonzero ψ2(x;θ
(2)), M1 > 0,

and M2 > 0,

Π
{
β1 : |β⊤

1 ψ2(x;θ
(2))− β⊤

10ψ2(x;θ
(2))| ≤ ∆

∣∣∣ψ2(x;θ
(2))
}

> exp

−

{
ψ⊤
2 (x;θ

(2))β0

}2

+∆2

2B∥ψ2(x;θ
(2))∥2

 8∆4

B
2∥ψ2(x;θ

(2))∥4

> exp

{
−M1nϵ

2
n · F 2

2 ∥ψ2(x;θ
(2))∥2 +∆2

2M1nϵ2n · S(2)
2 (logM (2))−1∥ψ2(x;θ

(2))∥2

}
8∆4

{S(2)
1 M (2)q2}2∥ψ2(x;θ

(2))∥4

> exp

{
−M1nϵ

2
n · (F

2
2 + 1) logM (2)

2M1nϵ2n · S(2)
2

}
· exp

[
−
{
2 logS

(2)
1 + 2q2 logM

(2) + 4 log ∥ψ2(x;θ
(2))∥ − log(8∆4)

}]
≥ exp{−M1nϵ

2
n} · exp{−M2nϵ

2
n},

for large enough n, where the second inequality follows from Condition A.4.2 in Section A.2
and Condition B.2.2 in Section A.3, and the third inequality holds since ∆ = ∆n

6K =
U1ϵ

2
n

6K by
definition and ϵn → 0 as n → ∞. The last inequality holds if 4 log(1/ϵ2n) ≤ M2nϵ

2
n for large

enough n and log ∥ψ2(x;θ
(2))∥ ≺ M2nϵ

2
n, where, according to Lemma 1, the latter holds if

Hn2

(
logEn2 + log rn2

Hn2

)
≺ M2nϵ

2
n, which can be guaranteed by Condition A.3.1 in Section A.2.

Since the result above holds for any given ψ2(x;θ
(2)), by summarizing the discussion above, we

obtain that

(I) ≥
[
inf

θ∈Fn

Π

{
β1 : Ex|β⊤

1 ψ2(x;θ
(2))− β⊤

10ψ2(x;θ
(2))| ≤ ∆n

6K

∣∣∣ψ2(x;θ
(2))

}]K
≥ exp{−K(M1 +M2)nϵ

2
n}.

Now we consider the second term (II) in (23), which can be written as

(II) =Π{θ(2) : Ex∥B⊤
0 ψ2(x;θ

(2))− B⊤
0 ψ2(x;θ

(2)∗)∥1 ≤ ∆n/6}

=Π

θ(2) :

K∑
j=1

Ex|β⊤
j0ψ2(x;θ

(2))− β⊤
j0ψ2(x;θ

(2)∗)| ≤ ∆n/6


≥Π

{
θ(2) : Ex∥ψ2(x;θ

(2))− ψ2(x;θ
(2)∗)∥1 ≤ ∆n

6KF2

}
,

where the last inequality follows from Condition A.4.2 in Section A.2.

Consider the set
S(2) = {θ(2) : |θ(2)

j − θ
(2)∗
j | ≤ ηn for j ∈ γ(2)∗; |θ(2)

j − θ
(2)∗
j | ≤ η′n for j /∈ γ(2)∗}, (24)

where ηn and η′n will be specified later. Let rh denote the number of nonzero connections to the hth
hidden layer which includes the bias for the hth hidden layer and the weights between the (h− 1)th
and the hth layer, such that

∑
rh = ∥γ(2)∗∥1 ≜ rn2. Then, for any x satisfying ∥x∥∞ ≤ 1,

∥ψ2(x;θ
(2))− ψ2(x;θ

(2)∗)∥1

≤ηnHn2(En2 + ηn)
Hn2−1

Hn2∏
h=1

rh + η′nJn2

Hn2∏
h=1

(
En2 + ηn +

η′nL
(2)
h

rh

)
rh

≤ηnHn2(U2En2)
Hn2

(∑
rh

Hn2

)Hn2

+ η′nJn2(U2En2)
Hn2

(∑
rh

Hn2

)Hn2

≤2U3ϵ
2
n,
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where the first inequality follows from Lemma 2, and the second and the third
inequalities hold if we take ηn = U3ϵ

2
n/{Hn2(U2En2)

Hn2(rn2/Hn2)
Hn2} and

η′n = U3ϵ
2
n/{Jn2(U2En2)

Hn2(rn2/Hn2)
Hn2} for some constants U2 > 1 and U3 > 0. By

taking a small enough U3, we can obtain that Ex∥ψ2(x;θ
(2)) − ψ2(x;θ

(2)∗)∥1 ≤ ∆n

6KF1
for any

θ(2) ∈ S(2) defined in (24). Then, it suffices to prove that Π(S(2)) = Π(2)(S(2)) ≥ exp(−M3nϵ
2
n)

for some positive constant M3, where Π(2)(·) is the prior measure of θ(2) as given in Section A.3.

As defined in (5) in Section 3.2, each element of θ(2) has an independent continuous prior, denoted
π
(2)
θ (·), and we use π(2)

θ to denote the minimal density value of π(2)
θ (·) on the interval [−En2 −

1, En2 + 1]. Then, we obtain that

Π(2)(S(2))

=
∏

j∈γ(2)∗

π
(2)
θ (θ

(2)∗
j − ηn ≤ θ

(2)
j ≤ θ

(2)∗
j + ηn)

∏
j /∈γ(2)∗

π
(2)
θ (θ

(2)∗
j − η′n ≤ θ

(2)
j ≤ θ

(2)∗
j + η′n)

≥(2π
(2)
θ ηn)

rn2

{
π
(2)
θ (θ

(2)
1 ∈ [−η′n, η′n])

}Jn2

,

and thus, according to Conditions B.1.1 and B.1.2 in Section A.3, we have that

− log Π(2)(S(2)) ≤ rn2

{
log

1

2
+ log

1

π
(2)
θ

+ log
1

ηn

}
+ Jn2 log

{
1

π
(2)
θ (θ

(2)
1 ∈ [−η′n, η′n])

}

≤ rn2

{
constant +Hn2 log n+ logLn2 + log

(
1

ϵ2n

)
+ logHn2

+Hn2 log(U2En2) +Hn2 log

(
rn2
Hn2

)}
+ Jn2 log

(
Jn2

Jn2 − 1

)
≍ rn2Hn2 log n+ rn2 logLn2,

where the last asymptotic equality follows from Condition A.3 in Section A.2 and
the fact that log(1/ϵn) = O(log n). Thus, (II) ≥ Π(S(2)) ≥ exp(−M3nϵ

2
n) holds if

rn2Hn2 log n+ rn2 logLn2 ≤ U4nϵ
2
n for some sufficiently small positive constant U4.

Now we consider the third term in (23):

Ex∥B⊤
0 ψ2(x;θ

(2)∗)− B⊤
0 ψ2(x)∥1 =

K∑
j=1

Ex

∣∣β⊤
j0{ψ2(x;θ

(2)∗)− ψ2(x)}
∣∣

≤ KF2Ex

∣∣ψ2(x;θ
(2)∗)− ψ2(x)

∣∣
≤ KF2ϖn2,

where the second inequality follows from Condition A.4.2 in Section A.2 and the last inequality
follows from the definition of the true model given in (14). Thus, we can take ϵ2n = O(ϖn2) so that
(III) ≈ 1 for large enough n.

Similar discussion can be applied to (I)′, (II)′ and (III)′ in (23) and we can obtain that

(I)′ ≥
[
inf

θ∈Fn

Π

{
α1 : Ex|α⊤

1 ψ1(x;θ
(1))−α⊤

10ψ1(x;θ
(1))| ≤ ∆n

6K

∣∣∣ψ1(x;θ
(1))

}]K
≥ exp{−K(M′

1 +M′
2)nϵ

2
n};

(II)′ ≥ Π(θ(1) : S(1)) ≥ exp(−M′
3nϵ

2
n);

(III)′ ≈ 1 for large enough n,

where M′
1, M′

2 and M′
3 are constants, and S(1) can be similarly defined as in (24). Since the

discussion above holds for any k ∈ [K] and r ∈ [R], by choosing proper M1, M2, M3, M′
1, M′

2
and M′

3, Condition (c) of Lemma 3 can be verified.
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B.2.3 Verification of Condition (a) in Lemma 3

Proof. Condition (a) in Lemma 3 can be verified if we can find a parameter set Θn ⊂ Θ such that
logN(ϵn/36,Pn, dn) ≤ nϵ2, where Pn represents the set of all densities that can be represented by
model (2) in Section 3.1 with parameters in Θn. Consider the following parameter space:

Θn = Sn1 ⊗ Sn2 ⊗ Bn ⊗An,

where

Sn1 = {θ(1) : |θ(1)j | ≤ I(1)n , |γ(1)
θ | = |{j : |θ(1)j | ≥ δ′n1}| ≤ kn1rn1, |γ(1)

θ |in ≤ k′n1sn1};

Sn2 = {θ(2) : |θ(2)j | ≤ I(2)n , |γ(2)
θ | = |{j : |θ(2)j | ≥ δ′n2}| ≤ kn2rn2, |γ(2)

θ |in ≤ k′n2sn2};

Bn = {B(k) = (β
(k)
1 , ...,β

(k)
K ) for k ∈ [K] : |β(k)

l,j | ≤ bn, for k, l ∈ [K] and j ∈ [M (1)]};

An = {A(r) = (α
(r)
1 , ...,α

(r)
K ) for r ∈ [R] : |α(r)

l,j | ≤ an, for r ∈ [R], l ∈ [K], and j ∈ [M (2)]}.

Here, |γ(1)
θ |in and |γ(2)

θ |in denote the input dimensions of the sparse network structures γ(1)
θ and γ

(1)
θ ,

respectively, and I(1)n , I(2)n , δ′n1, δ′n2, kn1(≤ n/rn1), kn2(≤ n/rn2), k′n1(≤ n/sn1), k′n2(≤ n/sn2),
bn and an are positive constants whose values will be described later.

The parameter space Θn can be covered by a set of L∞ balls of the form (ϱj − ρn, ϱj + ρn)
Wn
j=1,

where for the jth coordinate, ϱj is the center which lies inside Θn, ρn is the radius, and Wn =

Jn1 + Jn2 +K2M (1) +RKM (2) is the number of all involved parameters. It can be verified that
the number of balls needed to cover the parameter space is upper bounded by

Kn ≜


kn1rn1∑
j=1

χ(1)(j)
(I(1)n

ρn
+ 1
)j ·


kn2rn2∑
j=1

χ(2)(j)
(I(2)n

ρn
+ 1
)j

·
(an
ρn

+ 1
)K2M(1)

·
( bn
ρn

+ 1
)RKM(2)

≜Kn1 · Kn2 · Kn3 · Kn4, (25)

where for l = 1, 2, χ(l)(j) denotes the number of all valid networks with exactly j connections and
no more than k′nlsnl inputs.

Then we consider the number of dn-balls needed to cover the set of all densities, Pn. Consider
two parameters in Θn: θu ≜ (θ(1)⊤

u ,θ(2)⊤
u ,B(1)⊤

u , . . . ,B(K)⊤
u ,A(1)⊤

u , . . . ,A(R)⊤
u )⊤ and θv ≜

(θ(1)⊤
v ,θ(2)⊤

v ,B(1)⊤
v , . . . ,B(K)⊤

v ,A(1)⊤
v , . . . ,A(R)⊤

v )⊤, which satisfy that

(i) there exists a network structure γ(1) such that |γ(1)| ≤ kn1rn1, |γ(1)|in ≤ k′n1sn1, |θ(1)u,j −
θ
(1)
v,j | ≤ ρn for j ∈ γ(1), θ(1)u,j ≤ δ′n1 and θ

(1)
v,j ≤ δ′n1 for j /∈ γ(1);

(ii) there exists a network structure γ(2) such that |γ(2)| ≤ kn2rn2, |γ(2)|in ≤ k′n2sn2, |θ(2)u,j −
θ
(2)
v,j | ≤ ρn for j ∈ γ(2), θ(2)u,j ≤ δ′n2 and θ(2)v,j ≤ δ′n2 for j /∈ γ(2);

(iii) |β(k)
ul,j − β

(k)
vi,j | ≤ ρn for k, l ∈ [K] and j ∈ [M (1)];

(iv) |α(r)
ul,j − α

(r)
vl,j | ≤ ρn for r ∈ [R], l ∈ [K], and j ∈ [M (2)],

where sn1 and sn2 are defined in Condition A.3.1 in Appendix A.2, and ρn is a positive constant
whose values will be discussed later.

Let f (k)θu
and f

(k)
θv

denote the corresponding densities in Pn for k ∈ [K]. By (21) in
Result 1 and the fact that d(f1, f2) ≤

√
K(f1, f2) in Appendix B.1.1, we obtain that

d2n(θu,θv) ≤ maxk∈[K],r∈[R] U5Ex∥ω(k,r)
u − ω

(k,r)
v ∥1 for some positive constant U5, where

ω
(k,r)
u = B

(k)⊤
u ψ2(x;θ

(2)
u )+A

(r)⊤
u ψ1(x;θ

(1)
u ) and ω

(k,r)
v = B

(k)⊤
v ψ2(x;θ

(2)
v )+A

(r)⊤
v ψ1(x;θ

(1)
v )
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for k ∈ [K] and r ∈ [R]. For ease of presentation, we omit k and r in B(k)
u , B(k)

v , A(r)
u , A(r)

v , ω(k,r)
u

and ω
(k,r)
v , and further obtain that

∥ωu − ωv∥1 ≤ ∥B⊤
u ψ2(x;θ(2)

u )− B⊤
v ψ2(x;θ(2)

v )∥1 + ∥A⊤
u ψ1(x;θ(1)

u )− A⊤
v ψ1(x;θ(1)

v )∥1
≤ ∥B⊤

u ψ2(x;θ(2)
u )− B⊤

u ψ2(x;θ(2)
v )∥1 + ∥B⊤

u ψ2(x;θ(2)
v )− B⊤

v ψ2(x;θ(2)
v )∥1

+ ∥A⊤
u ψ1(x;θ(1)

u )− A⊤
u ψ1(x;θ(1)

v )∥1 + ∥A⊤
u ψ1(x;θ(1)

v )− A⊤
v ψ1(x;θ(1)

v )∥1

=

K∑
i=j

|β⊤
uj{ψ2(x;θ(2)

u )− ψ2(x;θ(2)
v )}|+

K∑
j=1

|(βuj − βvj)
⊤ψ2(x;θ(2)

v )|

+

K∑
i=1

|α⊤
ui{ψ1(x;θ(1)

u )− ψ1(x;θ(1)
v )}|+

K∑
i=1

|(αui −αvi)
⊤ψ1(x;θ(1)

v )|

≤ Kbn∥ψ2(x;θ(2)
u )− ψ2(x;θ(2)

v )∥1 +Kρn∥ψ2(x;θ(2)
v )∥

+Kan∥ψ1(x;θ(1)
u )− ψ1(x;θ(1)

v )∥1 +Kρn∥ψ1(x;θ(1)
v )∥,

where the preceding four boundness assumptions for θu and θv, together with the definition of An

and Bn, are used.

Similar to the proof in Appendix B.2.2, by using Lemmas 1 and 2, we can further obtain that
d2n(θu,θv) ≤ (ϵn/36)

2 if we choose ρn, δ′n1 and δ′n2 in the preceding derivations as follows:

(i) δ′n1 = U6ϵ
2
n/bnJn1(U

′
6I

(1)
n )Hn1(kn1rn1/Hn1)

Hn1 for some constants U6 > 0 and U ′
6 > 1;

(ii) δ′n2 = U7ϵ
2
n/anJn2(U

′
7I

(2)
n )Hn2(kn2rn2/Hn2)

Hn2 for some constants U7 > 0 and U ′
7 > 1;

(iii) ρn = min
{
U8,1ϵ

2
n/bnHn1(U

′
8,1I

(1)
n )Hn1(kn1rn1/Hn1)

Hn1 ,

U8,2ϵ
2
n/anHn2(U

′
8,2I

(2)
n )Hn2(kn2rn2/Hn2)

Hn2

}
for some constants U8,1, U8,2 > 0 and U ′

8,1, U
′
8,2 > 1.

Thus, the log covering number of Pn, logN(ϵn/36,Pn, dn), can be upper bounded by logKn =
logKn1 + logKn2 + logKn3 + logKn4, with Knj given in (25) for j = 1, 2, 3, 4.

Considering the fact that logχ(1)(j) ≤ log
(

pn
k′n1sn1

)(
k′n1sn1+Hn1Ln1

j

)
≤ k′n1sn1 log(pn) +

j log(k′n1sn1 +Hn1L
2

n1) ≤ k′n1sn1 log(pn) + kn1rn1 log{Hn1(k
′
n1sn1 + Ln1)

2}, and by choosing
log I

(1)
n = O(log n), log I(2)n = O(log n), an ≍

√
nϵ2n and bn ≍

√
nϵ2n, we have that

logKn1

≤ log(kn1rn1) + logχ(1)(kn1rn1) + kn1rn1 log
(I(1)n

ρn
+ 1
)

≤ log(kn1rn1) + k′n1sn1 log(pn) + kn1rn1 logHn1 + 2kn1rn1 log(k
′
n1sn1 + Ln1)

+ kn1rn1

{
constant + log I(1)n + log bn + logHn1 +Hn1 log(U

′
7,1I

(1)
n ) +Hn1 log(kn1rn1/Hn1)

+ log an + logHn2 +Hn2 log(U
′
7,2I

(2)
n ) +Hn2 log(kn2rn2/Hn2) + log

1

ϵ2n

}
=k′n1sn1 log(pn) + kn1rn1 ·O

(
Hn1 log n+Hn2 log n+ logLn1 + logLn2

)
,

where the last equality holds since kn1rn1 ≤ n, kn2rn2 ≤ n, k′n1sn1 ≤ n and k′n1sn1 ≤
n. By choosing k′n1 and kn1 such that kn1rn1

(
Hn1 log n+Hn2 log n+ logLn1 + logLn2

)
≍ k′n1sn1 log(pn) ≍ nϵ2n, we have nϵ2n = O

{
rn1Hn1 log n + rn1Hn2 log n + rn1 logLn1

+rn1 logLn2 + sn1 log(pn)
}

. By applying similar discussion on logKn2, logKn3 and
logKn4, we further obtain that logN(Pn, ϵn) ≤ logKn ≤ nϵ2n, where the sequence
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{ϵn}∞n=1 satisfies that nϵ2n = O
{
(rn1 + rn2)(Hn1 +Hn2) log n+ (rn1 + rn2)(logLn1 + logLn2)

+(sn1 + sn2) log pn
}

.

B.2.4 Verification of Condition (b) in Lemma 3

Proof. Since Π(Θcn) ≤ Π(Scn1) + Π(Scn2) + Π(Bcn) + Π(Ac
n), we first examine Π(Bcn) and Π(Ac

n).
For any bn > 0, by the prior assumption given in (6), we have that

Π(Bcn) = Π
{

B(k) = (β
(k)
1 , ...,β

(k)
K ) for k ∈ [K] : |β(k)

l,j | ≤ bn for l, k ∈ [K], and j ∈ [M (2)]
}c

= Π(∪k,l∈[K],j∈[M(2)]|β
(k)
l,j | > bn)

≤
K∑
k=1

K∑
l=1

M(2)∑
j=1

π
(k)
B (|β(k)

l,j | > bn)

= K

K∑
k=1

M(2)∑
j=1

π
(k)
B (|β(k)

1,j | > bn),

where π(k)
B (·) denotes the measure induced by the prior distribution of B(k) as defined in Section 3.2.

Applying the bounds on the Mills ratio [76] for the standard normal distribution: 1
x −

1
x3 <

1−Φ(x)
φ(x) <

1
x − 1

x3 + 3
x5 for −∞ < x < ∞, where Φ(·) and φ(·) denote the CDF and probability density

function (PDF) of the standard normal distribution, respectively, we further obtain that, by taking

bn = maxk∈[K]

√
5B

(k)

n nϵ2n,

π
(k)
B (|β(k)

1,j | > bn) <

2φ

(
bn/
√
(Σ

(k)
β )j,j

)
bn/
√
(Σ

(k)
β )j,j

=
2√

2πb2n/(Σ
(k)
β )j,j

· exp
{
−1

2
(b2n/(Σ

(k)
β )j,j)

}

≤ 2√
2πb2n/B

(k)

n

· exp
{
−1

2
(b2n/B

(k)

n )

}
≺ exp

(
−5

2
nϵ2n

)

where Aj,j represents the (j, j) element of matrix A, the first step is due to the Mills ratio bounds,
the second step comes from the definition of the PDF of the standard normal distribution, the third
step is due to the fact that the sum of the eigenvalues of a matrix equals the trace of the matrix and
the positivity of

(
Σ

(k)
β

)
j,j

, and the last step comes from the choice of bn. Therefore, it follows that

Π(Bcn) < K2M (2) exp(− 5
2nϵ

2
n) for large enough n.

Similarly, we can obtain that Π(Ac
n) < K2M (1) exp(− 5

2nϵ
2
n) for large enough n by taking

an = maxr∈[R]

√
5A

(r)

n nϵ2n.

We then consider Π(Scn1), which can be upper bounded by

Π(Scn1) ≤ Π(θ(1) : ∪Jn1
j=1|θ

(1)
j | > I(1)n ) + Π(θ(1) : |γ(1)

θ | = |{j : |θ(1)j | ≥ δ′n1}| > kn1rn1)

+ π(θ(1) : |γ(1)
θ |in > k′n1sn1)

= Jn1π
(1)
θ (|θ(1)1 | > I(1)n |) + P{Binomial(Jn1, νn) > kn1rn1} (26)

+ P{Binomial(pnL
(1)
1 , νn) > k′n1sn1}

where νn = 1 − π
(1)
θ ([−δ′n1, δ′n1]) ≤ 1

Jn1
exp{(Hn1 +Hn2) log n + logLn1 + logLn2 + log pn}

according to Condition B.1.2 in Section A.3. For the first term in (26), we have that Jn1π
(1)
θ (|θ(1)1 | >

I
(1)
n |) ≺ exp{−(2 + ϵ

(k)
3 )nϵ2n} following Condition B.1.3 in Section A.3, where ϵ(k)3 > 0 is a
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constant. The second term can be upper bounded by

P{Binomial(Jn1, νn) > kn1rn1}

=

Jn1∑
j=kn1rn1+1

(
Jn1
j

)
νjn(1− νn)

Jn1−j

≤
Jn1∑

j=kn1rn1+1

Jjn1ν
j
n(1− νn)

Jn1−j ≤ Jn1(Jn1νn)
kn1rn1

≤Jn1 exp
[
−S(1)

0 kn1rn1
{
(Hn1 +Hn2) log n+ logLn1 + logLn2 + log pn

}]
≺ exp

{
−S(1)

0 nϵ2n

}
,

where the last inequality is due to the choice of kn1 in Appendix B.2.3, and S(1)
0 > 2 is a constant

given in Condition B.1.2 in Section A.3.

Similarly, for the third term in (26) we have that

P{Binomial(pnL
(1)
1 , νn) > k′n1sn1}

=

pnL
(1)
1∑

j=k′n1sn1+1

j

(
pnL

(1)
1

j

)
νjn(1− νn)

pnL
(1)
1 −j

≤
pnL

(1)
1∑

j=k′n1sn1+1

(pnL
(1)
1 )jνjn(1− νn)

pnL
(1)
1 −j = pnL

(1)
1 (Jn1νn)

k′n1sn1(
pnL

(1)
1

Jn1
)k

′
n1sn1

≤pnL(1)
1 exp

[
− S

(1)
0 k′n1sn1

{
(Hn1 +Hn2) log n+ logLn1 + logLn2 + log pn

}
− k′n1sn1 log

(
Jn1

pnL
(1)
1

)]
≺ exp{−S(1)

0 nϵ2n}.
Thus, Condition (b) in Lemma 3 is verified.

B.3 Proof of Theorem 2

We now prove Theorem 2. The proof of the upper bound adapts the techniques in [46], and the proof
of the lower bound employs a general mechanism for lower bounding the Bayes risk [40], which is
tighter than the Fano’s inequality [44].

Proof. Upper Bound. The Bayes risk can be written as

ℜBayes = inf
y

 ∑
y∈[K]n̄

ℏ(y)E(L(y,y)|y; τ )


= inf

y

 ∑
y∈[K]n̄

ℏ(y)
1

n̄

n̄∑
i=1

P(yi ̸= yi|yi; τ )


= inf

y

 1

n̄

n̄∑
i=1

∑
y∈[K]n̄

ℏ(y)P(yi ̸= yi|yi; τ )


= inf

y

{
1

n̄

n̄∑
i=1

K∑
g=1

ℏi,gP(yi ̸= g|yi = g; τ )

}
.
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We first consider the situation g = 1:

P(yi ̸= 1|yi = 1; τ ) ≤
K∑
g′=2

P(yi = g′|yi = 1; τ ).

For each g′ ≥ 2, considering the inference procedure of yi, we have that
P(yi = g′|yi = 1; τ )

≤P

ℏi,g′
ℏi,1

R∏
r=1

K∏
l=1

(
τ
(r)
i,g′l

τ
(r)
i,1l

)I(y(r)
i =l)

> Ω

∣∣∣∣∣yi = 1; τ


=P

( ℏi,g′
Ωℏi,1

)λ R∏
r=1

K∏
l=1

(
τ
(r)
i,g′l

τ
(r)
i,1l

)λI(y(r)
i =l)

> 1

∣∣∣∣∣yi = 1; τ


≤min
λ≥0

(
ℏi,g′
Ωℏi,1

)λ R∏
r=1

E


K∏
l=1

(
τ
(r)
i,g′l

τ
(r)
i,1l

)λI(y(r)
i =l) ∣∣∣∣∣yi = 1; τ


=min
λ≥0

(
ℏi,g′
Ωℏi,1

)λ R∏
r=1

K∑
l=1

(
τ
(r)
i,g′l

)λ (
τ
(r)
i,1l

)1−λ
≤ exp

{
−R

{
− min

0≤λ≤1

1

R

{
−λ log Ωℏi,1

ℏi,g′
+

R∑
r=1

log

{
K∑
l=1

(
τ
(r)
i,g′l

)λ (
τ
(r)
i,1l

)1−λ}}}}
,

where the inequality in the third line follows from Markov’s inequality. Denote C
(i)
gg′ =

−min0≤λ≤1
1
R

{
−λ log Ωℏi,g

ℏi,g′
+
∑R
r=1 log

{∑K
l=1

(
τ
(r)
i,gl

)1−λ (
τ
(r)
i,g′l

)λ}}
and I

(g)
Ω (ℏℏℏi, τ i) =

ming′ ̸=g C
(i)
gg′ , we further obtain that

P(yi = l|yi = 1; τ ) ≤ exp
{
−RC(i)

1g′

}
≤ exp

{
−Rmin

g′ ̸=1
C

(i)
gg′

}
= exp

{
−RI(1)Ω (ℏℏℏi, τ i)

}
.

Thus, we can obtain the upper bound of the Bayes risk:

ℜBayes ≤
K − 1

n̄

n̄∑
i=1

K∑
g=1

ℏi,ge−RI
(g)
Ω (ℏℏℏi,τ i).

Lower Bound. Using Markov’s inequality, we obtain that

ℜBayes = inf
y

 ∑
y∈[K]n̄

ℏ(y)E(L(y,y)|y; τ )


≥ inf

y

 ∑
y∈[K]n̄

ℏ(y)
1

n̄
P
(
L(y,y) > 1

n̄
|y; τ

)
=

1

n̄
inf
y

 ∑
y∈[K]n̄

ℏ(y)P(y ̸= y|y; τ )


=

1

n̄
inf
y

 ∑
y∈[K]n̄

ℏ(y)E {1(y ̸= y)|y; τ}


≜

1

n̄
ℜ,
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where the second step is due to Markov’s inequality. Using Lemma 7, we can obtain that

If (ℏ,P) ≥ ϕf (ℜ,ℜ0),

where P is the set of distributions of {ỹi}n̄i=1 induced by y, and for 0-1 loss, ℜ0 has the expression
in [40]: ℜ0 = 1− supa∈[K]n̄ ℏ(B(a)) with B(a) = {y ∈ [K]n̄ : 1(y ̸= a) = 0}. Then, it can be
easily verified that ℜ0 = 1−

∏n̄
i=1 maxk∈[K] ℏi,k.

Let g(t) = ϕf (t,ℜ0), which is, by Lemma 6, non-increasing for t ∈ [0,ℜ0], convex, and continuous
in t. Using the convexity of g(t), we obtain that for every t ∈ (0,ℜ0]

ϕf (ℜ,ℜ0) ≥ ϕf (t,ℜ0) + ϕ′f (t−,ℜ0)(ℜ− t),

where ϕ′f (t−,ℜ0) denotes the left derivative of x 7→ ϕf (x,ℜ0) at x = t. Then we can obtain that

ℜ ≥ t+
ϕf (ℜ,ℜ0)− ϕf (t,ℜ0)

ϕ′f (t−,ℜ0)
≥ t+

If (ℏ,P)− ϕf (t,ℜ0)

ϕ′f (t−,ℜ0)
,

where the inequalities come from the fact that I(ℏ,P) ≥ ϕf (ℜ,ℜ0) by Lemma 7 and that
ϕ′f (t−,ℜ0) ≤ 0 due to the non-increasing function g(t) over t ∈ [0,ℜ0]. By taking f(t) = t log t

and t = ℜ0

1+ℜ0
, we obtain that

ℜ ≥ 1 +
I(ℏ,P) + log(1 + ℜ0)

log(1−ℜ0)
,

where I(ℏ,P) is the mutual information of ℏ and P .

Let Y and Z denote two independent random variables such that Y ∼ ℏ and Z ∼ P , and letDKL(·∥·)
denote the KL divergence of the associated distributions. For ease of notation, we use P (Y ), P (Z),
P (Y,Z) and P (Z|Y ) to denote the ℏ, P , the joint distribution of Y and Z, and the conditional
distribution of Z, given Y . Then I(ℏ,P) can be evaluated as follows [43]:

I(ℏ,P) = I(Y ;Z)

= DKL(P (Y, Z)∥P (Y )P (Z))

=
∑

Y ∈[K]n̄,Z∈[K]Rn̄

P (Y )P (Z|Y ) log

{
P (Y )P (Z|Y )

P (Y )P (Z)

}
=

∑
Y ∈[K]n̄

P (Y )DKL(P (Z|Y )∥P (Z))

=
∑

Y ∈[K]n̄

P (Y )DKL(P (Z|Y )∥
∑

Y ′∈[K]n̄

P (Z|Y ′)P (Y ′)).

Using the log sum inequality in Lemma 4, we further obtain that

I(ℏ,P) =
∑

Y ∈[K]n̄

P (Y )
∑

Y ′∈[K]n̄

P (Y ′)DKL(P (Z|Y )∥P (Z|Y ′))

=
∑

Y ∈[K]n̄

∑
Y ′∈[K]n̄

P (Y )P (Y ′)

{
n̄∑
i=1

R∑
r=1

DKL(P (Z
(r)
i |Y )∥P (Z(r)

i |Y ′))

}

=
∑

Y ∈[K]n̄

∑
Y ′∈[K]n̄

n̄∑
i=1

R∑
r=1

P (Y )P (Y ′)DKL

(
τ
(r)
i,Yi∗∥τ

(r)
i,Y ′

i ∗

)

=

n̄∑
i=1

R∑
r=1

K∑
g=1

K∑
g′=1

P (Yi = g)P (Y ′
i = g′)DKL

(
τ
(r)
i,g∗∥τ

(r)
i,g′∗

)

=

n̄∑
i=1

R∑
r=1

K∑
g=1

K∑
g′=1

ℏi,gℏi,g′DKL

(
τ
(r)
i,g∗∥τ

(r)
i,g′∗

)
≜ n̄DKL(ℏℏℏ, τ ).
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Combining the discussion above, we obtain that

ℜBayes ≥
1

n̄

[
1−

DKL(ℏℏℏ, τ ) + 1
n̄ log(2−

∏n̄
i=1 maxk∈[K] ℏi,k){∑n̄

i=1 log(maxk∈[K] ℏi,k)
}
/n̄

]
.

B.4 Proof of Corollary 3

Proof. For k ∈ [K], r ∈ [R], and consider the following set:

Sc =

{
θ : ∪k∈[K],r∈[R]

{
max

ỹ∈[K],x∈Dx

∣∣f (k,r)(ỹ|ω(k,r))− f
(k,r)
0 (ỹ|ω(k,r)

0 )
∣∣ > Mnϵn

}}
,

where θ, ϵn and Mn satisfy the conditions in Theorem 1, ω(k,r) and ω
(k,r)
0 depend on x, and Dx

represents the set of observations of the instances in D. Then, according to Theorem 1 and using the
union bound, we have that

Π(Sc|D0) ≤
∑

k∈[K],r∈[R]

Π

{
θ : max

ỹ∈[K],x∈Dx

∣∣f (k,r)(ỹ|ω(k,r))− f
(k,r)
0 (ỹ|ω(k,r)

0 )
∣∣ > Mnϵn

∣∣∣D0

}

≤
∑

k∈[K],r∈[R]

Π
(
θ : ∥f (k,r) − f

(k,r)
0 )∥TV > U9Mnϵn

∣∣∣D0

)
≤

∑
k∈[K],r∈[R]

Π
(
θ : d(f (k,r), f

(k,r)
0 ) >

√
2U9Mnϵn

∣∣∣D0

)
−→ 0

in Pn0 probability as n → ∞, where ∥ · ∥TV denotes the total variation distance of the associated
distributions as defined in Example 1, and U9 is a positive constant. Here, the second inequality is due
to the definition of the total variation distance of discrete distributions and the fact that f(x) > ς2 for
x ∈ Dx, and the third inequality follows the (i) in Lemma 5. Thus, Π(S|D0) −→ 1 in Pn0 probability
as n→ ∞, where S can be written as

S =

{
θ : max

l∈[K],x∈Dx

∣∣τ (r)kl (x)− τ
(r)
kl (x)

∣∣ ≤Mnϵn, k ∈ [K], r ∈ [R]

}
.

We now consider the Bayes risk ℜBayes, which, according to the proof of Theorem 2, can be written

as ℜBayes = infy

{
1
n̄

∑n̄
i=1

∑K
g=1 ℏi,gP(yi ̸= g|yi = g; τ )

}
. We first consider g = 1:

P(yi ̸= 1|yi = 1; τ )

≤
K∑
g′=2

P(yi = g′|yi = 1; τ )

≤
K∑
g′=2

P


(

ℏi,g′
Ωℏi,1

) R∏
r=1

K∏
l=1

(
τ
(r)
i,g′l

τ
(r)
i,1l

)1(y
(r)
i =l)

> 1

∣∣∣∣∣yi = 1; τ


=

K∑
g′=2

P


(

ℏi,g′
Ωℏi,1

) R∏
r=1

K∏
l=1

(
τ
(r)
i,g′l

τ
(r)
i,1l

)1(y
(r)
i =l)

·
R∏
r=1

K∏
l=1

(
τ
(r)
i,1l

τ
(r)
i,1l

·
τ
(r)
i,g′l

τ
(r)
i,g′l

)1(y
(r)
i =l)

> 1

∣∣∣∣∣yi = 1; τ

 .

If {τ (r)k∗ (·)}k∈[K],r∈[R] ∈ S, using Taylor’s expansion, we have that

log


R∏
r=1

K∏
l=1

(
τ
(r)
i,1l

τ
(r)
i,1l

·
τ
(r)
i,g′l

τ
(r)
i,g′l

)1(y
(r)
i =l)


=

R∑
r=1

K∑
k=1

(
log

τ
(r)
i,g′l

τ
(r)
i,g′l

− log
τ
(r)
i,1l

τ
(r)
i,1l

)
1(y

(r)
i = l) ≤ κMnϵn,
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for some constant κ > 0 and large enough n. For any ϵ > 0, we have that κMnϵn < ϵ by taking
Mn = ϵ/(2κMnϵn). Thus, we further obtain that

P(yi ̸= 1|yi = 1; τ ) ≤
K∑
g′=2

P

exp(ϵ)

(
ℏi,g′
Ωℏi,1

) R∏
r=1

K∏
l=1

(
τ
(r)
i,g′l

τ
(r)
i,1l

)1(y
(r)
i =l)

> 1

∣∣∣∣∣yi = 1; τ


≤ (K − 1) exp

{
−RI(1)Ω (ℏℏℏi, τ i) + ϵ

}
for {τ (r)k∗ (·)}k∈[K],r∈[R] ∈ S , where in the second step, we use Markov’s inequality and the definition
of I(1)Ω (ℏℏℏi, τ i). Similar results also hold for g = 2, ...,K. Hence, according to Theorem 1, we have
that

Π

{
τ : ℜBayes ≤

K − 1

n̄

n̄∑
i=1

K∑
g=1

ℏi,ge−RI
(g)
Ω (ℏℏℏi,τ i)+ϵ

∣∣∣∣D0

}
≥ Π(S|D0),

where Π(S|D0) −→ 1 in Pn0 probability as n→ ∞. Thus, the proof is completed.

C Implementation details and additional experimental results

C.1 Implementation details

Dataset description. We assess the effectiveness of our method on three image datasets with
synthetic annotations, MNIST [47], CIFAR-10 [48], and CIFAR-100 [48], and two datasets with
human annotations, CIFAR-10N [49] and LabelMe [50, 51]. MNIST consists of 28× 28 grayscale
images with 10 classes, containing 60,000 training images and 10,000 test images. CIFAR10 has 10
classes of 32 × 32 × 3 color images, with 50,000 images used for training and 10,000 for testing.
CIFAR100 also consists of 50,000 training images and 10,000 test images, whose size is 32× 32× 3,
but with 100 fine-grained classes. We further consider two additional datasets with human annotations,
CIFAR-10N [49] and LabelMe [50, 51]. For each instance in CIFAR10, CIFAR-10N provides three
independent human annotated noisy labels, with the aggregation of three noisy labels by majority
voting being 9.03%. LabelMe is an image classification dataset consists of 10,000 training images,
500 validation images, and 1,188 test images. For images in the training set, LabelMe has noisy and
incomplete labels provided by a total of R = 59 annotators, with each image being labeled by an
average of 2.547 annotations. For all the datasets except LabelMe, we leave out 10% of the training
data as a noisy validation set.

Experiment setup. The network structure for the MNIST dataset is chosen to be Lenet-5 [52]. We
choose ResNet-18 [2] for CIFAR-10 and CIFAR-10N, and ResNet-34 architecture [2] for CIFAR-100.
As in [53], we employ the pretrained VGG-16 network, followed by a fully connected layer and
a softmax output layer for the LabelMe dataset, using 50% dropout. We take the batch size to be
128 for all the datasets. For MNIST, we use the SGD optimizer with momentum 0.9, weight decay
5× 10−4, and an initial learning rate of 10−2. The learning rate is divided by 10 at the 40th epoch,
and we set 80 epochs in total, in which the first 20 epochs are used to warm up the model on the
noisy dataset and to determine anchor points. For CIFAR10, CIFAR100, CIFAR10N and LabelMe,
the Adam optimizer [77] is utilized with the weight decay 5× 10−4. For CIFAR10, CIFAR100 and
CIFAR10N, the initial learning rate is set to be 10−3, and the network is trained for 120, 150, and
120 epochs for CIFAR10, CIFAR100 and CIFAR10N, repectively, with the first 30 epochs used as
the warm-up stage. The model is trained on LabelMe for 100 epochs, with an initial learning rate
5× 10−4 and first 20 epochs as the warm-up stage.

Baselines. We compare the proposed method with the following state-of-art methods: (1) CE
(Clean), which trains the network with the standard cross entopy loss on the clean datasets; (2) CE
(MV), which trains the network using the labels from majority voting; (3) CE (EM) [9], which obtains
the aggregated labels utilizing the EM algorithm; (4) DoctorNet [54], which models the annotators
individually and then learns averaging weights for combining them; (5) GCE [55], which generalizes
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the mean absolute error and the cross entopy loss to combat errors in training labels; (6) Co-teaching
[56], which trains two networks and cross-trains on instances with small loss values; (6) Co-teaching+
[57], which bridges the “Update by Disagreement” strategy with the Co-teaching method; (7) BLTM
[17], which directly models the transition matrix from Bayes optimal labels to noisy labels and learns
a classifier to predict Bayes optimal labels; (8) MBEM [11], which alternates in rounds between
estimating annotator quality from disagreement with the current model and updating the model by
optimizing the a loss function that accounts for the current estimate of worker quality; (9) CrowdLayer
[53], which concatenates the classifier with multiple annotator-specific layers and simultaneously
learns the parameters; (10) TraceReg [8], which uses a loss function similar to CrowdLayer [53],
but adds a regularization to establish identifiability of the confusion matrices and the classifier; (11)
Max-MIG [7], which jointly aggregates the noisy crowdsourced labels and trains the classifier; (12)
CoNAL [58], which decomposes the annotation noise into common and individual confusions; (13)
GeoCrowdNet (F) [13]; and (14) GeoCrowdNet (W) [13], which are two regularized variants of the
coupled cross-entropy minimization to enhance the identifiability of the confusion matrices. Among
these methods, GCE and Co-teaching are strong baselines dealing with single noisy label issue,
and we adapt them to the multiple annotations setting by utilizing the majority vote labels for loss
computation.

Implementation details. We first warm up the base models on the noisy dataset with majority vote
labels, obtain the set of anchor points D0, and train the sparse Bayesian model on D0 by maximizing
the log posterior distribution of network parameters and excluding non-informative parameters with
low posterior inclusion probability. With the noise transition model trained, we then iteratively
implement the label correction algorithm (10) and update the base models, where linearly increase
the threshold Ωt in the training process. Specifically, let ER denoted the estimated average noise
rate, and let r0 and r1 represent two prespecified constants with r1 ≥ r0 > 0, which determine the
magnitude of Ωt at the beginning and the end of the training process. In the tth epoch, we set the
threshold Ωt to be Ωt = (1−ER) · (r0+ t · r1−r0T ) in the experiment. The implementation procedure
of the proposed method is summarized in Algorithm 1.

Algorithm 1: Annotator-Specific Instance-Dependent Label Noise Learning via Sparse Bayesian
Network and Pairwise LRT
Input :Noisy training data D = {xi, ỹi}Ni=1;

1 // Warm Up the Base Models h1 and h2; Collect Anchor Points D0 [26]
2 // Sections 3.1 and 3.2: Train Sparse Transition Matrices

3 Maximize the log posterior distribution (12) of network parameters and obtain the MAP θ̂;
4 Calculate the posterior inclusion probability P(γ(j)k = 1|θ̂) using (13); if P(γ(j)k = 1|θ̂) < 0.5,

zero out the corresponding parameter;
5 Fine tune the sparse network and obtain the noise transition model f ;
6 // Section 3.3: Pairwise Likelihood Ratio Test and Update the Base Models
7 for epoch t = 1, ..., T do
8 Update the linearly increasing threshold Ωt for pairwise LRT;
9 for each instance xi do

10 Use f1(xi) as the prior of xi; if yi satisfies (10) with threshold Ωt, put {xi, yi} in Dt,1;
11 Use f2(xi) as the prior of xi; if yi satisfies (10) with threshold Ωt, put {xi, yi} in Dt,2;
12 end for
13 Update f1 using Dt,2;
14 Update f2 using Dt,1;
15 end for

Output :h1, h2 and f .
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C.2 Additional experimental results.

Accuracy and number of selected labels. To validate the effectiveness of the proposed label
correction method, we plot the accuracy and the number of corrected labels using criterion (10) in
Figures 3 and 4 for all the considered datasets, where the solid line is the accuracy (left y-axis) and
the dashed line is the number (right y-axis) of corrected labels.
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(c) CIFAR100

Figure 3: The accuracy and the number of corrected labels using the label correction algorithm (10)
on synthetic noisy datasets. The error bar for standard deviation has been shaded.
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Figure 4: The accuracy and the number of corrected labels using the label correction algorithm (10)
on real-world noisy datasets. The error bar for standard deviation has been shaded.

Classification accuracy on MNIST. The test accuracy on CIFAR10, CIFAR100, CIFAR10, and
LabelMe are provided in Section 5. Here we present the average test accuracy on the MNIST dataset
in Table 2, where the two highest accuraries are bold faced. Clearly, that the proposed method
achieves the best performance.

Table 2: Average accuracy of learning MNIST dataset

IDN-LOW IDN-MID IDN-HIGH

CE (Clean) 99.14±0.10

CE (MV) 98.59±0.13 97.97±0.13 96.60±0.52

CE (EM) [9] 98.49±0.11 75.84±0.97 96.78±0.52

DoctorNet [54] 98.17±0.12 97.36±0.23 95.32±0.51

GCE [55] 99.02±0.15 98.51±0.24 98.05±0.42

Co-teaching [56] 98.85±0.11 98.61±0.18 98.23±0.21

Co-teaching+ [57] 98.64±0.10 98.33±0.10 97.67±0.44

BLTM [17] 98.69±0.06 98.11±0.09 96.40±0.81

MBEM [11] 98.66±0.07 98.24±0.05 97.46±0.21

CrowdLayer [53] 97.29±0.41 94.88±0.92 90.51±2.47

TraceReg [8] 98.68±0.05 97.96±0.18 96.70±0.57

Max-MIG [7] 98.62±0.06 97.97±0.05 96.46±0.26

CoNAL [58] 98.60±0.09 97.89±0.06 96.03±0.73

GeoCrowdNet (F) [13] 98.98±0.02 97.70±0.71 96.91±0.94

GeoCrowdNet (W) [13] 97.33±0.13 94.74±0.67 90.79±0.97

Ours 99.13±0.05 98.98±0.11 98.80±0.07

Hyperparameter analysis on the CIFAR100 dataset. We conduct sensitivity analyses about
hyperparameters r0 and r1 on the CIFAR100 dataset, where we choose r0 from {3, 5, 10, 15, 20}
and r1 from {200, 250, 300}. As discussed in the implementation details in Section C.1, r0 and r1
determine the magnitude of the threshold Ωt at the beginning and the end of the training process,
respectively. With higher values of r0 and r1, the accuracy of the corrected labels using algorithm
(10) will increase accordingly, but the number of corrected labels will decrease. As shown in Table 3,
with different choices of r0 and r1, the proposed method consistently outperforms all the compared
methods.

Classification accuracy on CIFAR100 with varying number of annotators. Figure 5 shows the
average accuracy on CIFAR100 with the number of annotators varying from 5 to 100, which further
demonstrate the superiority of the proposed method under different settings.
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Table 3: Average accuracy of learning the CIFAR100 dataset with different hyperparameters.

IDN-LOW IDN-MID IDN-HIGH

r0 = 3 r1 = 200 58.88±1.18 52.98±1.02 45.50±1.30

r1 = 250 58.19±0.92 52.04±1.77 46.28±2.03

r1 = 300 58.16±0.57 53.03±0.82 45.48±1.97

r0 = 5 r1 = 200 59.01±0.24 52.75±1.38 45.76±2.02

r1 = 250 58.58±0.62 52.76±0.99 46.59±1.23

r1 = 300 59.34±0.66 52.88±1.68 47.04±1.74

r0 = 10 r1 = 200 59.39±0.44 53.23±1.12 47.10±1.78

r1 = 250 59.75±0.74 53.74±0.54 47.27±1.79

r1 = 300 59.06±0.94 53.73±0.93 48.09±1.47

r0 = 15 r1 = 200 59.43±0.56 54.46±0.37 47.40±1.23

r1 = 250 59.38±1.22 54.48±0.87 48.59±0.90

r1 = 300 59.36±0.33 54.93±0.63 48.29±1.85

r0 = 20 r1 = 200 59.81±0.55 54.88±0.60 49.44±1.30

r1 = 250 59.38±0.62 55.48±0.75 49.39±1.48

r1 = 300 60.14±0.87 55.10±0.88 49.07±1.22
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Figure 5: Average accuracy of learning CIFAR-100 dataset with varying number of annotators. The
error bar for standard deviation has been shaded.

Average estimation error. For synthetic noisy datasets CIFAR10 and CIFAR100, we compare
the average estimation error of the proposed method with six competing methods, CrowdLayer
[53], TraceReg [8], GeoCrowdNet (F) [13], GeoCrowdNet (W) [13], MBEM [11], and BLTM [17].
The definition of the average estimation error and the results on CIFAR10 with 5 annotators are
given in the Ablation study of Section 5. In Figures 6 and 7, we respectively present the average
estimation error on the validation set of CIFAR10 and CIFAR100 with varying numbers of annotators,
where the results of CrowdLayer, TraceReg, GeoCrowdNet (F) and GeoCrowdNet (W) overlap in
some subfigures of Figure 7. The proposed method outperforms all the compared methods with
lower average estimation error for each annotator in most of the cases, further demonstrating the
effectiveness of the proposed sparse Bayesian model.
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Figure 6: Average estimation error of annotator-specific instance-dependent noise transition matrices
on CIFAR10. From the first to the fifth row, the number of annotators is 5, 10, 30, 50 and 100
respectively. Standard errors are represented by shaded regions.
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Figure 7: Average estimation error of annotator-specific instance-dependent noise transition matrices
on CIFAR100. From the first to the fifth row, the number of annotators is 5, 10, 30, 50 and 100
respectively. Standard errors are represented by shaded regions.
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