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Abstract

The predictive ability of supervised learning algorithms hinges on the quality of
annotated examples, whose labels often come from multiple crowdsourced an-
notators with diverse expertise. To aggregate noisy crowdsourced annotations,
many existing methods employ an annotator-specific instance-independent noise
transition matrix to characterize the labeling skills of each annotator. Learning an
instance-dependent noise transition model, however, is challenging and remains
relatively less explored. To address this problem, in this paper, we formulate the
noise transition model in a Bayesian framework and subsequently design a new
label correction algorithm. Specifically, we approximate the instance-dependent
noise transition matrices using a Bayesian network with a hierarchical spike and
slab prior. To theoretically characterize the distance between the noise transi-
tion model and the true instance-dependent noise transition matrix, we provide
a posterior-concentration theorem that ensures the posterior consistency in terms
of the Hellinger distance. We further formulate the label correction process as a
hypothesis testing problem and propose a novel algorithm to infer the true label
from the noisy annotations based on the pairwise likelihood ratio test. Moreover,
we establish an information-theoretic bound on the Bayes error for the proposed
method. We validate the effectiveness of our approach through experiments on
benchmark and real-world datasets.

1 Introduction

Deep neural networks (DNNss) have achieved remarkable performance in various tasks [1} 2], and
they have proven to be useful in handling sizable labeled data. Acquiring large accurately annotated
datasets, however, is usually expensive and time consuming. To enhance the efficiency of annotation,
in many applications, crowdsourcing [3] is employed as an alternative way for data labeling, where
the labels are provided by multiple annotators with varying and imperfect labeling skills, and thus, the
collected labels suffer from unavoidable noise. As deep models have a strong memorization power,
using these noisy labels as the ground truth deteriorates the performance of DNNs [4 5], and most
importantly, yields erroneous learning results. Further, potentially substantial disagreement among
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the annotators for each instance presents extra challenges in the application of traditional supervised
learning algorithms. Hence, in the crowdsourcing scenario, to effectively train DNNs on noisy labeled
datasets, a fundamental question is how to aggregate the noisy crowdsourced annotations and infer
the latent true labels [6].

One naive approach to aggregate the crowdsourced labels is simply by computing the majority vote,
which can be ineffective when the number of annotators is not large enough or the labeling task is
difficult [[7,8]]. Recent research has developed more powerful techniques for inferring the ground truth
labels [[7,OH11], among which the annotator-specific noise transition matrix, aka annotator confusion,
plays an important role by modeling the labeling process for each individual annotator. To estimate the
transition matrix, available research [8,[11-13]] usually makes the instance-independent assumption
that for annotator r, given the true label y, the corruption process is independent of the input x, i.e.,
P = Iy = k,x) = P(§") = I|y = k), where x denotes the random variable for instance/feature,
(") represents the noisy label given by annotator r, and y is the underlying ground truth label. This
assumption, however, is often violated in applications. Instance-dependent annotation noise is more
realistic and appropriate for real-world datasets, as suggested by the example that factors such as the
quality of ultrasound images and the domain expertise of human annotators can greatly influence the
actual diagnostic process in medical analysis [14}13]. For annotator r, the transition matrix (") (x)

is a matrix-valued function, with the (k,[) element defined as T,g) (x) = PG™ = lly = k,x).
Unfortunately, the case of instance-dependent annotation noise remains challenging and less explored.
Most existing works considering instance-dependent noise are designed for the single annotator case
[L6H18]. For the case with multiple annotators, existing methods investigate the human annotation
process and use different models to estimate instance-dependent noise matrices. Approaches in
[3L [19422] use traditional classification models such as logistic regression, while others [23H25]]
cater to large datasets and deep models. Methods in [3} [19-22] and [24} [25]] are heuristic in nature
and lack theoretical guarantees in estimating instance-dependent noise matrices. [23]] makes some
theoretical progress in justifying the use of the trace regularisation, and extends the work of [8]] which
establishes the theory only for settings with an instance-independent noise matrix. The theory in [23]
is constrained to individual samples rather than the population setting. Importantly, the theoretical
characterization of the distance of the noise model and the true annotator confusion remains absent
from the literature.

In this paper, we address this notable problem by framing it within the Bayesian paradigm. We
formulate the instance-dependent annotator-specific label transition matrix, and further propose
a novel algorithm to infer the underlying ground truth by aggregating the noisy annotations.
To model the noise transition matrix, we invoke the Bayesian generalized linear mixed effects model
(GLMM), which can be learned by deploying anchor points within the deep learning framework
[12} [26] 27]]. To facilitate the fact that the number of anchor points learned from the noisy training
data is relatively small compared to the sample size, we employ a hierarchical spike and slab
prior on the network parameters. This approach offers an interpretable mechanism for variable
selection and allows us to establish the theoretical result within the deep learning setup. Our study
reveals that the proposed noise transition model is close to the underlying true transition matrix
with respect to the Hellinger distance in the Bayesian framework. Such a result is established for
independently, nonidentically distributed (i.n.i.d.) observations, substantially extending the existing
sparse Bayesian theories within the deep learning paradigm. Further, we develop a label correction
method using the pairwise likelihood ratio test to aggregate and infer the ground truth from the
noisy crowdsourced annotations. This development is carried out by formulating the label correction
process as a hypothesis testing problem and utilizing the proposed Bayesian model in place of the
unknown transition matrix in the pairwise likelihood ratio test (LRT). More importantly, with the
posterior consistency result, we also derive information-theoretic bounds on the Bayes error for the
proposed algorithm even without access to the underlying true noise transition matrix.

This research brings forth several noteworthy advancements: (1) We formulate the annotator-specific
noise transition matrix in the Bayesian framework (Section [3.1). This method offers a practical
and flexible framework to address real-world problems with noisy annotators. (2) We theoretically
characterize the closeness of the proposed model and the underlying annotator confusions with
respect to the Hellinger distance. (Section[3.2)). (3) We develop a novel label correction algorithm by
aggregating the noisy annotations using the pairwise likelihood ratio test, and identify information-
theoretic bounds on the Bayes error (Section [3.3). The effectiveness of the proposed algorithm is



confirmed by the application to both synthetic and real-world noisy datasets (Section[5). Code is
available at https://github.com/hguo1728/BayesianIDNT.

2 Problem Setup

Objective and Data. Consider a classification task with a feature space X C RP and a label space
Y = [K], where p is the dimension of the features, K is the number of classes, and [k] represents
{1,...,k} for any positive integer k. Our goal is to develop a classifier h : X — Y, which can
accurately predict the true label for a test instance. However, in applications, the true label y € ) is
often not observed for each input vector x € X'. Instead, we receive a set of noisy crowdsourced labels
y = {7V, ..,)} from R distinct annotators, where §(") € ) represents the label given by the rth
annotator for » € [R]. Thus, a noisy dataset D of size N is defined as D = {x;,¥ (1), (R)}Z 1>
where for each instance x;, the true label y; is unobserved. Under this setting, we aim to learn a

reliable classifier h by utilizing the noisy crowdsourced dataset D.

In practice, on commercial crowdsourcing platforms, large-scale labels can often be collected from
independent human annotators. We thereby make a common assumption that the R annotators
independently label the instances [[7, 8]]. The conditional probability of the R noisy labels, given an
instance, can then be formulated as

R
B3 = [Tk = [T 3 (P60 =kt =0}, 0

r=1 r=1key

=

where for k € Y, P(y = k|x), called the base model [28]], denotes the conditional probability of
the latent true label y given x, which can be modeled by the output of a DNN parameterized by a
parameter vector, say 1; and P(y("”) |y = k,x) is the noise transition model for the rth annotator
(8], satisfying Zfil P(3") =1y = k,x) = 1 forany x € X and k € [K]. For ease of theoretical
presentation, we assume the accessibility to all the annotations from the R workers for now, and
consider more general situations in the experimental part in Section [5} extensions to accommodating
the case where each instance is only annotated by a subset of annotators are straightforward.

Notation. In this paper, sets are denoted by calligraphic upper case letters, and vectors and matrices
are denoted by bold lower and upper case letters, respectively. For a vector v, v; denote its jth
. d
element, and v " denotes its transpose. For v = (v1,...,v4) T, we denote ||v||, = (> 5=1 [v;|7)1/a
for ¢ > 0, ||v||ec = max; |v;], and |jv|o = Z;l:1 1(v; # 0), with 1(-) denoting the indicator
function. The Ly norm of v is also denoted by ||v|| for simplicity. For a matrix V', we use V; ;
to represent its (4, j) element. Let (2, G, 1) denote the measure space under consideration, where
Q) is a set, G is the o-field of subsets of {2, and p is the associated measure. For a measurable
function f : @ — RY, we write || f||; £ || f||4() When there is no ambiguity of the domain, where

1/q .
I fllac) = (fQ i 15 )|‘1du) for ¢ > 0. For two sequences, {a,} and {b,}, we write

an = by, if there exists a positive constant C' such that a,, < Cb,, for large enough n, and we write
a, < b, ifa, < b, and b,, < a,,.

3 Main Results

3.1 Instance-dependent transition matrix with multiple annotators

Annotator-specific instance-dependent noise transition model. Given an instance x, the condi-
tional probability mass function of noisy annotations can be characterized by R instance-dependent
matrices of dimension K x K, termed transition matrices or annotator confusions (8, [13], with
the kth row of the rth matrix denoted (P(7(") = 1|y = k,x),...,P(") = K|y = k,x)). Thus, the
distribution of noisy annotation depends on the instance in different ways due to the differences in
the annotator r and the underlying true label y, which can be characterized by a Bayesian generalized
linear mixed effects model (GLMM) [29} 130] in the deep learning framework.
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Specifically, conditioned on the true label y = k and the feature vector x, we treat the noisy label
(") from annotator 7 as a random variable generated from the distribution:

y(T)|{y =k,x} ~ Cat(s(’”)), 2)

where sk:r) = (57 ST ¢ SK-1 with SK-1 = {(s,...,s5)T € RE :5; > 0forj €
[K] and Z]K:1 s; = 1} representing the (K — 1)-dimensional simplex, and Cat(s(*")) represents a
categorical distribution specified by the parameter vector s(*:"), We extend existing works on mixed
effects neural networks (MNN) [31}32] by employing two nonlinear transformations ; and 2 to
incorporate different effects in the instance-dependent noise transition model, and set

s = Glwg™") with wg™” = AY Y (x) + B (), 3)
where A((JT) = (a(lf)), ...,a(Ig))T and Bék) = ( (1]8), ey g’;é)T are the regression weights; 1 (x)

and 5 (x) can be modeled by some suitable networks; and G is a function mapping R* to SK—1,
which, in practice, is chosen to be the softmax function in the final layer. Utilizing two different
network components 1 and ), enables us to flexibly reflect possibly different effects of the annotator
expertise () and the ground truth (k) in the annotation process, which can be interpreted as the input
in mixed effects models.

Approximating the transition matrices. The proposed instance-dependent noise transition model
can be learned by leveraging anchor points [[12} 26l 27], or instances that are similar to anchor points
learned from noisy training data [33]]. An instance x is defined to be an anchor point of class k if it
belongs to the kth class almost surely, that is, P(y = k|x) = 1, and hence, P(3(") |x) = P(3(")|y =
k,x). For k € [K], let Dy ;. be the set of anchor points of the kth class and the associated noisy
annotations, i.e., ﬁng = {{thi} : P(yZ = k“Xl) = 1} Define 50 = 5071 ] 5072 U...u 507}(,
and let n denote the subsample size of the learned anchor points, i.e., the cardinality of Dy. Paired
variables {x;,;} in Dy are independent, but not necessarily identically distributed (i.n.i.d). We
write the input dimension p as p,, from now on to emphasize that its dependence on n is allowed.

In applications, overfitting can occur when the subsample size n of the learned anchor points is
relatively small compared to the main sample size N. To address this issue, we propose to learn
1;(x) with a sparse Bayesian DNN, denoted ; (x; 0U )), where 8'7) represents the vector of all
involved parameters in the network with j = 1, 2. Furthermore, invoking the sparse Bayesian setting
allows us to rigorously characterize the distance between the proposed model and the underlying true
transition matrices, as presented in Theoremﬂ] of Section@

3.2 Bayesian analysis and posterior consistency result

Prior specification. To implement sparse Bayesian analysis, we utilize the spike and slab prior [34]
on the network parameters, offering an interpretable mechanism for variable selection. The spike and
slab model is formulated by constructing a prior hierarchy of the involved parameters and selects
nonzero coefficients according to the posterior inclusion probability. Marginally, these priors are
mutually independent and have a mixture distribution consisting of a flat distribution (slab) and a
distribution concentrated at zero (spike). Parameters with a small posterior mean will be set to zero
to achieve sparsity.

Specifically, for network ; (x; 0Y)), we write 8 as 1) = (99), s 6[(,1‘,))T with J; denoting the

length of 0 for j =1,2. For k € [J;], we treat 9,(3 ) as a random variable generated from the
following prior hierarchy:

A9~ Bernoulli(A,;), (4a)
01 ~ (05 02) + (1= 3 ) mo (0 enjoy), (4b)

where ’y,ij ) € {0,1} indicates whether or not 0,(3 ) is nonzero, c,; is specified as a very small
positive number, 02 j and ¢y o2 ; are the parameters related to the variances of distributions 71 (-) and
mo(+), respectively, and A,; € (0,1) determines the ratio of the mixture distribution. As ¢,; — 0,



7r0(9,(€j ); cnjaij) becomes the degenerate distribution at zero. The marginal distribution of Hl(cj ) is

then determined by
0 ~ Agma (07:075) 4 (1= Au)mo (6 cusrh). 5)

which is presented as (/) (-) for short; and this is taken as the prior distribution of 9](3 ),

To further incorporate the effects of the true label information and the randomness from different
annotators in (3)), we place the following probabilistic structure on the generic weights for A( ") and

(k) m' AT) = Y), .. (T)) and B(%) = (ﬁ(lk),..., y;))
ol ~ N(0,20) and B ~ N(0, ). 6)

for j, k € [K] and r € [R], where (") and Egc) are nonnegative definite matrices. We use wg)( )

and Wg) (+) to denote the prior distribution of A and B®) in @) Here the regression weights A (")

and B(*) can be seen as fully connected layers on top of 9, (x; 0(1)) and ¥ (x; 0(2)), respectively.
The conditions on the aforementioned priors are given in Appendix [A.3]

Prior and posterior probability measure. Let 6 = (0(1)T, 0T vee(BT, ... vec(BENT,

vec(A)T .. 7vec(A(R))—'—) € O stand for the vector of all involved parameters in the noise
transition model, with © denoting the parameter space. We use 0 to represent the true value of 6,
which is an interior point of ©. The foregoing specification of the prior distribution places a prior
probability measure, denoted I1(+), on 8. With the data Dy, the posterior probability measure II(-|Dy)
is given by

J: P53 (Do)dII(0)
f(—) De DO)dH(G)

where G is the o-field on ©, and py is the joint probability density or mass function for the observations

in Dy under 6. Let P4 (-) denote the probability measure associated with p2(-), and write Pj(-) £

Py, (-). Hence, the data Dy is generated from Pf(-) in our setup.

II(G|Dy) = forany G € G, @)

Let f denote the unknown density of x. For {x,y} € Dy x, let fék’T) and fék) respectively represent
the underlying true distributions for 77(") and y, given {y = k,x}, determined by (2)) and ; and let
fék’T) and f(gk) denote the corresponding distributions characterized by the model indexed by 8. We
let pg ; = féki) f denote the probability density or mass function of the ith component in D under 8,
with k; € [K] denoting the class that the instance belongs to almost surely. Then, the joint probability
density or mass function pj is calculated as pj = []!_, pe ;. The following theorem describes the

closeness of the proposed noise transition model and the true annotator confusions with respect to the
Hellinger distance within the Bayesian framework.

Theorem 1. Suppose Conditions A.1-A.4 in Appendlxm [A.2|and B.1-B.3 in Appendix[A.3] are satisfied.

Let d(- ) and dy, (-, )denote the Hellinger distance given in Deﬁmtlonland the semimetric defined
in in Appendix |B.1} respectively. Then there exists a sequence of constants {€2}°°, with

€2 = O(wn1 + wya + () and log(1/€2) < ne2, satisfying 0 < €2 < 1, €, — 0 and ne; — oo as
n — 0o, such that

I1{6 €O :d,(0,60) > Mye,[Do} — 0 ®)

in Py probability for every M,, — oo, where {w y } is a sequence of nonnegative numbers converging
to 0 asn — oo for j = 1,2 as given in , and {(,}52 is a sequence given in Appendlx-

2The anchor point assumption can be relaxed and Theorem ! can be extended to a more general setting. For
any given 6 € (0, 1), we define the d-pseudo anchor point for class k as P(y = k|x) > 1 — ¢ and denote Ds
as the set of all §-pseudo anchor point accordingly. Then, the following result holds: II{6 € O : d,, (6, 60) >
M€, + Cd|Ds} — 0 in Py probability for every M,, — oo, where C is a positive constant. From the modified
theory, as § approaches 0 slowly, the Hellinger distance of the transition model and the true transition probability
converges to zero at a slow rate. In other words, the transition model will still converge even if the collection of
a set of anchor points is not guaranteed, albeit at a slow rate.



depending on the structures of z/Jl(-|0(1)) and w2(~|0(1)) with ¢, — 0 as n — oco. If we further
assume that | Dy .| /|Do| > <1 for some positive constant 1, with | - | representing the cardinality of
a set, then for any k € [K] and r € [R]

{0 o d(fF, 1=y > M, 6n|D0} )
in Py probability for any M,, — oo.

Intuitively, Theorem|I|reveals that the sparse noise transition model is close to the underlying true
transition matrix with respect to the Hellinger distance under mild conditions. Notably, our posterior
consistency result extends the existing theories in sparse Bayesian learning [35H37] to the setup of
i.n.i.d observations. Moreover, this result on the convergence rate of the posterior measure allows
us to infer the underlying true label from the noisy annotations with a theoretical guarantee on the
bounds of the Bayes error, which will be discussed in detail in the following section.

3.3 Pairwise likelihood ratio test for label correction

The asymptotic result () in Theorem [T)indicates that for each annotator, the underlying true instance-
dependent transition matrix can be accurately modeled under the Bayesian framework. This enables
us to aggregate and infer the ground truth label from noisy crowdsourced annotations.

A novel label correction algorithm. To highlight the idea, we first assume that the noise transition
matrix P(y(" |y = k,x), or fo "(.), is known. To simplify the notation, for each x; in the noisy

dataset D, denote l( )l T]g)( Z) £ PF" =1y = k,x;) fori € [N] and k,1 € [K]. We assign
class prior [38] &; = (A 1, ... &) " for the ground truth label for the ith task, where the hi.y, for
k€ [K] are nonnegatlve welghts satisfying Zszl hi 1 = 1. For each instance, with the class prior

and the noise transition matrices, the label correction process can be formulated as a hypothesis
testing problem, where different hypotheses are generated from different choices of the true label
values. Specifically, selecting the label for the instance x; from {g,¢'}, with1 < g < ¢’ < K, is
equivalent to choosing from the two competitors P(y|y = g, x;) and P(¥|y = ¢’, x;). We thereby
consider the following hypothesis testing problem: H, : y;|{y:,x;} ~ P(y|y = g,x;) versus Hy
vil{vi,xi} ~ P(y|ly = ¢’,x;). By the Neyman-Pearson Lemma [39], the Bayes testing error is
minimized by the likelihood ratio test, and the decision region for hypothesis H is given by

R K [ m"7=D
it hlagp(yb, =9, Xl) hi,g HT:l Hl:1 { z gl} 1
y: =

: >
hi /]P) Y = /7 X; r H(ﬂ(T):l)
o Py =9 %i) By TI TTE 1{ Z((J),l}

Building from the abovementioned reformulation of the label correction process, we now propose an
algorithm to infer the underlying ground truth by aggregating noisy crowdsourced annotations with
the help of the annotator confusions. Formally, we propose the following label correction method by
setting the estimated label of x; to be 7, £ g if

o T I, {1

hig Hr 1Hl 1{ zg’l} Hon

where 2 > 1 is a pre-specified threshold.

> Q forany g’ # g, (10)

Information-theoretic bounds on the Bayes error. To theoretically justify the effectiveness of
the proposed label correction method (I0), we derive information-theoretic bounds on the Bayes
error, given the instances. Let D = {x;,¥,;}"™ ; denote the collection of instances with estimated
labels, where 7 represents the size of D. We write y = {¥,}"_; and the corresponding true label
is denoted y = {y;}?"_;. A loss measured by the accuracy of the estimated labels is given by
L(y,y)= 2>, 1(7; # i) Let P(-|y; 7) denote the joint probability distribution of {yl} given

y and 7, and let E(-|y; 7) denote the associated expectation operator, where 7 £ {7,}7_, £ {T e



(r) (r)

r € [R]}I_, represents the collection of the corresponding transition matrices 7; ’ having T, gy S 1ts
(k, 1) element. Then, the Bayes risk is defined as [40]]
Rioyes (B, £) = inf | > hY)E{LF.y)lyi T} . (1)

yE[K]™

or Rpayes for short, where A(y) is the joint prior probability of y calculated from & = {h;}7 ;. The

following theorem identifies bounds for the Bayes risk.

Theorem 2. Let Dy, (Tgrg)*
(r)

(r)
lg*and‘rzg*,

||T(T) ) denote the Kullback-Leibler (KL) divergence for discrete

0,9’ *
(r)
ig*

distributions T where, fori € [a], r € [R], and g,¢' € |K], T; ;, and Tl g , Stand for

the gth and g'th rows 0f7' , respectively. For b = {h;}I'_| and T = {7, }_,, define

K K

Dyp(h, 1) = %ZZZ Z Righi g Dy, ( lg*Hng *) and

—\log (%) + ilog {lz}j; ( Z(;)l)lfA (Ti(’rg)/l))\}] .

Fori € fiand g € [K], let I (hl, Ti) = ming 4 C( V) Then the Bayes error defined in is
bounded as follows:

{— Dgpr(h, 1)+ %log(2 - H:L:l maxie(x] Mik)
{Z?—l log(maxke[K hig)} /7

S =

<§RBa)es (h £ S

ZZ T, g exp {—Rlég)(hi,‘ri)} .

i=1 g=1

Remark 1. Theorem [2]establishes information-theoretic bounds on the Bayes error Rgayes for arbitrary
priors h; with ¢ € [n], which theoretically quantifies the combined impact of the prior knowledge and
annotators’ expertise on label accuracy using algorithm (I0). The lower bound is proved in light of
the concept of f-informativity [40H42], and is stronger than the commonly-used Bayes lower bound
based on Fano’s inequality [43]!44]. The proof of the upper bound considers the inference procedure
of ¥ and applies Markov’s inequality. The details are given in Appendix [B]

Remark 2. The quantity C’ég), in Theoremreﬂects how the identified upper bound of the Bayes error
may be influenced by the prior k; and the ability of the R annotators to distinguish between labels
g and ¢’ for instance i. If we set fi; to be the uniform prior andlet 2 =1,C, (l) will degenerates to

the average of the Chernoff information between {"'1 o R and {Tl o 1[45 46]], which is a

statistical divergence measuring the deviation between two probablhty dlStI’lbuthl’lS

Result under the sparse Bayesian model. The label correction method (10) is not immediately
applicable if we have no access to the underlying true annotator confusions, which is usually the
case in real-world applications. To get around the issue induced from the unknownness of the true

k,r)

noise transition probability f (ko) , we consider the model fé given in Theoremand write the

corresponding transition matrices as TE k)l = 7,(;1)( = fék’T) (gﬂxi)|g:l for k,l € [K] and r € [R].

We then replace the 7. (r g)l in (10) with 7; g)l to determine corrected labels. With a slight abuse of

notation, we still use D = {xl, ¥}, to denote the set of instances with estimated labels but let
%dees denote the resulting Bayes error. We let D, = {xl} *_, represent the set of the considered
instances. Combining Theorems [T]and 2] yields the following corollary.

Corollary 3. Suppose that the conditions in Theorem |l| are satisfied, and further assume that

f(xi) > <o for x; € Dy and min, ¢ (g icm) k,ic K] ?z(‘jk)l > g3, where f(-) is the probability density



function of X, and <o and ¢3 are some positive constants. Then, for any € > 0,

7 K
II(6: %Bayes < Kﬁ_ 1 ZZFLW exp {—Rlég)(hi,n) + 6} ’DO] —1

i=1 g=1

in Py} probability as n — oo, where Ig(lg)(hi, T;) is given in Theorem fori € [n] and g € [K].

4 Algorithm

Learning the noise transition model. In the warm-up stage, we train the base models on noisy
training data and obtain the set of anchor points Dy [26]. With D, we first obtain the maximum a
posteriori (MAP) estimate of network parameters of the transition model 8 by maximizing the log
posterior distribution of @, with the constant term omitted,

0 = arg max {Zlogpw + logw(@)} , (12)

i=1
where pg ; is the probability mass function of the ith component in Dy given before Theorem |1} and
m(0) is the probability density function of @ relative to the prior probability measure II(-). Given the
MAP estimate 6, according to the prior hierarchy , the posterior inclusion probability of the kth
parameter in the network 9, (+; 6)) is calculated as

Mg (6} o%)

A1 (0502 ) + (1= Anj)mo (8 cpjo2,)

nj nj

P(v) = 1/9) = (13)

for k € [J;] with j = 1,2. If the posterior inclusion probability is smaller than a pre-specified
threshold, chosen to be 0.5 in our experiments, the associated parameter is zet to be zero. We then
fine tune the sparse network and obtain the noise transition model.

Training the classifiers with corrected labels. With the noise transition model trained, we then
train the base models with the label correction algorithm proposed in Section[3.3] Specifically, we
train two base classifiers to reciprocally provide class priors for each instance in the label correction
process. In the tth epoch, for instance x;, if §; satisfies the condition (T0) for the pre-specified
threshold €2, we put {x;,¥,} in D;. The base models are then updated on the collected dataset D;.
The complete pseudocode of our algorithm is included in Appendix [C|

5 Experiments

Datasets. We assess the effectiveness of our method on three image datasets with synthetic annota-
tions, MNIST [47], CIFAR-10 [48]], and CIFAR-100 [48]], and two datasets with human annotations,
CIFAR-10N [49] and LabelMe [50,|51]]. Detailed information can be found in Appendix E} For all
the datasets except LabelMe, we leave out 10% of the training data as a noisy validation set.

Noise generation. For the three datasets, MNIST, CIFAR10, and CIFAR100, we consider three
groups of annotators with varying expertise, with an average labeling error rate of about 20%, 35%
and 50%, respectively. We abbreviate these three groups as IDN-LOW, IDN-MID, and IDN-HIGH,
which represent instance-dependent annotators with low, middle (“mid" for short), and high labeling
error rates, respectively. To generate noisy annotations, we independently simulate R = 5 annotators
for each group according to Algorihtm 2 in [[12], with IDN-7 denoting that the noise rate is upper
bounded by 7 for each annotator. For each instance, we then randomly choose one of the annotations
given by the R annotators, which is designed to evaluate the methods under incomplete annotator
labeling. We manually corrupt the three datasets according to the following three groups of annotators:

(I) IDN-LOW. IDN-10%, IDN-10%, IDN-20%, IDN-20%, IDN-30%;
(II) IDN-MID. IDN-30%, IDN-30%, IDN-40%, IDN-40%, IDN-50%;
(II1) IDN-HIGH. IDN-50%, IDN-50%, IDN-60%, IDN-60%, IDN-70%.



Experiment setup. The network structure for the MNIST dataset is chosen to be Lenet-5 [52]]. We
choose ResNet-18 [2] for CIFAR-10 and CIFAR-10N, and ResNet-34 architecture [2] for CIFAR-100
dataset. As in 53], we employ the pretrained VGG-16 network followed by a fully connected layer
and a softmax output layer for the LabelMe dataset, using 50% dropout. More implementation details
can be found in Appendix [C|

Competing methods. We compare the proposed method with the following state-of-art methods:
(1) CE (Clean), which trains the network with the standard cross entopy loss on the clean datasets;
(2) CE (MV), which trains the network using the labels from majority voting; (3) CE (EM) [9]; (4)
DoctorNet [54]; (5) GCE [55]; (6) Co-teaching [56]; (6) Co-teaching+ [57]; (7) BLTM [17]; (8)
MBEM [[L1]; (9) CrowdLayer [53]]; (10) TraceReg [8]]; (11) Max-MIG [7]]; (12) CoNAL [58]]; (13)
GeoCrowdNet (F) [13]; and (14) GeoCrowdNet (W) [13]. Among these methods, GCE, Co-teaching,
Co-teaching+, and BLTM are strong baselines dealing with single noisy label issues, and we adapt
them to the multiple annotations setting by utilizing the majority vote labels for loss computation.

Ablation study. In Figure[T] We plot the average estimation error for the noise transition matrices to
demonstrate the effectiveness of the proposed method in modeling the instance-dependent annotator
confusions. For instance x; with clean class label y; in the validation set, we analyse the y;th row
rather than the whole noise transition matrix as in previous studies [16} [12]]. Specifically, let 7(") (x;)
and 7(") (x;) represent the estimated and the true noise transition matrix for annotator r, respectively.
The estimation error on instance x; is defined as erry) = maxjex [T (xi)y,0 — 7 (X4)y, 0

where 7(")(x;)y, ; and 7(") (x;)y, ; stand for the (y;,) element in the corresponding matrices. The

average estimation error for annotator r is then calculated as ni Z;.Zl errgr) with n,, denoting the

size of the validation set. For each annotator, we compare the average estimation error of the proposed
method with six baselines, CrowdLayer [53]], TraceReg [8]], GeoCrowdNet (F) [13], GeoCrowdNet
(W) [13]], MBEM [[11], and BLTM [17]], on the CIFAR10 dataset. In most of the cases, the proposed
method leads to smaller estimation error especially when the noise rate is high, which shows the
efficacy of the proposed sparse Bayesian model.

)

—— MBEM
BLTM

—— Ours

i 2 3 4 5 i 2 3 4 5 i 2 3
Annotator Annotator Annotator

(a) IDN-LOW (b) IDN-MID (c) IDN-HIGH

Figure 1: Average estimation error of annotator-specific instance-dependent noise transition matrices
on CIFARI10. The error bar for standard deviation has been shaded.

50 100 5 10 50 100 5 10 30
Number of Annotators

30
Number of Annotators

(a) IDN-LOW (b) IDN-MID (c) IDN-HIGH

Figure 2: Average accuracy of learning CIFAR-10 dataset with varying number of annotators. The
error bar for standard deviation has been shaded.



Table 1: Average accuracy of learning CIFAR-10, CIFAR-100, CIFAR-10N and LabelMe datasets

CIFAR-10 CIFAR-100 CIFAR-1ON  LabelMe

IDN-LOW  IDN-MID IDN-HIGH IDN-LOW IDN-MID IDN-HIGH

CE (Clean) 88.60+0.79 58.754+0.55 88.6040.79 91.454¢.23
CE (MV) 80.904+¢.88 76.054+0.70 69.65+1.73 50.96+0.49 44.8040.99 38.514+0.66 82.82+0.05 79.49+0.48
CE (EM) 9] 81.1540.74 75.8440.97 69.8541.43 51.2941 00 45.2440.41 38.014+0.90 83.14+0.80 80.64+0.55
DoctorNet [54] 81.8540.41 78.6940.75 76.2641.28 52.6140.70 47.80+0.86 43.50+0.53 84.52+0.69 79.09+0.40
GCE [53] 82.7840.51 78.0841.18 72.9941.92 55.884+1.32 48.46+0.86 40.53+0.83 85.251+0.46 80.27+0.27

Co—teaching [56J 83.20i0_53 80.80i0_79 82.02i0,42 53.27i0_42 47.58i0,43 45»49i0_72 85.90i0_50 80.24i0_71
Co-teaching+ [57] 81.2740.44 78.2640.27 72.1040.98 53.3140.81 48.154+0.36 42.07+0.66 82.31+0.80 81.67+0.56

BLTM [17] 81.0640.23 77.344+0.51 70.6443.19 52.2140.70 46.9040.85 41.264+1 509 82.624+0.17 80.4441 05
MBEM [L1] 82.374+0.77 78.0540.83 71.4342.43 52.2040.07 45.26+0.50 38.92+0.69 85.49+0.43 80.10+1.090
Crodeayer [53] 83.98;&0,35 77~76i1.06 67~77i1.69 51‘28:&0,64 45‘28:&0,54 38.93i0‘75 82.84;&0,24 82.95;&0,21
TraceReg [8] 83.4941.68 78.6941.04 70.3941.68 51.6040.99 45.164+0.45 39.01+0.83 83.16+0.24 82.93+0.15
Max-MIG [7] 81.0040.72 75.90+0.52 70.96+40.96 51.764+1.11 44.9340.71 38.704+0.49 85.1240.36 83.25+0.26
CoNAL [53] 81.6040.82 76.0240.79 69.5041.89 51.6141 14 44.1940.62 38.2440.29 83.01+0.21 82.96+0.30

GeoCrowdNet (F) [13] 86.36:&0,46 83.78:&0,58 79.70;&0,42 51~37i0.88 45‘04:&0.56 38.94i0,91 87.70;&0,51 85.74:&0,17
GeOC[‘OWdNBl(W)[13] 83.95:&0‘41 76.94i0_72 66‘48:&2_53 51‘58:&0‘72 45.24:&1,15 39.24i0‘75 87.84:&0‘21 83.28i0_45

Ours 86.88:&0‘65 85.40:&0‘50 83.46i1‘24 59.81i0_55 54.88i0_60 49.44i1_30 88.19:&0‘47 84.85:&0,27

Classification accuracy. Table [T presents the average test accuracy of 5 random trials on the
datasets of CIFAR-10, CIFAR-100, CIFAR-10N and LabelMe, together with the standard errors of
the test accuracies of the random trials, expressed after the plus/minus sign 4, where the two highest
accuraries are bold faced; standard errors of the accuracies are calculated based on repeating those
experiments 5 times, each with a different random seed. All the results demonstrate the superior
performance of the proposed method on both synthetic and real-world noisy datasets. Moreover,
to investigate the influence of the sparsity of annotations, we conduct more experiments with the
number of annotators varying from 5 to 100, and each instance only has one label. Figure [2| shows
the average accuracy with various numbers of annotators, which further exhibit the advantages of
the proposed method under different settings. Additional experimental results, including the test
accuracy on MNIST, the average estimation error on MNIST and CIFAR100, and the accuracy of the
corrected labels using algorithm (I0), are deferred to Appendix [C|to save space.

6 Conclusion

In this paper, we address the challenge of training classifiers using noisy crowdsourced labels, a
common issue in various applications. We formulate the annotator-specific instance-dependent noise
transition matrix within the Bayesian framework, and theoretically characterize the closeness of the
proposed model and the true annotator confusions with respect to the Hellinger distance. Our result
is established for the setup of i.n.i.d. observations, which substantially broadens the application
scope of our method. Building on the convergence rate of the posterior measure, we propose a novel
algorithm to aggregate noisy annotations and infer the ground truth label based using pairwise LRT.
Additionally, we provide information-theoretic bounds on the Bayes error of the proposed algorithm.
Empirical evidence demonstrates the effectiveness of our algorithm on both synthetic and real-world
noisy datasets.

Limitations and Extensions

Our work can be further extended in different directions. It is interesting to generalize the setup here
to the hierarchical classification setup. Instance-dependent transition matrices can be further refined
with varying structures imposed and are learned with manifold regularization.
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Supplemental Materials

In the supplementary materials, we first summarize the regularity conditions on the underlying true
model and prior distributions of the network parameters in Section [A] The proofs of Theorem
Theorem [2} and Corollary [3] are provided in Sections [B.2}B.4] with all the needed preliminaries
presented in Section Implementation details of the proposed method and additional experiment
results are exhibited in Section [C] including the accuracy and number of selected labels using the
proposed label correction algorithm (10}, the test accuracy on MNIST, the hyperparameter analysis
on CIFAR100, the classification accuracy on CIFAR100 with varying number of annotators, and the
average estimation error on CIFAR10 and CIFAR100 with varying number of annotators.

A Regularity Conditions

A.1 Network structure

To incorporate the sparse high dimensional setting [59], we utilize sparse Bayesian DNNs to re-
construct 11 (x) and o (x) in (3) [37,160]. Specifically, to approximate ;(x) with j = 1,2, we

consider a network with H,,; — 1 hidden layers and a width vector L") = (ng ), ng - Lglj )",

where the width of the hth layer is denoted L;Lj) forh =0,..., H,; with Léj ) = py, for the input layer
and Lgi} 2 M) for the output layer. Then the DNN with network architecture { H. njs LY )} is the

nonlinear function of the form:

0;(x:09) = WUit)g (o (W [ o(WEDx 4+ bUD). L4 0] ) 4 plH),

where for h = 1,..., H,;, WO is a LI x L) weight matrix, b0 € RLY s the bias of
layer h, o(-) is a nonlinear activation function, and o) represents the J,,; x 1 vector formed from
stacking {W (") b} from bottom to the top, with J,; £ SHm (L) s L9 4 pO)y,
We treat weights and biases equally without distinguishing them in 0, and write V) as 1) =
09, .., HEI{?J)T. Let v0) = (49, '-'>7§{L)j)T denote the indicator vector, with 7/} = 1(6%) £ 0)
fork =1,..., J,,;. For ease of presentation, we use 9;(x; 6Y)) and ¥ (x; 6 ~(1)) exchangeably to

represent the model for 1, (x), and let F,, = F(H,1, Hpa, LY, L®, Cy, Cy, €1) denote the space
of all sparse networks that satisfy Condition A.3 in Appendix [A.2]and are constrained by positive
constants C7, Cy and €.

To determine the parameters of the sparse DNNs ¢, (x; 6 ~(9) that best approximate ;(x) for
7 = 1,2, we define

(67,517, 6 4(2)7) = arg min {1+ 11, as
(0 41 6 4)cF,
[l (X;e(l) 1'7(1))_17[’1 (X)HL2(Q)§W7L1
Iz (X;e(z) 17(2))_@[’2 (x) HL2(Q) <wn2

where for j = 1,2, @, is an n-dependent positive constant satisfying w,,; — 0 as n — ooE]We call
0 4+ 92* and v+ the true parameters of 8, 1), ) and v, respectively.
A.2 Conditions for the sparse GLM

A.1 The input vector is standardized so that x € Q C [—1, 1]P~, where (2 is the support of x,
and the probability density f(-) of x satisfies that sup,c, | f(x)| < Cj for some positive
constant Cj.

A.2 The activation function o (-) is 1-Lipschitz.

3In this definition, the Lo norm of the network approximation error is bounded. Consider a measure space
(Q,G,p) and 0 < p < ¢ < oo, we have that |||, < wu(2)*?~'/9||f|, using Holder’s inequality and
therefore, || f|l1 < ||fll2 and L*(Q, ) C L*(Q, i) for probability measure p. Thus, the L1 norm of the
network approximation error is also bounded, which will be used in the following proofs.
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A.3 The true sparse DNN model satisfies the following conditions.
A3.1 For j = 1,2, let r,; = ||v)|; denote the connectivity of v\/), let L,; =
maxi<p<H,; Lg) denote the maximum layer width, and let s,; represent the in-
put dimension of (). Let ¢, = {(rnl + Tn2)(Hp1 + Hpo)logn + (rp1 +
7n2)(10g Lyt +10g Ly2) + (Sn1+Sn2) log py } /n. The true sparse DNN model satisfies
that (,, < Cyn~° for some constants C; > 0and 0 < ¢; < 1.
A32 Forj=1,2, |09 < E,.;, where positive constant E,,; < n®? for some constant
Cy > 0.
A.4 Write the function G(-) in (3) as (G1(*),...,Gx(-))". Forx € Q,r € [R] and k € [K],
write w®m) = ATy (x;00)) + BRITyy (x; 6,
A4.1 For k € [K] and r € [R], in the neighbourhood of 8y,
oG, (w)

Gi(w®m)
awl |w:w(’“=’")

=Csand sup |—4————2 —1| =€
seli) |Gy (wi)

sup ‘
JLE[K]

for some constants C5 > 0 and e € (0, 1), where the latter requirement can be
achieved if G (wf™") > ¢ for some positive constant ¢ > 0.

A42 Forr € [R]and j, k € [K], ||o¢§6)||oo < Fy and ||,6'%)||OO < Fy, where F; and F; are
positive constants.

A.3 Conditions for the prior

B.1 For j = 1,2, assume each element of 0" has independent continuous prior distribution, de-

noted W(gj ) (+). Thus, its minimum value on the interval [—E,,; — 1, E,,;+1] exits, and let L(gj )
denote it. For a sequence of positive constants I 7(3 ) with log I, ,(Lj ) — O(logn), let 6,,; and or j
be two sequences of constants satisfying that 5,,; < 1/n.J,;(coI )" (n/H,;)"" and

6 < 1/ndnj(coEn;)™i (rn;/Hyy)™ for some constant c¢q > 1, respectively. Assume

that:
B.1.1 log(l/ﬂéj)) = O(Hpjlogn + log Ly;);
B2 7 ([<0nj,65]) > 1 — ﬁjexp{ — S{(Hpy + Hya)logn
+log L1 + log Lo + logpn}}

for some constant S’éj ) > 2;

7 (=685, 00,]) > 1

b

Tnj’
B.1.3 —log {Jnjwéj)(\9§j)| > IT(,,j))} -2+ eéj))ne% for some positive constant eéj).
(k)

n

(k)

B.2 Fork € [K], let B, and B{®) denote the largest and the smallest eigenvalues of X 5 »Te-

spectively, and for r € [R], let Zﬁf ) and ASLT ) denote the largest and the smallest eigenvalues
of E((f), respectively. Assume that for large enough n,

B.2.1 ZEZ') < SF)M(I)‘I1 and A" > Sﬁl){log M™M= for some positive constants SF),
S{ and
2 q1.

B.2.2 Eff) < 8P M@ and B® > 5% {log M@}~ for some positive constants S\*,
S8 and go;
2 q29

A.4 Remark

1. Assumption[A.T|specifies that the hypothesis set we consider is a class of DNNs, which is a
common setting in the literature 61} 35]].
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2. Assumption[A.2]ensures that the underlying noise transition probability can be approximated
by a sparse model. Existing works [62H64] empirically show that large DNNs often contain a
large number of redundant parameters and propose methods for compressing neural networks
without affecting performance. Moreover, theoretical works [65]66] in approximation theory
provide theories that guarantee uniform approximation rates for a broad family of function
classes. Similar assumptions can be found in [35} 167].

3. Assumption specifies the constraints on the prior distribution we use. As in our
experiments in Section [5, we may employ the spike-and-slab prior A, A (0,0%,,) + (1 —
An)N (0, 02,) for each element of the parameter vector 8) of the sparse Bayesian DNN
W, (x; B(J)), with j = 1,2; we take the normal prior N (0,02) for each element of the
regression weights. It can be verified that Condition B.1 in[A 3]is satisfied if the values of \,,,
01n, and g, are properly chosen [35]]. In particular, the value of \,, is related to the sparsity
of the model and we require it to satisfy that A, = O(1/J,; [nHmitHn2 (L1 + L,9)pn)]¢)
for some positive constant ¢ and j = 1,2, which should be chosen by considering the
network structure and the number of data points, n. Moreover, by using techniques such
as Mill’s ratio [68]], Condition B.2 in @] is satisfied if ¢; < 0, < co for some positive

constants ¢; and ¢y, which are related to S%j ), Séj ), gj and M () for 7 = 1,2 in Condition
B.2 [60}167]]. Similar assumptions can be found in [60, 35} 167].

B Proofs

In this section, we present the proofs of Theorem [T} Theorem [2] and Corollary [3] Specifically,
we provide all the need preliminaries in Section [B.1] where the definitions and results in Sections
[B.T.THB.T.4] will be used in the proof of Theorem|I| and the information-theoretical definitions and
lemmas provided in Section[B.1.5]will be utilized in the proof of Theorem 2]and Corollary [3]

B.1 Preliminaries

B.1.1 Definitions of some discrepancy measures

Definition 1 ([69]). Let f and fy denote two conditional probability density/mass functions of y,
given x. Let v1(dx) denote the probability measure for x associated with the density f(x) and

let vo(dy) = ®f:1 v2.,(d5()) be a dominating measure for f and fo, and hence, a dominating
measure of (x,y) is taken as the product v1 (dx)ve(dy).

(i) The Hellinger distance between f and f is defined as

A(f. fo) = ¢ / / (VT — /T 2wa(d ) (d).

(i1) For any ¢ > 0, define

di(f, fo) = {//f()( > Vo dy)z/l(dx)l}

(iii) The Kullback-Leibler divergence between f and f is defined as

do(f. fo) 2 K(f, fo) = / / folog( )w(dy)m(dx)

wsso={ sl (4]

For ¢ = 2, the index of V;(-, ) is omitted and the discrepancy measure is denoted V' (-, -).

[60] shows that (1) d(f, fo) < \/do(f, fo); 2) di(f, fo) decreases to do(f, fo) as t decreases to 0.

(iv) For ¢ > 1, define

vo(dy)vy (dx).
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B.1.2 Mathematical details about the regression weights

Adapting the proof in [69]], we prove the following proposition.

Proposition 1. Assume that 3 ~ N (0, Dg), where Dg is a positive definite matrix. Then, for any
given dim(3) x 1 vector of functions ¢(x; 0) of x and 6, and for any constant A > 0,

P{|(¢(x;0)"B — o(x;0)"By| < A}

{6(x;0)™ By} + A2 A?
8 — s
7 { 2B]|6(x; 6)|] }wa;w

where B and B are the largest and the smallest eigenvalues of Dg, respectively.

Proof. The proof is established in two steps.
Step 1. We first prove that
P{l(o(x:0)"8 — ¢(x;0)"Bo| <A} > P(X —Y >2), (15)

: , . $(x:0)" B }*
where X ~ Pozs(%) and Y ~ Pois(3), with Ay = WM};@’

and X and Y are independent.

2
S0 Do) and A =

By the definition of the noncentral chi-squared distribution, it can be easily seen that T £

{6(x:0)"B—6(x:0)" B, }*
®(x;,0)T Db (x;0)
Thus, by utilizing the cumulative distribution function (CDF) of x%()\), we obtain that

P{[(¢(x;0)"B — ¢(x;0)"By| < A}
=P {T < Al}
= exp (-3) (2

= #Q(Aﬁ 1+2j),

is distributed according to the noncentral chi-squared distribution x?()\).

=0

where Q(+; 1 + 27) is the CDF of x? 2> the central chi-squared distribution with 1 + 25 degrees of
freedom.

Noting that Q(A1;1 + 2j) > Q(Ay1;2 + 2j), by the result that Zj1 + ... + Zj 11 ~ X3,0; if
iid. d . .

Zjlv ooy Zj,j+1 "\51 X% = exp(%), we obtain that Q(Al; 1+ 2j) > P{Zjl + ...+ Zj,j+1 < Al}

According to the relationship between the Poisson counting process and exponential variables, we

have that the counting process with Z;1, ..., Z; ;41 as inter-arrival times is the Poisson process with

rate % Let N(A;) denote the total number of occurrences or events that have happened up to

time A;. Then, N(A;) follows the Poisson distribution with parameter AL je. N (Ay) % X, and
{Zjg+ ...+ Zj ;41 <A1} ={N(A1) > j + 1}. Consequently, we have that

% oxp (—2) (A)i % oxp (—2) (2)i
Zep(ﬁ)(z)jQ(Al;l +2j> > ZWP{ZjI + ... +Zj’j+1 < Al}
=0 ' §=0 '
X exp (—2) (2}
= ‘WP{N(AQ >j+1}
3=0 '
o0 _A) (A)g
:Ze)(p(j?)(?)p{)(zjq_g}
3=0 '



where we use the distribution assumptions and the independence assumption for X and Y. Thus, (T3]
is proved.

Step 2. Since X ~ Pois(%) and Y ~ Pois(%), and they are independent, we have that X — Y’

follows the Poisson difference distribution (aka the Skellam distribution): for k = 0, +1, 42, ...,

P{X—Y =k} = exp (—Al i A) (Al)g 1(VAD),

2 A

where 1,,(z) = Y00 {420 is the modified Bessel function of the first kind [70]. Using the

fact that I,,(z) > 2¥2"T'(v + 1) for z > 0 [[71]] and plugging in A; and A, we obtain that

P{X-Y >2}>P{X -Y =2} > 8exp <A12+A> A?
sexpd 100608y} + A2 At
26(x;0)" Dpd(x:0) [ {6(x;0)" Do (x; 0)}’

{6(x;0)" By} + A2 A?
>8 — . ,
{ 2B[[6(x: 0) }Bw;ew

where the last inequality follows from the fact that for a symmetric matrix D, supjj, =1 u'Du =
Amaz (D) and inf =1 u" Du = Apin (D), where Az (D) and Apin (D) represent the largest and
the smallest eigenvalues of D, respectively. This completes the proof. [

B.1.3 Mathematical details about the sparse Bayesian DNNs

Consider a DNN with network architecture (H,,, L), where H,, — 1 is the number of hidden layers,
and L = (Lo, L1, ..., Ly, )" is the width vector with Ly = p,, for the input layer and Ly, = M for
the output layer. For the corresponding indicator vector <y and for h = 1, ..., H,, let 7, denote the
number of nonzero connections to the hth hidden layer which includes the bias for the hth hidden
layer and the weights between the (h — 1)th and the hth layer, such that > r;, = |y|; = r,,. For a
parameter vector 0, let Oy, ;(0,x) represent the output value of the jth node of the hth hidden layer
forj =1,..., Lp.

Lemma 1 ([37], Lemma S1). Consider a sparse DNN with parameter vector @ = (01, ..., Gq)T with
dimension q, the corresponding indicator vector «y and the network architecture as mentioned above.
Suppose that Conditions A.1-A.2 in Sectionare satisfied and |0\~ < E, for a positive constant
E,,. Then, for 1 < h < H,, the summation of the outputs of the hth layer is upper bounded by

Lemma 2 ([37], Lemma S2). Consider a sparse DNN ¢(0, x) with indicator vector =y satisfying the
conditions in Lemma and a DNN ¢(0,x) with @ € A, where A is defined as

A=1{0=(01,..,0,)7 :10; — 0;| < 6, for j € v and |0; — ;| < J2 for j ¢ v}
for given 1 > 0 and d > 0. Then

H,
max_[|¢(0,%) — ¢(8,%)|y <0 Ho(En +61) " ] ra

X|oo <1
%[00 < h=1

n

H, H,
+ 8 (anl +° Lh> [T {(En+61)rn + 62Ln}.

h=1 h=1
B.1.4 A useful lemma

Assume P, is a sequence of sets of probability densities and Py, denotes the complement of P,
for each n. Let €, be a sequence of positive numbers. An €,-cover of P,, with respect to (w.r.t.)
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distance d is a set { f1, ..., f} C Py, such that for each f € P, there exists j € {1, ...,k} such
that d(f, f;) < €,. The €,-covering number is the cardinality of the smallest e,-cover [72]. Let
N(én, Pn, d) denote the €,,-covering number of P,, w.r.t. the distance d.

Consider a vector of independently (not necessarily identically) distributed observations D™, where
the ith component is generated from distribution Pg ; with the density pg ; relative to a o-finite
measure v; on (Z£;, %) for i € [n], and 6 is the vector of parameters in the parameter space ©.
We define Py to be the product measure ®?:1 Pg_; on the corresponding product measurable space
Qi1 (Zi, ;). Assume that D™ is generated from the true distribution Py . We define the square of
the semimetric d,, as in [73]:

02(6,60) — Z / JFo7 — /o) v, (16)

which can be seen as the average of the squares of the Hellinger distances. For ¢ > 0, we define the
e-neighborhood around 6:

G* (69, €) _{ ZK 0,6 < Zv 0,6,) < } (17)

where K;(0,0) = K (Pg,;, P, ;) and Vi(0, 0y) =V (Pg,;, ]P’gw), defined in Deﬁnition

Let II(-) denote the prior probability measure on 6, and let II(-|D™) represent the associated posterior
measure given the data D™. For ease of exposition, we put II(0*) for II({6 € ©*}) for any ©* C ©.
The following lemma is modified from Theorem 4 in [73] and will be used in the proof of Theorem E}

Lemma 3. Suppose that for a sequence of sets ©,, C © and for a sequence of positive numbers
{€n}5°, such that €, — 0 as n — oo and ne? is bounded away from zero, the following conditions
hold for large enough n.:

(a) sup. logN(e/36,{0 € O, :d,(0,00) < €},d,,) < nez;
(b) TI(O\O,,) = o(exp{—(r + 2)ne2});
(c) TI(G? (00, €r)) > exp(—rne?)

for some constant r > 0. Then for any M, > 0 PQOH(O 0 dn(0,00) > Mpe,|D") — 0 as
M, — oc.

B.1.5 Useful information-theoretical definitions and lemmas

We give some useful information-theoretical definitions and lemmas in this subsection, which will be
used in the proof of Theorem [2]and Corollary [3]

Lemma 4 (Log sum inequality, [45]])). For positive numbers, a1, .., a, and by, ..., by,

o) (£0) o (22)

with equality if and only if $* equalsfor i=1,.

Definition 2 ([74}[75])). Let P and () be probablhty distributions on the set X', andlet f : R, — R
be a convex function satisfying f(1) = 0. Without loss of generality, assume that P and Q are
absolutely continuous with respect to the base measure p. The f-divergence between P and @ is
then defined as

p(x

Ds(PIQ) = [ ate)f (45 ) duta) + 7' (0)Pla = 0k
x q(x)

where p and ¢ are the densities of P and ) with respect to the measure p, respectively, and f/(00)

represents lim,, o f(x)/x.

Example 1. By taking different f functions, we provide some popular examples of f-divergences.

« Kullback-Leibler (KL) divergence: taking f(t) = tlogt gives D;(P||Q) £ Dy (P||Q) =
| plog(p/q)dy, which is also denoted dy(p, ¢) in Deﬁnition
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. The total variation distance: taking f(t) = 1|t — 1| yields Dy (P||Q) £ ||P — Qv =
5/ ‘% - llqdu = supcy |P(A) — Q(A)|, which is also denoted dy(p, ¢) in Deﬁnition

* The Hellinger distance: taking f(t) = (Vt —1)? =t — 23/t + 1 leads to the squared
Hellinger distance Df(P||Q) £ H?*(P|Q) = [(\/p — /@)*dy, which is also denoted
d?(p, g) in Definition|[1]

. The x> divergence taking f(t) = %(t — 1)? produces the x*-divergence D;(P|Q) £

2(PIQ) =5 [(2 - 1)%dp.

Lemma 5 ([73]). For the quantities defined in Example(] the following relationships hold:
(i) For the Hellinger distance,

Li2(p Q) < 1P = Qllw < H(P,Q)\/T— B2(P,Q)/A.

(ii) Pinsker’s inequality: for any distributions P and @),

1P~ QI < 3 Da(PlQ).

Definition 3 ([41] 40]). Let P = {Py : § € O} be a family of probability measures on a space X,
indexed by 6 € ©, and let w be a probability measure on ©. For each f satisfying the conditions in
Deﬁnition the f-informativity, I(w, P), is defined as

Iy, P) = inf [ Dy (P QUuo(d).

where the infimum is taken over all possible probability measures @ on X. In particular, when
f(t) = tlogt, the f-informativity is equal to the mutual information and is denoted by I (w, P).

For each f satisfying the conditions in Deﬁnition let ¢ : [0,1]*> — R be the function defined as

follows: for a,b € [0, 1)%, ¢ 7(a,b) is the f-divergence between the two probability measures P and
Q on {0, 1} given by P{1} = a and Q{1} = b. Then, ¢¢(a, b) has the following expression:

bf(Z) (1—b)f<1z> for0 < b < 1;
9(a,b) = f(l—a)+af'(0) for b = 0; (18)
fla) + (1 —a)f'(o0) for b = 1.

The following lemma implies monotonicity and convexity properties of ¢ ; by taking it as a univariate
function with one argument of ¢ fixed at a given value.

Lemma 6 ([40]). For each f satisfying the conditions in Definition 2| consider ¢ defined in (I8).
Then

(a). for every fixed b > 0, the map g(a) : a — ¢(a,b) is non-increasing for a € [0, b] and g(a)
is convex and continuous in a;
(b). for every fixed a < 1, the map h(b) : b+ ¢¢(a,b) is non-decreasing for b € |a, 1.
Lemma 7 ([4Q]). Let P = {Py : 6 € O} be a family of probability measures on a space X and let

w be a probability measure on ©. Suppose that the loss function L is zero-one valued. Define the
Bayes error as Rpayes(w) = infy f@ EL(6,0(X))w(df) withd : X — © denoting a mapping from
the sample space to the parameter space. For any f satisfying the conditions in Definition[2] we have
that

If(w7 P) > ¢f(§RBayes(w)7 §}%0)7

where ¢y is given by , and Ry is defined as Ro £ infaco [ L0, a)w(d6).
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B.2 Proof of Theorem[Il

We now establish the proof of Theorem [I]by checking the three conditions in Lemma [3|established
for the sparse Bayesian deep learning framework. We first provide a useful result on the discrepancy
measures for generalized linear models in Section and then verify the three conditions in
Sections following the proof techniques in [37,67].

B.2.1 Discrepancy measures for generalized linear models

Paired variables in the set of anchor points Dy = 50’1 U...u 50, & in Section can be seen as
independently (not necessarily identically) distributed, and we let D™ denote Dy in the following
derivations to emphasize its dependence on the sample size n. For {x,y} € Dy j, with k € [K], we
write the rth element of ¥, ("), in the 1-of-K fashion, i.e., only the jth element is equal to 1 while
others are all 0 if 7(") is the jth class, and then, the conditional probability density/mass function of
7(") induced by @ is given by

D) = GT T = (GrwtD), o (Grelwt)) 50 (19)

for r € [R]. We denote the joint conditional probability density/mass function of y as fék) (¥), given
by

and in contrast we denote the underlying true conditional probability density/mass functions for y(")
and y as fo ) and fo , respectively.

Result 1. [If Conditions A.4 in Sectionare satisfied, then, for any k € [K],

R
KM 18) < O > Bl ™) — w15 21
r=1
R
V(150 1§9) < O 3 Ballw®™n) — w7, (22)
r=1

for some positive constants C' and Cvy in the neighbourhood of GOE]

Proof. By Definition (I)) (iii) and (20), we have that

kP 0= [ ] fék)log< (k)>u2<dy)u1<dx>
(k,r)

_Z//fo log< kr)>l/2(dy)y1(dx)
_Z//fék " 1°g< : :;)Vlr(df’(r))l/l(dx).

“These two distances can also be upper bounded by the Lz norm of w2 — w since the L; norm and Lo
norm are equivalent on R? in the sense that [w|z < |w[1 < /p|wla.
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According to (19) and by taking the Taylor’s expansion of log ( T) at w(()k ") , we obtain that

(k r)

/f(k ,r) lo og ( ))V2,r(d}~7(r))

.
dlog fFm) ~
/f(k ,T) (ga'fe’ . (w(k,r) *(-UE)k’r)) VQ,T(dY(T))
(09 w=w
(k,r) [ (9log(G(w)T5™) ! (k,r) (ko) ~(r)
- [ | (G ) e ) (a5
(09 w=w
(): 1 9G@) T\’ (k7
k,r s Sa A (k,r) k,r ~(r)
- /4 (G(w)T O ) e )1 A
where @ = (@1, ...,w0x) " is between w*7™) and wgk’r) and
G (@) . 9Gk(@)
9G@)T (aGl(w) 3GK(W)> ™ "
Ow ow 9 0Gi (@) | 0Gk(@)
O 0wk

Since §(") is discretely distributed, according to and Condition A.4.1, we further obtain that
(k r)

/f(k o g( (k )>V2,r(d3~’(r))

(k, 7“) (D T -
-3 AR v ST

CBK r k,r
e LA
.

Thus, the proof of inequality (1)) is completed.

Similarly, we write V(fék), ék)) as

V(£ 15 //f(k){log( E:)}Zl/g(dy)ul(dx)

(k r)

—//fo(k){ZIOg (kr } 2 (dy)v1(dx)

(k:r

_Z// (kr){mg f(kr )} Vo (d5 )11 (dx)
o 3 [ fis (85 e )

r1#T2 f
}I/QT dy"2)) :| v (dx),

i |:/ f(k,rz) {log (k TQ))
0 f(k r2)

where the second term can be upper bounded by
T k1 r k,r2
{ } > Exflo®m) — w07 — w0,

T1F£T2
and for the first term, we have

1-

K

/ fg"" { (f o ; ) } vl ) = 3 Gl {log (g Efi’z ;i) }2 -
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If Gj(w kr)) < Jlw®m)) — ]”) )||1, we have that

ol )
G é“’){log(?ﬁw? )

k,r))
according to Condition A4.1. If G; (wék7r)) > |lw®)) — w(()k’T)) ||1, similar to the proof for 1i

we obtain that

oo 1og (Cilw™) 27G by [ [0G@NT e o]
j(wy ) log W =Gj(wy ) G, (@) Do (w —w )

2

2 (Callot®) — 7))

) } < max{|log(1 — )], |log(1 + &) }|w ™) — wF )y

G, (‘*’(()k T))
{a-e)cwi)]

Cs 1\’ , ke
<(1_€2> oo™ =g,

where w is between wok’r) and w®"). Thus, the inequality holds in the neighbourhood of
6. O

<

B.2.2 Verification of Condition (c) in Lemma El

Proof. For the sequence {e,,}52 ; in Lemma[3] by (21) and (22) in Result[I]and (17), we obtain that
(G} (8, en)) > {8 : Bllw ™) — w7 < A, for k € [K],r € [R]},
where A,, = U; efb for some positive constant U; .

For simplicity of presentation, we now omit & and 7 in fok ™) . fo (k, r), (k1) (k) B(E) and A7)
in this proof here. Note that

llw — wolls = BT 42 (x;0%)) + ATepy (3 0)) — B 4ha(x) — Ag b1 (x)|x
<|[B 12 (x;0)) — By ¢ha(x) |11 + AT 41 (x;0)) — AJ b1 (%) |1
<|[B 4o (x;0%)) — By 4ha(x;07) |1 + By 4ha(x;0%)) — By o (x;0%)

+ 1Bg $2(x;0%) — B () 1 + A T1 (x; 8)) — Ag o (x; 6

+ 1A $1(x;0)) — Ag (30 1 + [[Ag 01 (x:007) — Ag ()1
Corresponding to each term above, we consider the following six terms:

(D) : TI{0 : x| B tho(x;0P) — BJ 102 (x;0?)||; < A, /6};
(ID) : TI{6 : Ex | By ¥2(x;0)) — B{ 2(x; 0P7) ||y < A, /6};
(I) : TI{6 : Ex|| By 2 (3; 0%) — By ha(x)[1 < A, /6};

D) TI{6 : Ex[|AT 01 (x;01)) — AJ 1 (x:0) |1 < A, /6};
(D) : TI{6 : Exc[| A 11 (x:0)) — A v1(x;0%) |1 < A, /6};
(D) : TI{6 : Bxe[|Ag 1 (x;0%) — Ag b1 (%) ]1 < A /6}.

(23)

Corresponding to B®) for @), we write B = (84, ..., 8x) and Bg = (81, ..., Bxo). Then for (D),
we have that

n{e  Ex BT 02(x;0@) — B 42 (x; 0|, < An/6}

K
{007, BT Y EulB] va(x:0)) — Bla(x;0)] < A, /6
j=1

l>

21‘[{(0(1)T,BT)T Ex|B] a(x:0®)) — Bloun(x: 0))] < = forj =1, .. K}
:|K

e

— {007 )T s BBl a6 - Bl 6] < 2|
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where the last equality holds since all columns of B have independent and identical prior.

Taking A = " = Uﬁlf(i , by Proposition we have that for any given nonzero ¥z (x; 0(2)), My >0,
and My >0
11 {ﬁi : |ﬂ1T¢2(X; 0%) — Blytha(x;0)| < A‘%(X;@(z))}
2
{07 (0?8} + A2 8A!
Z PN~ @ =2 2
2B (x:67) |12 B [[¢ha(x; 64 *

F3 b2 (x;0))||? + A2 sA!
2Mines - S (log M)~ (x; 62) |2 } {82 M @922 )y (x;01)) | 4
(F? 4+ 1)log M®
. 2Mine? - S§2) }

- exp [7 {210g S%Q) + 2¢» log M® 4 Alog ||1bs (x; 0(2))” _ 10g(8A4)H

> exp{—Mine2} - exp{—Mane?},

for large enough n, where the second inequality follows from Condition A.4.2 in Section @
and Condition B.2.2 in Section L and the third inequality holds since A = W = Ule by
definition and €,, — 0 as n — oo. The last inequality holds if 4log(1/€2) < Mane? for large

enough n and log ||[)2(x;0@)|| < Mane2, where, according to Lemma |1} the latter holds if

> exp {—Mlnei

no

> exp {—Mlnen

H,» (log Eno +log 7% ) < Mane2, which can be guaranteed by Condition A.3.1 in Section

Since the result above holds for any given ¥z (x; 0(2)), by summarizing the discussion above, we

obtain that
K
@M= Lien]g I {,31 : Ex|ﬂiT¢2(X§ 0(2)) - ﬁlTowg(x; 0(2))\ < (x; 3(2))}]

> exp{—K(My + Ma)ne,}.

Now we consider the second term (II) in (23), which can be written as
(1) =T1{0@) : Ex||Bg v2(x; 0®) — B{ 12 (x;0P%)||1 < A, /6}

—1{e? . ZEx\ﬁ}m(x; 0') — BJota(x;097)| < A, /6

=1

ZH{Q(Z):Esz(X;O@))lﬁ( ;07| < A”}

~ 6KF:
where the last inequality follows from Condition A.4.2 in Section[A.2]
Consider the set
S? = (@ . |0§2) 2)*| <, forj € v, |9§ ) 952)*\ < forj ¢y}, (24

where 7,, and 7], will be specified later. Let r, denote the number of nonzero connections to the hth
hidden layer which includes the bias for the hth hidden layer and the weights between the (h — 1)th

and the hth layer, such that 3> 7, = ||7?*||; £ r,2. Then, for any x satisfying ||x/|~o < 1,
2 (3¢ ) — 2 (x; 07) |y

Hyo Hpo 1 7(2)
n. L
SnanQ(EnQ +77 Hna—l | I Th +nn n2 | | ( n2 T n + TLT . ) Th
h

an Hn2
T T
<Ny Hpz(Us Epg) 2 (%;) + 1, T2 (Ug Epo ) 1n2 (%;)

§2U3637,7
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where the first inequality follows from Lemma [2] and the second and the third
inequalities  hold if we take 7, = Usel/{H,2(UsEpn2)""2(rp2/Hp2)¥2}  and
0, = Use? /{Jn2(Us Epa) 72 (19 / Hpo )72} for some constants U > 1 and Uz > 0. By

taking a small enough Us, we can obtain that Ey||1)2(x; 0)) — 4y (x;0@%)||; < 6@%1 for any

0 € 8@ defined in . Then, it suffices to prove that TI(S®)) = T1(?)(S(?)) > exp(—M3zne?)
for some positive constant M3, where I1(2)(.) is the prior measure of 0@ as given in Section

As defined in H in Section each element of 8 has an independent continuous prior, denoted

7r((f)(~), and we use EE)Q) to denote the minimal density value of wéQ)(~) on the interval [—E,2 —

1, E,2 + 1]. Then, we obtain that

1 (s®)
= I =20 —n <0 <0 4m) T =208 —n, <0 <0+
jeEv@r Jgy @

Jn2
2) N\ 2) (2
> (21" ma) {Wé (01 € [*77;,77;])} ,
and thus, according to Conditions B.1.1 and B.1.2 in Section[A3] we have that
1

1 1 1
—1log TP (S@) < 1,y {log — +log + log } + Jpo log { }
20 T T w0 € [=m,mi])

— 1
< rng{constant + H,2logn + log Lo + log <2> + log H,2
€

n

T'n2 Jn2
Hpolog(Us E, Hpolog | — Jn2l
+ Hyz log(Uz En2) + QOg(HM)}-&- 20g(<]n21)

= TTLQH’VLQ IOg N+ Tn2 log fn%

where the last asymptotic equality follows from Condition A.3 in Section [A.2] and
the fact that log(1/e,) = O(logn). Thus, (II) >TI(S®) > exp(—Mszne?) holds if

rnoHpologn 4+ rpolog Lo < U4’I’L€31 for some sufficiently small positive constant Uy.

Now we consider the third term in 23):

K
Ex[IBg 102(x; 02) = B tha(x)[[1 = Y Bxc| By {02 (3: 02)%) — by (x)}|
j=1

< K P12 (3 09%) — 4o (x)|
S KF2wn27

where the second inequality follows from Condition A.4.2 in Section [A.2]and the last inequality
follows from the definition of the true model given in . Thus, we can take €2 = O(w,,2) so that
(III) = 1 for large enough n.

Similar discussion can be applied to (I)’, (II)’ and (III)’ in and we can obtain that

K
A, b (x; 9(1))}]

@ > Lienjgnﬂ {041 L Ex] o 91 (x;:01)) — afour (x;00)] < 6K

> exp{—K (M} + Mj)ne, };
)y > (0" : SM) > exp(—Mjne);
(IIT)’ =~ 1 for large enough n,

where M, M} and M are constants, and S (1) can be similarly defined as in . Since the
discussion above holds for any k € [K| and r € [R], by choosing proper My, Mg, M3, M}, M)
and M, Condition (c) of Lemma can be verified.

O
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B.2.3 Verification of Condition (a) in Lemma|§|

Proof. Condition (a) in Lemma@ can be verified if we can find a parameter set ©,, C © such that
log N (€,,/36, Py, dy,) < ne2, where P, represents the set of all densities that can be represented by
model (@) in Section B W1th parameters in ©,,. Consider the following parameter space:

@n - Snl ®Sn2 ® Bn & -Anv
where

1 1
< IO S = 15 1081 2 6003 < knarans 5 lin < Klysan ks

Sna = 0@ 1021 < 1P, 71 = {5105 > G0} < Fnorna, 1757 lin < Kpasma};
B, = {BY = (81, ... 8%) for k € [K] : [ < by, fork,l € [K]and j € [MD)]};
A = (A" = (", .,af)) forr € [R] : |o")| < an, forr € [R], | € [K], and j € [M@)]}.

(1) (1)

Here, |'yel) |in and |79 )|m denote the input dimensions of the sparse network structures «,’ and -y,

respectively, and W1, 015 Onos kn1 (S n/rp1), kna (S nfrng), kL1 (S n/sn1), ko (< n/sng),
b,, and a,, are positive constants whose values will be described later.

The parameter space ©,, can be covered by a set of L, balls of the form (¢; — pn, 0; + pn)jvinl,
where for the jth coordinate, g; is the center which lies inside ©,, p,, is the radius, and W,, =
In1 + Jno + K2M® + RKM® is the number of all involved parameters. It can be verified that
the number of balls needed to cover the parameter space is upper bounded by

kn1Tn1 I( ) . kn2rn2 (2)

K, 2 Zx(l)(j)< +1)J~ ZX <—+1)j

j=1
a K2M® RKM<2>
. (l + 1) . (l + 1)
Pn Pn
é]Cnl . ICn2 . ’CnS : ICn4; (25)

Pn

where for [ = 1,2, y( (j) denotes the number of all valid networks with exactly j connections and
no more than k;lsnl inputs.

Then we consider the number of d,,-balls needed to cover the set of all densities, P,,. Consider
two parameters in ©,: 0, £ (67,07 BMT . BUOT AWT AWTYT and 0, 2
O o7 BT BT AWMT AT which satisfy that

(i) there exists a network structure () such that |y 1)| < kpiTni, |7(1) lin < kL 1Sn1s |0$3 —
01| < py forj € v, 6) < 8y and 6') < a1, for j ¢ v

(ii) there exists a network structure 7(2) such that |7(2)| < kpotna, |,7(2) lin < K p$mos |97323 _
91()23\ < py forj € v, 9523 < 0,4 and 97523 <&, forj ¢ v,
(iii) |ﬁ(k)v m]| < ppfork,l € [K]andj € [M(l)];

ul,j

iv) ol — ¢ al j| < ppforr € [R],1 € [K],and j € [M?)],

where s,,1 and s,2 are defined in Condition A.3.1 in Appendix [A.2] and p,, is a positive constant
whose values will be discussed later.

Let fék) and fgj) denote the corresponding densities in P, for k¥ € [K]. By in

Result [I| and the fact that d(fi,f2) < +/K(fi,f2) in Appendix [B.1.1, we obtain that
d2(04,0,) < maxyer],rerr) UsBx ||w(k ) ) ||1 for some positive constant Us, where
BT ) £ AL 00 and o) = BT 04 AL 00
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for k € [K] and r € [R]. For ease of presentation, we omit k and  in B®), B®) A A" wlr)

and w "™, and further obtain that

wey — wolli < By v2(x;02) — B 02 (x;0) |1 + Ay 1 (x;00) — A 91 (x:059)]|y
< |IBy o (x;08) — B o (x; 052)]|1 + ||B,) 1ha(x; 052)) — B 4ha(x;052) 1
(

+ AL 1 (x:057) — Ay i (x; 00)) |11 + | A 91 (x:05) — AT (x; 00) |

~— ~—

K K
= Z 1B {th2(x;0) — o (x; 00)H + D (B, — Buy) 2 (x; 0]

i=j j=1

K K
+ 3 e {1 (. 00) — ¢ (x:00) Y + 3 (s — ) b (x: 08|

=1 i=1
< Kbyl (x:017) — a6 0 |1 + Kl (x: 03|
o Kay 11 (6.05) — b1 (6.0 |1 + K puohs (03]

where the preceding four boundness assumptions for 8,, and 8, together with the definition of A,
and B3,,, are used.

Similar to the proof in Appendix [B:2.2] by using Lemmas [T] and 2] we can further obtain that
d2(0y,80,) < (€,/36)? if we choose p,,, 6,,; and 8/, in the preceding derivations as follows:

@) o, = UGefl/annl(UéL(ll))H“(knlrnl/Hnl)Hnl for some constants Ug > 0 and U§ > 1;
(ii) 05 = U7e721/aan2(U§L(12))H"2 (knarna/Hp2)™n2 for some constants Uy > 0 and U} > 1;

(i) pp = min{Ugwlefl/annl(Ugﬁl_f,(ll))H"I(knlrnl/Hnl)H"I,
US,QE%/aanQ(UéQLgLQ))an(kn2rn2/Hn2)Hn2}

for some constants Ug 1, Ug 2 > 0 and Ug , Ug 5 > 1.

Thus, the log covering number of P,,, log N (e, /36, P,,, d,,), can be upper bounded by log K,, =
log K1 + log K2 + log K3 + log K4, with /C,y; given in @) forj =1,2,3,4.

Considering the fact that logx™(j) < log(,,"" )(klnls"lt,H"lf"l) < Kklysnilog(pn) +

n15nl
jlog(klisn1 + Hnlfil) < kl18n1log(pn) + knirna log{ Hp1 (k)1 Sn1 + L,1)?}, and by choosing
log IV = O(logn), log D = O(logn), a, = v/ne2 and b, < \/ne2, we have that
log KCp1
18
< log(knlrnl) + log X(l)(k;nl’l“nl) + kp1rn1 IOg (T + 1)
< log(k'nl""nl) + k;ﬂSHI 1Og(pn) + kp1Tha log Hp 4 2kn1m01 1Og(k;13n1 + an)

+ kp17n1 {constant +1log I +log by, + log Hyy + Hp log(Us IV + Hpy log(kpi7n /Hnt)

1
+loga, + log Hyo + Hpo log(U%QI,(Lz)) + Hyzlog(kparne/Hyz) + log 62}

=k},1501108(pn) + knirn1 - O (Hpilogn + Hyglogn + log Ly + log Lis)

where the last equality holds since kn17n1 < n, kporne < n, kl1sp1 < noand kl;sp1 <
n. By choosing k!, and k,; such that k17,1 (Hnl logn + Hpologn + log Ly, +10gfn2)
= k! 18n1log(p,) < ne2, we have ne2 = O{rannl logn + rpi1Hyelogn + 7p1log Ly
+rp1log Lus + Spi log(pn)}. By applying similar discussion on logK,2, logk,s and
log K4, we further obtain that log N(P,,e,) < logk, < ne?, where the sequence

ns
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{en}o2, satisfies that ne2 = O{(rn1 + rn2) (Hn1 + Hn2)logn + (11 + rp2)(log Ly + log Lys)
+(Sn1 + Sn2) logpn }.

O
B.2.4 Verification of Condition (b) in Lemma|§|

Proof. Since II(©¢) < II(SS,) + II(SSy) + II(BE) + II(AS), we first examine IT(B) and TI(AS).
For any b,, > 0, by the prior assumption given in (6), we have that

(B°) =11 {B(k) = (B, ... 8%) for k € [K] : |B")| < b, for i, k € [K], and j € [M<2>}}

k
= H(Uk,le[K]J’e[M(?)]wl(,j)| > bn)

K K M®
< Z 51851 > ba)
k=11=1 j=
K M®
= K>S 7088 > ba),
k=1 j=1

where wg) (+) denotes the measure induced by the prior distribution of B as defined in Section

Applying the bounds on the Mills ratio [[76]] for the standard normal distribution: l — % <= ((I;()”“ ) <

L L 4 3 for —oo < & < oo, where ®(-) and ¢(-) denote the CDF and probablllty density

function (PDF) of the standard normal distribution, respectively, we further obtain that, by taking

bn = manE[K] 5?5?%16%,
2p (bn/ (E(k))m)

b /\/T \/277172—’“)
\/Tﬁ exp{_(b2/B( >)} < exp (‘2”6%)

where A; ; represents the (4, 7) element of matrix A, the first step is due to the Mills ratio bounds,
the second step comes from the definition of the PDF of the standard normal distribution, the third
step is due to the fact that the sum of the eigenvalues of a matrix equals the trace of the matrix and

the positivity of (Eg}c)) , and the last step comes from the choice of b,,. Therefore, it follows that
i

78188 > b,) < exp{— b?/(z“”)”)}

<

I(B2) < K2M® exp(—25ne?) for large enough n.
Similarly, we can obtain that II(AS) < K2M® exp(—35ne?) for large enough n by taking

4y = Max,c[g] \/ 5Z£:)TL€%.

We then consider II(S,), which can be upper bounded by
1(S5,) <100 - Uy [657] > 180) + 110 + |5V = [{5+ 1657] > 01} > knirma)
+ (00 m”\m > Ky 5n1)
= TSP (10 > IM)) + P{Binomial (J,1, ) > kn17m1 } (26)
+ P{Binomial(p, L"), 1) > k., 51}
where v, = 1 — 7)Y ([=0}1,6),]) < 7 exp{(Ho1 + Hy2) logn +10g Ln1 + log Lz + log p, }

according to Condition B.1.2 in Section|A.3| For the first term in ( , we have that Jnlﬂe (|9§1) | >
1Y) < exp{—(2 + e( ))ne%} following Condition B.1.3 in Section where eék) > 0isa
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constant. The second term can be upper bounded by

P{Binomial(Jy,1,vn) > kn17n1}
Jnl

Jn1> i Tn1—j
— E ; vl 1— Uy, nl—J]
( J ( )

j=knirn1+1
Jn1

< Z Ji1V£(1 — yn)Jm—j < Jnl(JnIVn)kannl
j=knirn1+1

SJnl exXp |:_S(()1)kn1Tn1 { (Hnl + Hn2) IOg n—+ IOg an + logan + Ingn }i|
< exp {—Sél)nei} ,
where the last inequality is due to the choice of k,,; in Appendix , and Sél) > 2 is a constant
given in Condition B.1.2 in Section[A.3]
Similarly, for the third term in (26) we have that
P{Binomial(p, L"), 1) > K/,  $pn1}

(1)
pnLly

L ; m_
= 2 s
j:kﬁusnl“rl J
pn LV o o LV
1 . . i 1 ’ ’
< D LY i) = L () e (R e
Jj=kl 1 sn1+1 nl

Sangl) exp [ - S(()l)k»,nlsnl{(Hnl + HnQ) 1Og n+ log an + 10g ZnQ + logpn}

In
— ky18m1 log ( 11)> }
pnly

< eXp{—Sél)nei}.
Thus, Condition (b) in Lemma[3]is verified.

B.3 Proof of Theorem 2]

We now prove Theorem 2} The proof of the upper bound adapts the techniques in [46], and the proof
of the lower bound employs a general mechanism for lower bounding the Bayes risk [40]], which is
tighter than the Fano’s inequality [44].

Proof. Upper Bound. The Bayes risk can be written as

Rooyes = inf § > A(Y)E(LEF,¥)ly; T)

=
|
|

n

> hly) s P £ vilvisT)

yEIK]™ =1

= inf

S|
'M:‘

I
oy

<B
=

h(y)P(¥; # vilyi; T)

<
Il

1l ye[K]™

K
D hi gP(F; # glyi = g; T)} :

3|~
_M:‘

Il
«E
=8

-
I

1 g=1
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We first consider the situation g = 1:
K
P(y; #1lyi = 57) < Y P(¥; = ¢'lyi = 1;7).

For each ¢’ > 2, considering the inference procedure of ¥;, we have that
Py, =g'lvi=171)

: yi=1iT
L1121 \ Tiou
A AR K /(1) Al =)
:P ( 49’ > H ( i7g/l> > 1 yi = 1, T
Wi/ =i Ti(,q)l
) A(y " =1)
yi=hLT

< min [ T’ AHIE; H Tig'l

<eXp{R{021£21]1%{ i +Zl g{Z( Zg,l) (T;’?l)”}}}}

where the inequality in the third line follows from Markov’s inequality. Denote Cé;),

7H11H0<)\<1 R{ )\10 Shig +Zr 110g{2l 1 ( z(z)l) (1(79)/1) }} and Iég)(hi,Ti)

ming 4 C @@ ), , we further obtain that
P(y, =lly; = 1;7) < exp {—RC{;),}
<exp{ —RminC') } = exp {—Rl(l)(h- T)} .
= g£1 99 Q Ve T
Thus, we can obtain the upper bound of the Bayes risk:

(@) (. —.
§RBayes < —Rlg (h“n)-

i=1 g=1

Lower Bound. Using Markov’s inequality, we obtain that
§RBayes = Hylf Z h )|y7 )

. 1 _ 1

>infq Y h(y)=P(L(¥,y) > =ly;T
y _ n n

ye[K]™
= L > hWy)PF #yly:T)
-7l Py #yly;t

yE[K]?

St | Y ME (L £ )lyiT)

yeE[K]™
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where the second step is due to Markov’s inequality. Using Lemma(7] we can obtain that
If(h P) > ¢f(% %0)

where P is the set of distributions of {y;}?_; induced by y, and for 0-1 loss, Ry has the expression
in [40]: Ro = 1 — sup,e(r)» (B(a)) with B(a) = {y € [K]|" : 1(y # a) = 0}. Then, it can be

easily verified that Ry = 1 — ], maxye(k] M k-

Let g(t) = ¢¢(t,Ro), which is, by Lemma 6] non-increasing for ¢ € [0, %], convex, and continuous
in t. Using the convexity of g(t), we obtain that for every ¢ € (0, ]

where d)} (t—, Ro) denotes the left derivative of = — ¢ (x, Ry) at x = ¢. Then we can obtain that

o5 (R, Ro) — d5(t, Ro) I (h, 7’) <Z>f(t Ro)

R>t+ >+
¢y (t—, Ro) Py (t=, Ro)
where the inequalities come from the fact that I(h, P) > f(@ o) by Lemma (7| and that
P (t— %0) < 0 due to the non-increasing function g(t) over ¢t € [0, Ro]. By taking f(¢) = tlogt

andt = we obtain that

1+§R ?
I(h, P) +log(1 + Ro)
log(1 — Ry) ’

where I (7, P) is the mutual information of /& and P.

R>14+

Let Y and Z denote two independent random variables such that Y ~ hand Z ~ P, and let D, (+|-)
denote the KL divergence of the associated distributions. For ease of notation, we use P(Y'), P(Z),
P(Y,Z) and P(Z|Y) to denote the £, P, the joint distribution of Y and Z, and the conditional
distribution of Z, given Y. Then I (%, P) can be evaluated as follows [43]]:
I(h,P)=1(Y;2)
= D (P(Y, 2)| P(Y)P(Z))

. POPY)
- ye[K]gz:e[K]Rn POOPET) log{ P(Y)P(Z) }

> P(Y)Dwr(P(Z|Y)||P(2))

Ye[K]ﬁ,
= Y PY)D(PZY)| Y. PZY)PY')).
Ye[K]™ Y'€e[K]™

Using the log sum inequality in Lemma[d] we further obtain that

I(hP)= Y PY) Y PY)Dw(PZY)|P(Z]Y)

Ye[K]™ Y’/e[K]™

= > > P <Y’>{ZZD z<’”>|Y>||P<Z<”|Y>>}

Y€E[K]? Y/ €[K]™ i=1r=1

- X > S PYIPO ) D (7R

Ye[ K]” Y'e[K]n i=1 r=1
n K

- ZZZ 2 P = 9P = )Du (rl=)
i1=1r=1g=1g'=1
K K
Zzh >q/DKL(’Lg*|| 7,q*)

I
M:u
§

(1>

3

ol

=

= —
=t

3

— «Q
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Combining the discussion above, we obtain that
1 EKL(h, T) + % log(2 — H?:l maxge[K] hi,k)
mBayes > —|1- n _
{Zi:l log(maxke[K] hi,k)} /TL

n

B.4 Proof of Corollary[3|

Proof. For k € [K], r € [R], and consider the following set:

S= {0 : Uke[K],re[R]{ Cmax | fE0(Flo®) — (5 (Gl )] > Mnen}} :
VE[K],x€Dx

where 0, ¢,, and M, satisfy the conditions in Theorem w®r) and wék’r) depend on x, and Dy

represents the set of observations of the instances in D. Then, according to Theorem E] and using the
union bound, we have that
5, }

ISPy < Y H{e :_max_ [fEDFw®) - 5 Flwl0)] > Mae,
ke[K]_yrG[R] yE[K],xEDx
Do)

< X n(0: 1% = 5 > Vs

ke[K],re[R]
< X m(8:d(rt f5) > VAU M, D) — 0
ke[K],r€[R]
in [P probability as n — oo, where || - ||rv denotes the total variation distance of the associated

distributions as defined in Example[T] and Uy is a positive constant. Here, the second inequality is due
to the definition of the total variation distance of discrete distributions and the fact that f(x) > ¢ for
X € Dy, and the third inequality follows the (i) in Lemma Thus, II(S|Dy) — 1 in P? probability
as n — oo, where S can be written as

S= {0 : max__ |?§€7l')(x) - T,i;)(x)| < Myen, k € [K],r € [R]} .
l€[K],xEDx

We now consider the Bayes risk $payes, Which, according to the proof of Theorem 2| can be written
as RNpayes = infy {% S 22{21 hi gP(¥; # glys = g; ’r)} We first consider g = 1:
P(y;, # 1llyi = 1;7)

K
<Y PF=glvi=17)
g'=2
K N O
< 1,9’ i,9'1 —_ 1.
S e
g'=2 A/ r=11=1 \ Ti,u
N\ 1=t . o 1=
s P hi,g' AL Tz‘(;)'l e 7'i(71)l ?glg)’l e 1 1
= Oh, 1 IT11 ) 111 —n ) > Hyi=5LT
g'=2 ’ r=11=1 i,11 r=1]=1 7,11 4,91
If {?Ef*) () }relx),re[r] € S, using Taylor’s expansion, we have that
R K () =) \ 1687=D
o H Tial Tign
& —n
r=11=1 \7T4,11 Ti,g'l
R K —(r) —(r)
Tig'l T 11 r
=303 (1 it e ) 1607 <0 < st
r=1k=1 i,g'l Til
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for some constant £ > 0 and large enough n. For any € > 0, we have that kM, €, < € by taking
M, = €¢/(26My¢,). Thus, we further obtain that

K . R K T(T.) 1(yi7‘):l)
_ . Z i,9' ,g'l
P(yz 7é 1‘}’: = 177') S QIZQIP) exp(e) (%) H H <(T)> >1

< (K —1)exp {—Rls()l)(hi, Ti)+ e}

for {?,(;;) ()}reik),re[r] € S, where in the second step, we use Markov’s inequality and the definition

of Ig(zl) (h;, 7;). Similar results also hold for g = 2, ..., K. Hence, according to Theorem we have
that

n

K-1G& @
II {T : Rpayes < Z Z hi7g€_RIQ (hi,Ti)+e

Do} > TI(S[Dy),

i=1 g=1

where I1(S|Dgy) — 1 in P probability as n — oo. Thus, the proof is completed.

C Implementation details and additional experimental results

C.1 Implementation details

Dataset description. We assess the effectiveness of our method on three image datasets with
synthetic annotations, MNIST [47], CIFAR-10 [48], and CIFAR-100 [48]], and two datasets with
human annotations, CIFAR-10N [49] and LabelMe [50,51]]. MNIST consists of 28 x 28 grayscale
images with 10 classes, containing 60,000 training images and 10,000 test images. CIFAR10 has 10
classes of 32 x 32 x 3 color images, with 50,000 images used for training and 10,000 for testing.
CIFAR100 also consists of 50,000 training images and 10,000 test images, whose size is 32 x 32 x 3,
but with 100 fine-grained classes. We further consider two additional datasets with human annotations,
CIFAR-10N [49] and LabelMe [50}51]]. For each instance in CIFAR10, CIFAR-10N provides three
independent human annotated noisy labels, with the aggregation of three noisy labels by majority
voting being 9.03%. LabelMe is an image classification dataset consists of 10,000 training images,
500 validation images, and 1,188 test images. For images in the training set, LabelMe has noisy and
incomplete labels provided by a total of R = 59 annotators, with each image being labeled by an
average of 2.547 annotations. For all the datasets except LabelMe, we leave out 10% of the training
data as a noisy validation set.

Experiment setup. The network structure for the MNIST dataset is chosen to be Lenet-5 [52]. We
choose ResNet-18 [2]] for CIFAR-10 and CIFAR-10N, and ResNet-34 architecture [2]] for CIFAR-100.
As in [53]], we employ the pretrained VGG-16 network, followed by a fully connected layer and
a softmax output layer for the LabelMe dataset, using 50% dropout. We take the batch size to be
128 for all the datasets. For MNIST, we use the SGD optimizer with momentum 0.9, weight decay
5 x 1074, and an initial learning rate of 10~2. The learning rate is divided by 10 at the 40th epoch,
and we set 80 epochs in total, in which the first 20 epochs are used to warm up the model on the
noisy dataset and to determine anchor points. For CIFAR10, CIFAR100, CIFARION and LabelMe,
the Adam optimizer [77] is utilized with the weight decay 5 x 10~*. For CIFAR10, CIFAR100 and
CIFARI1O0N, the initial learning rate is set to be 1073, and the network is trained for 120, 150, and
120 epochs for CIFAR10, CIFAR100 and CIFAR10N, repectively, with the first 30 epochs used as
the warm-up stage. The model is trained on LabelMe for 100 epochs, with an initial learning rate
5 x 10~* and first 20 epochs as the warm-up stage.

Baselines. We compare the proposed method with the following state-of-art methods: (1) CE
(Clean), which trains the network with the standard cross entopy loss on the clean datasets; (2) CE
(MV), which trains the network using the labels from majority voting; (3) CE (EM) [9], which obtains
the aggregated labels utilizing the EM algorithm; (4) DoctorNet [54], which models the annotators
individually and then learns averaging weights for combining them; (5) GCE [55]], which generalizes
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the mean absolute error and the cross entopy loss to combat errors in training labels; (6) Co-teaching
[S6], which trains two networks and cross-trains on instances with small loss values; (6) Co-teaching+
[57], which bridges the “Update by Disagreement” strategy with the Co-teaching method; (7) BLTM
[L7], which directly models the transition matrix from Bayes optimal labels to noisy labels and learns
a classifier to predict Bayes optimal labels; (8) MBEM [11], which alternates in rounds between
estimating annotator quality from disagreement with the current model and updating the model by
optimizing the a loss function that accounts for the current estimate of worker quality; (9) CrowdLayer
[53]], which concatenates the classifier with multiple annotator-specific layers and simultaneously
learns the parameters; (10) TraceReg [8], which uses a loss function similar to CrowdLayer [53],
but adds a regularization to establish identifiability of the confusion matrices and the classifier; (11)
Max-MIG [7], which jointly aggregates the noisy crowdsourced labels and trains the classifier; (12)
CoNAL [58], which decomposes the annotation noise into common and individual confusions; (13)
GeoCrowdNet (F) [[13]]; and (14) GeoCrowdNet (W) [13]], which are two regularized variants of the
coupled cross-entropy minimization to enhance the identifiability of the confusion matrices. Among
these methods, GCE and Co-teaching are strong baselines dealing with single noisy label issue,
and we adapt them to the multiple annotations setting by utilizing the majority vote labels for loss
computation.

Implementation details. We first warm up the base models on the noisy dataset with majority vote
labels, obtain the set of anchor points Dy, and train the sparse Bayesian model on D by maximizing
the log posterior distribution of network parameters and excluding non-informative parameters with
low posterior inclusion probability. With the noise transition model trained, we then iteratively
implement the label correction algorithm (I0) and update the base models, where linearly increase
the threshold €2, in the training process. Specifically, let £ R denoted the estimated average noise
rate, and let rg and r; represent two prespecified constants with r; > r¢ > 0, which determine the
magnitude of €2, at the beginning and the end of the training process. In the tth epoch, we set the
threshold ; tobe ; = (1 - ER)- (ro +t- "7 ) in the experiment. The implementation procedure
of the proposed method is summarized in Algorithm 1]

Algorithm 1: Annotator-Specific Instance-Dependent Label Noise Learning via Sparse Bayesian
Network and Pairwise LRT

Input :Noisy training data D = {x;,¥;}
// Warm Up the Base Models h; and hz; Collect Anchor Points Do [26]
// Sections and : Train Sparse Transition Matrices

Maximize the log posterior distribution of network parameters and obtain the MAP 0;
Calculate the posterior inclusion probability P(y\”) = 1|6) using ; it P(y\) =1/9) < 0.5,
zero out the corresponding parameter;

Fine tune the sparse network and obtain the noise transition model f;

// Section : Pairwise Likelihood Ratio Test and Update the Base Models

for epoch t =1,...,T do

Update the linearly increasing threshold €2, for pairwise LRT;

for each instance x; do
Use f1(x;) as the prior of x;; if 7, satisfies 1i with threshold Q;, put {x;,¥,} in D; 1;
Use fo2(x;) as the prior of x;; if y, satisfies li with threshold €, put {x;,¥,} in Et,g;

end for

Update f; using Dy o;

Update fo using Dy 1;

end for

Output:hq, ho and f.

N .
i=1°
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C.2 Additional experimental results.

Accuracy and number of selected labels. To validate the effectiveness of the proposed label
correction method, we plot the accuracy and the number of corrected labels using criterion (I0) in
Figures [3]and [ for all the considered datasets, where the solid line is the accuracy (left y-axis) and
the dashed line is the number (right y-axis) of corrected labels.
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Figure 3: The accuracy and the number of corrected labels using the label correction algorithm (T0)
on synthetic noisy datasets. The error bar for standard deviation has been shaded.
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Figure 4: The accuracy and the number of corrected labels using the label correction algorithm (T0)
on real-world noisy datasets. The error bar for standard deviation has been shaded.

Classification accuracy on MNIST. The test accuracy on CIFAR10, CIFAR100, CIFAR10, and
LabelMe are provided in Section[5] Here we present the average test accuracy on the MNIST dataset
in Table 2] where the two highest accuraries are bold faced. Clearly, that the proposed method
achieves the best performance.

Table 2: Average accuracy of learning MNIST dataset

IDN-LOW IDN-MID IDN-HIGH

CE (Clean) 99.1410.10
CE (MV) 98.5940.13 97.9710.13 96.60+0.52
CE (EM) [9] 98.4910.11  75.8440.97 96.7810.52
DoctorNet [54] 98.174+0.12 97.36+0.23 95.3240.51
GCE [55] 99.0240.15 98.51+0.24 98.05+0.42

Co-teaching [56] 98.85+0.11 98.6110.18 98.2310.21
Co—teaching+ 1571 98.6410.10 98.33+0.10 97.6710.44

BLTM [17] 98.6940.06 98.1140.09 96.4040.81
MBEM [11] 98.66+0.07 98.2410.05 97.46+0.21
CrowdLayer [53] 97291041 94.8810.92 90.5112.47
TraceReg [8] 98.68i0,05 97-9610.18 96.70i0,57
Max-MIG [7] 98.62io_06 97.97i0A05 96.46i0,26
CoNAL [58] 98.60+0.09 97.89+0.06 96.03+0.73

GeoCrowdNet (F) [13] 98.98+10.02 97.70+0.71 96.9140.94
GCOCI‘OWdNCt(W) [13] 97.33i0,13 94-74i0.67 90-79j:0.97

Ours 99.13i0,05 98.98io_11 98.80i()‘()7

Hyperparameter analysis on the CIFAR100 dataset. We conduct sensitivity analyses about
hyperparameters r and r; on the CIFAR100 dataset, where we choose rg from {3, 5, 10, 15,20}
and 1 from {200, 250, 300}. As discussed in the implementation details in Section ro and 1
determine the magnitude of the threshold €2; at the beginning and the end of the training process,
respectively. With higher values of ry and r1, the accuracy of the corrected labels using algorithm
(T0) will increase accordingly, but the number of corrected labels will decrease. As shown in Table[3]
with different choices of ry and 71, the proposed method consistently outperforms all the compared
methods.

Classification accuracy on CIFAR100 with varying number of annotators. Figure [ shows the
average accuracy on CIFAR100 with the number of annotators varying from 5 to 100, which further
demonstrate the superiority of the proposed method under different settings.
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Table 3: Average accuracy of learning the CIFAR100 dataset with different hyperparameters.

IDN-LOW IDN-MID IDN-HIGH

’I“0:3 7"1:200 58.88i1A18 52.98i1,02 45.50i1_30
r1 =250 58.19+0.92 52.0441.77 46.284203
r1 =300 58.16+0.57 53.03+0.82 45.48+1.97

To = 5 T = 200 59.01:[:024 52~75j:1.38 45.76:&202
r1 =250 58.58+0.62 52.76+0.99 46.59+1.23
T = 300 5934:[:0‘66 52.88;{:1_68 47.04:&174

ro =10 71 =200 59.394+0.44 53.23+1.12 47.10+1.78
T = 250 59.75i074 53.74i0,54 47.27i1A79
r1 =300 59.06+0.04 53.73+0.93 48.09+1.47

To = 15 T = 200 59-43i0A56 54.46i0,37 47.40i1_23
Ty = 250 59.38i1,22 54.48:{:0,87 48.59i0,90
T = 300 59.36i0A33 54-93i0.63 48.29i1_85

To = 20 T = 200 59.81i0,55 54.88:{:0,60 49.44i1,30
r1 =250 59.38+0.62 55.4840.75 49.39+1.48
T = 300 60-1410.87 55~1Oj:0.88 49.07i1,22

Accuracy
3

100 5 100 5

30 30
Number of Annotators Number of Annotators

30
Number of Annotators

(a) IDN-LOW (b) IDN-MID (c) IDN-HIGH

Figure 5: Average accuracy of learning CIFAR-100 dataset with varying number of annotators. The
error bar for standard deviation has been shaded.

Average estimation error. For synthetic noisy datasets CIFAR10 and CIFAR100, we compare
the average estimation error of the proposed method with six competing methods, CrowdLayer
[S3]], TraceReg [8], GeoCrowdNet (F) [[13], GeoCrowdNet (W) [[13], MBEM [11], and BLTM [17].
The definition of the average estimation error and the results on CIFAR10 with 5 annotators are
given in the Ablation study of Section[5] In Figures [6]and[7} we respectively present the average
estimation error on the validation set of CIFAR10 and CIFAR100 with varying numbers of annotators,
where the results of CrowdLayer, TraceReg, GeoCrowdNet (F) and GeoCrowdNet (W) overlap in
some subfigures of Figure [/} The proposed method outperforms all the compared methods with
lower average estimation error for each annotator in most of the cases, further demonstrating the
effectiveness of the proposed sparse Bayesian model.
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Figure 6: Average estimation error of annotator-specific instance-dependent noise transition matrices
on CIFAR10. From the first to the fifth row, the number of annotators is 5, 10, 30, 50 and 100
respectively. Standard errors are represented by shaded regions.
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Figure 7: Average estimation error of annotator-specific instance-dependent noise transition matrices

on CIFAR100. From the first to the fifth row, the number of annotators is 5, 10, 30, 50 and 100
respectively. Standard errors are represented by shaded regions.
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