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Abstract

Temporal networks are widely used as abstract graph representations for real-world
dynamic systems. Indeed, recognizing the network evolution states is crucial in
understanding and analyzing temporal networks. For instance, social networks
will generate the clustering and formation of tightly-knit groups or communities
over time, relying on the triadic closure theory. However, the existing methods
often struggle to account for the time-varying nature of these network structures,
hindering their performance when applied to networks with complex evolution
states. To mitigate this problem, we propose a novel framework called ESSEN,
an Evolution StateS awarE Network, to measure temporal network evolution
using von Neumann entropy and thermodynamic temperature. The developed
framework utilizes a von Neumann entropy aware attention mechanism and network
evolution state contrastive learning in the graph encoding. In addition, it employs
a unique decoder the so-called Mixture of Thermodynamic Experts (MoTE) for
decoding. ESSEN extracts local and global network evolution information using
thermodynamic features and adaptively recognizes the network evolution states.
Moreover, the proposed method is evaluated on link prediction tasks under both
transductive and inductive settings, with the corresponding results demonstrating
its effectiveness compared to various state-of-the-art baselines1.

1 Introduction

Recently, graph representation learning has demonstrated excellent performance for various types
of static graphs [7; 14; 28; 18]. Indeed, the success of static graph representation learning has
led to a growing interest in continuous-time dynamic graph representation learning. Temporal
network representation learning has emerged as an active research area focusing on learning low-
dimensional representations that capture topological and temporal properties. However, learning
effective representations is still a difficult task in many temporal networks, which are naturally
generated in real-world systems such as social networks[12] and citation networks. The evolving
nature of these networks poses a significant challenge for network analysis and modeling as the
relationships between nodes and their properties evolve. The existing methods often struggle to
account for the time-varying nature of these network structures, hindering their performance when
applied to networks with complex time-evolving states. However, capturing the evolution states
of temporal networks suffers from the following challenges: (1) Temporal networks have different
types of evolution states, such as periodic, linear, or non-linear changes in their structure over time.
Moreover, the evolving patterns can change at different stages in the evolution of the network. As
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(a) MathOverflow: 10th Day (b) MathOverflow: 20th Day (c) MathOverflow: 30th Day

(d) BitcoinOTC: 10th Day (e) BitcoinOTC: 20th Day (f) BitcoinOTC: 30th Day

Figure 1: Network snapshots of the MathOverflow website and BitcoinOTC trading platform on the
10th, 20th, and 30th day. The black nodes represent the users who have connections, and the grey
nodes represent the users with no edges prior to the snapshot time.

illustrated in Fig. 1, the rate of evolution varies at different times in both datasets. The MathOverflow
network evolves rapidly and has obvious central nodes, which means meaningful topics will receive
long-term attention. By contrast, in the BitcoinOTC network, early active users may quickly become
dormant. This phenomenon requires algorithms that can perform extensive and effective recognition
of diverse evolution states. (2) As time passes, temporal networks tend to accumulate more nodes and
edges, resulting in an increasing number of possible connections and a rapidly growing neighborhood
size for each node. This growth in the neighborhood size can lead to significant computational
challenges when analyzing and modeling evolving patterns. Besides, many connections can quickly
make structure recognition computationally intractable in large and complex networks, especially
those recent methods based on the anonymous walk [24; 6; 20]. The time complexity is tightly related
to the length and number of paths, so it is challenging to balance time consumption and algorithm
effectiveness.

To overcome these shortcomings, in this paper, we use the von Neumann network entropy to improve
evolution state estimation. Network entropy is a macroscopic representation of network structures
widely used to characterize the salient features of static and dynamic network systems in biology,
physics, and social sciences. In particular, von Neumann entropy has been successfully used to
describe the structural properties of random, small-world, and scale-free networks [1; 2], and thus
plays a crucial role in understanding the structural and topological complexity of network systems.
Moreover, the ability of von Neumann entropy to capture structural information content aligns
well with the time-evolving nature of temporal networks. This potentially allows us to adopt an
information-theoretic perspective to enhance our understanding of the laws of the network’s evolution
and their capacity to both transmit and store information over time.

Unfortunately, computing the required network entropies for temporal networks can be computa-
tionally burdensome due to the required spectral decomposition. Hence, we approximate the von
Neumann entropy to render it tractable in the context of temporal networks. Compared with alterna-
tive graph entropies, by approximating von Neumann entropy with low time complexity we can better
adapt to the constantly evolving nature of complex temporal networks. Moreover, we can compute an
approximate thermodynamic temperature for the temporal network, which provides an important way
to monitor changes in network structure with time. Measuring the thermodynamic temperature and
the von Neumann entropy provides a better understanding of the state of network evolution with time.

On this basis, we propose an Evolution StateS awarE Network (ESSEN). As shown in Fig. 2, ESSEN
encodes node embeddings with state evolution information by utilizing two proposed techniques:
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a) a von Neumann entropy aware attention mechanism and b) virtual evolution node representation
learning. In addition, ESSEN employs a unique mixture of thermodynamic experts (MoTE) for the
purposes of decoding. Specifically, we project the global von Neumann network entropy into each
edge. The proposed von Neumann entropy aware attention mechanism aggregates over neighborhoods
in both a virtual evolution graph and the original graph based on the von Neumann projected edge
entropy. In the virtual evolution graph, future edges are hypothesized based on a test pertaining
to future instants in time. The MoTE decoder evaluates the evolution state based on both the
thermodynamic temperature and von Neumann entropy over both graph representations, providing a
combined result from multiple experts. The decoder adaptively recognizes the network under various
evolution states. Our framework is evaluated on transductive and inductive link prediction tasks. The
experimental results demonstrate our method’s effectiveness compared to various state-of-the-art
baselines. The overall contributions of our work are summarized as follows:

• To our best knowledge, we are the first to utilize the von Neumann entropy in temporal network
representation learning. We provide a method to expand the approximate von Neumann Entropy
and approximate thermodynamic temperature to temporal networks.

• We propose a novel framework, namely ESSEN. The model introduces a new perspective to encode
evolution-aware node representations using the von Neumann entropy aware attention mechanism
and virtual evolution node representation learning. Furthermore, the model uses a novel decoder
MoTE that adaptively recognizes temporal network evolution states.

• We evaluate our framework on link prediction tasks with transductive and inductive settings.
The results show the effectiveness of our proposed method compared to various state-of-the-art
baselines.

2 Preliminaries

Temporal Network. Formally, the temporal network can be denoted as G = (V,E, T ), where V
represents the set of nodes, E ⊆ V × V represents the set of links, and T represents the set of
timestamps. Each link (u, v, t) signifies a connection between node u and node v at time t. The
temporal network evolves over time, with links appearing at different timestamps. The temporal
networks can also include attributes associated with nodes or links, providing further information
about the entities or their interactions at specific timestamps.

Dynamic Link Prediction. In a temporal network G = (V,E, T ), the dynamic link prediction task
aims to predict the presence or absence of a link at a future timestamp based on the observed network
evolution history. Given a time window Tw ⊆ T , which contains the observed link data, denoted
as ETw

⊆ E, the goal is to learn a function f : (V,ETw
, Tw) → {0, 1} that assigns a probability

score to the existence of a link (u, v) at the future timestamp t. Mathematically, the function f can
be defined as:

f(u, v, t) = P (u, v|t, ETw), (1)

where P ((u, v)|t, ETw
) represents the probability of the link (u, v) being present at the future

timestamp t given the observed network and the link data ETw
within the time window Tw.

Evolution State. Evolution state denotes the specific arrangements of nodes and edges at specific
instants of time. These states can be characterized by a network topology, reflecting the evolving
nature of the network over time. For example, social networks at specific evolution states will
generate the clustering and formation of tightly-knit groups or communities over time via the tri-
adic closure theory [29]. The theory is formally defined as ∃u, v, w,w′ ∈ V : (u, v), (v, w) ∈
ETw

, (u,w), (u,w′), (v, w′) /∈ ETw
7→ P (u,w|ETw

) > P (u,w′|ETw
). Therefore, analyzing evolu-

tion states helps in understanding the temporal behavior of the network, identifying recurring patterns,
predicting future states, and studying the impact of temporal dynamics on network properties and
phenomena. In this paper, we aim to capture evolution states using thermodynamic entropy.

Von Neumann Entropy. Von Neumann Entropy is the quantum counterpart of the Shannon entropy.
For a quantum system with a density matrix ρ the von Neumann entropy is SVN = −Tr(ρ log ρ).
The density matrix ρ describes a system whose state is a mixture of pure quantum states |ψi⟩, each
with probability pi, and is defined as ρ =

∑T
i=1 pi |ψi⟩ ⟨ψi| , where T is the number of pure states.

When defined in this way, the density matrix is Hermitian, i.e., ρ = ρ† and ρ ≥ 0, Tr[ρ] = 1, where †
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Figure 2: The framework of ESSEN. It comprises two modules: (1) Evolution States Aware Graph
Encoder. (2) Mixture of Thermodynamic Experts Decoder.

represents conjugate transpose. It plays an important role in the quantum observation process, which
can be used to calculate the expectation value of measurable quantities.

Severini et al. [17] show that a density matrix for a graph or network can be obtained by scaling
the combinatorial Laplacian matrix L̃ = D − A (where A is the adjacency matrix and D is the
diagonal degree matrix) by the reciprocal of the number of nodes in the graph V|, i.e. ρ = L̃

|V| . The
interpretation of the scaled normalized Laplacian as a density operator opens up the possibility of
characterizing a graph using the von Neumann entropy. With the definition of the density matrix
adopted, the von Neumann entropy[17] can be computed from the normalized Laplacian spectrum as
follows:

SVN(G) = −Tr(ρ log ρ) = −
|V|∑
i=1

λi
|V|

log
λi
|V|

, (2)

where λ1, . . . ., λ|V| are the eigenvalues combinatorial Laplacian matrix. This form of von Neumann
entropy has been shown to be effective for static network characterization.

3 The Proposed Method

3.1 Evolution State Estimation

Von Neumann Entropy Computation in Temporal Network. The von Neumann entropy can
be computed in the static graph by Eq. 2. However, the application to temporal networks has two
challenges: (1) The dynamic nature of the temporal network. Unlike static networks, where the
structure remains constant, temporal networks capture time-evolving relationships and interactions.
This dynamic nature introduces challenges in analyzing and modeling the network behavior, as the
network topology and connectivity patterns may vary at different times. (2) The computationally ex-
pensive time complexity of obtaining the Laplacian eigenvalues. In Eq. 2, computing the eigenvalues
of the Laplacian matrix is a computationally intensive task, and the time complexity is cubic in the
number of nodes. In temporal networks, where the network structure changes over time, repeatedly
calculating the Laplacian eigenvalues can become prohibitively expensive.

To address these challenges, we must simplify the network and efficiently approximate thermodynamic
quantities. First, we select a specific time interval for the temporal network and aggregate edge
weights or frequencies over this interval. The number of occurrences within the chosen time frame
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determines the strength of an edge. Following this process, the temporal network can be projected
to the time-independent 2-D plane, which provides a simplified representation of the underlying
network structure at a specific time. Moreover, following [27], we use the approximate expression
for the von Neumann entropy and reduce the computation to be quadratic in the number of nodes.
The approximate von Neumann entropy is

SVN(Gt) = 1− 1

|V |
− 1

|V |2
∑

(u,v)∈E

1

dudv
, (3)

where V is the node set of the temporal network, and du, dv are the degree of node u and v at time
t. This approximation allows the von Neumann entropy to be computed without explicitly solving
the eigensystem for the normalized Laplacian. Thus, the von Neumann entropy can be computed
in quadratic time using the node degrees for pairs of nodes connected by edges. We introduce the
details of the approximate method in Appendix A.

Thermodynamic Temperature. In thermodynamics, the thermodynamic state of a system can
be fully described by an appropriate set of thermodynamic variables. We treat the von Neumann
entropy as a thermodynamic network entropy and use the thermodynamic temperature to T measure
fluctuations in network structure with time. Specifically, suppose that the graphs G1 and G2 represent
the structure of a time-varying system at two consecutive epochs t1 and t2 respectively. For a
thermodynamic system with a fixed number of particles, the change in energy is de = T dS − PrdVo,
where Pr and Vo denote the pressure and volume of the system respectively. It is important to stress
that this equation holds and is valid for both reversible and irreversible processes for a closed system,
since e, T , S, Pr and Vo are all state functions and are independent of thermodynamic path. We
assume the network evolves from time t1 to time t2 under constant-volume (isochoric process) as the
time interval becomes small, i.e. ∆t→ 0. As a result, for the path from G1 to G2 we have dVo = 0
and de = T dS. The reciprocal of the temperature T is the rate of change of entropy with average
energy, i.e.,

T (G1, G2) =
de

dS
=

e(G1)− e(G2)

S(G1)− S(G2)
, (4)

where S(G1) is the graph entropy for the graph G1 and e(G1) is the graph average energy. Moreover,
the thermodynamic temperature can also be approximated when we represent the temporal network
as a directed graph. The approximate computation method uses a low-order Taylor series that
can be computed using the traces of powers of the normalized Laplacian matrix, avoiding explicit
computation of the normalized Laplacian spectrum [26]. In summary, the temperature associated
with the evolutionary transition between the two networks can be approximated as

T (G1, G2) = −2

k
+

2

3k
· K(G1)−K(G2)

J (G1)− J (G2)
, (5)

where
J (G) =

∑
u,v∈V

Auv

dudv
, (6)

K(G) =
∑

u,v,w∈V

AuvAvwAwu

dudvdw
, (7)

where k is the Boltzmann constant, andA is the adjacency matrix of the network. J (G) and K(G) are
network structure statistics that can be interpreted as the probabilities of a random walker traversing
specific edges or cycles in the graph. The computation of temperature is quadratic in the number of
nodes.

In summary, by simplifying the network representation and using efficient approximations, the
von Neumann entropy and the thermodynamic temperature can be computed effectively in temporal
networks. These measures provide insights into the evolving nature of the network and enable the
estimation of its evolution state.

3.2 Evolution States Aware Graph Encoder

Von Neumann Entropy Aware Attention Mechanism. In graph encoding, we utilize the von
Neumann entropy to explore a more diverse and balanced distribution of attention weights with the
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attention mechanism in the input neighborhood. This strategy helps us to learn network evolution
states adaptively. According to Eq. 3, the global network entropy is a sum of contributions from
individual edges. The von Neumann entropy of the edge connecting nodes u and v is

Suv
VN(Gt) =

1

|E|
− 1

|V ||E|
− 1

|E||V |2
1

dudv
, (8)

To encode entropy features into attention layers, we use the von Neumann edge entropy as a bias term
in an attention module[22]. Moreover, we use a time position encoding module[25] to supplement
the continuous time information for edges using the simplified von Neumann entropy. For a target
node u at time t, the attention weight α(l)

v for the neighboring node v in the lth layer is

α(l)
v =

Q
(l)
u

(
K

(l)
v

)T

√
dn

+ Suv
VN(Gt), (9)

Q(l)
u = (h(l−1)

u ∥e0∥ϕ(0))WQ, (10)

K(l)
v =M

(l)
v,tWK, (11)

M
(l)
v,t =

(
hv

(l−1)∥euv,t∥ϕ(tq − t)
)
WM , (12)

where “∥" is the concatenation operation. WK ∈ R(dn+dt+de)×dn and WQ ∈ R(dn+dt+de)×dn are
the projection matrices to obtain the query matrices and key matrices, where dn, dt and de are
the dimensions of the node representation, the time code, and the entropy bias, respectively. e0 is
an all-zero vector to keep the same dimension as K and V , and ϕ (∗) is the generic time position
encoding module from [25], which encodes the difference between the edge timestamp and the query
timestamp. M (l)

v,t is the message representation at time t from node v to u, where h(l−1)
v is node v’s

hidden representation on the (l − 1)th layer, euv,t ∈ Rde is the edge feature, and tq is the query time.
Next, the model combines values with the attention weight aware of generating hidden representation
z
(l)
u (t) for node u. Finally, an MLP is used to combine the node representation of the previous layer

with the neighborhood information:

h(l)u =MLP (h(l−1)
u ∥z(l)u (t)), (13)

z(l)u (t) =
∑
v∈Nu

softmaxv (αv(t))Vv(t), (14)

V (l)
v =M

(l)
uv,tWV, (15)

where V (l)
v is the value vector of neighbor node v, and Nu is a neighbor node set that connects with

node u before time t.

Virtual Evolution Node Representation Learning. Temporal networks follow time-dependent
evolution laws. The emergence of nodes and edges at different times can often be predicted, i.e.,
future network states can be predicted from their past states and together with the evolutionary laws.
Virtual evolution node representation learning utilizes historical evolution information together with
the future potential evolution path to generate virtual node representations. Specifically, the dynamic
link prediction task aims to predict the probability of the link between two nodes appearing at a future
instant in time. We assume the link has been generated at the query instant and further construct
a virtual evolution graph belonging to the query node pair based on this assumption. For example,
given a node pair (u, v) and the query time t, there is a virtual edge at time t that connects the
nodes u and v in the virtual evolution graph G

′

uv . The approach makes the two node neighborhoods
interconnected. We denote as h

′

u and h
′

v the virtual future node embeddings of nodes u and v.
Moreover, the thermodynamic temperature of the virtual evolution path can be computed because
the instantaneous virtual evolution process is also an isochoric process we introduced in Section 3.1.
Based on this, the decoding process can estimate the evolution states more comprehensively.
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3.3 Mixture of Thermodynamic Experts Decoder

Evolution State Feature Extractor. We use the von Neuman entropy of the original graph, the
von Neuman entropy of the virtual evolution graph, and the thermodynamic temperature between
the two networks to construct a unique vector for evolution state estimation. The vector represents
the network evolution states in a 3-D thermodynamic space, which is spanned by the von Neumann
entropy at the two instants in time together with the thermodynamic temperature. The approximate
von Neumann graph entropy for the original and virtual evolution graphs are computed by Eq. 3,
and the approximate thermodynamic temperature is computed by Eq. 5. Furthermore, to control
evolution-aware time intervals, which is important for large temporal networks, we compute these
approximate thermodynamic quantities in the node neighborhood and set the sampled neighborhood
size N .

Expert Decoding Process. The mixture of thermodynamic experts decoder dynamically selects the
appropriate thermodynamic expert model based on the input expert assessment feature vectors. For
each expert, we use a two-layer MLP model to represent. Then the MoTE decoder combines the
output embedding of each expert model using respective expert weights to produce the final target
score as follows:

score(u, v, t) =

Y∑
i=1

σ(Wi(hu, hv, h
′
v − hv, h

′
u − hu))πi, (16)

πi = softmaxi((T (G,G′
uv)∥SVN(G))∥SVN(G

′
uv))Wπ), (17)

where Y is the total number of experts, πi is the mixing coefficient of expert i. Additionally,
Wi ∈ R4d×1 is the weight matrices for expert i and Wπ ∈ R3×Y is the weight matrix of the gate unit.
Finally, hv and h′v are the embeddings of node v in the original graph and the virtual time-evolved
graph generated by the encoder.

3.4 Optimization

During training, we evaluated the convergence behavior of our model by monitoring the training and
validation loss, ensuring that the model was not underfitting or overfitting. The loss function is:

ℓ =
∑

(vi,vj ,tij)∈E

logP (vi, vj | tij)−Q ·Eṽ∼P (ṽ) logP (vi, ṽ | tij), (18)

where (vi, vj , tij) is an observed edge on the temporal network, Q denotes the number of negative
samples, and P (ṽ) is the negative sampling distribution over the node space E.

3.5 Computational Complexity Analysis

This section highlights the efficiency of our approach in calculating approximate thermodynamic
quantities of temporal networks. Based on Eq.3 and Eq. 5, the time complexity of computing
approximate von Neumann entropy and the approximate temperature is O(|V |2), where |V | is the
number of nodes in the network. Moreover, we compute the approximate thermodynamic quantities in
the neighborhood for the large networks and set the sampled neighborhood sizeN . The computational
complexity can be reduced to O(N2) in this setting. Therefore, the time complexity demonstrates
scalability and establishes the feasibility of our method for moderate or large networks. Since the
time complexity is controllable this means we can achieve efficient computation.

4 Experiments

4.1 Experimental Setup

Table 2: Statistics of the datasets.
Dataset Nodes Edges Timespan

MathOverflow 21,688 107,581 2350 days
BitcoinOTC 5,881 35,592 1903 days
BitcoinAlpha 3,783 24,186 1901 days
Wikipedia 9,227 157,474 30 days

Datasets. The temporal network datasets used
in our experiments are divided into three cat-
egories: (a) QA: The “answers to questions"
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Table 1: Performance of AUC(%) for link prediction. The best results in each column are highlighted
in bold font and the second-best results are underlined. We report the AP results in Appendix B.

Task Methods MathOverflow BitcoinAlpha BitcoinOTC Wikipedia

Transductive

JODIE 86.07 ±0.48 91.14 ±0.18 92.29 ±0.11 93.58 ±2.00
DyRep 80.77 ±0.65 79.39 ±3.17 79.21 ±4.10 94.22 ±0.27
TGN 80.47 ±3.24 86.71 ±1.00 86.78 ±2.29 98.46 ±0.10

TGAT 71.80 ±0.91 78.99 ±0.50 79.53 ±0.67 95.34 ±0.10
CAW 53.82 ±0.28 64.70 ±0.93 73.95 ±1.22 98.96 ±0.10
TDLG 84.02 ±0.16 92.83 ±0.22 93.48 ±0.22 88.93 ±0.09

NeurTWs 92.56 ±0.51 93.95 ±0.41 95.75 ±0.01 94.54 ±0.87
ESSEN 98.60 ±0.40 99.10 ±0.16 98.88 ±0.42 99.03 ±0.33

Inductive

JODIE 67.06 ±0.42 74.47 ±0.16 76.21 ±0.47 91.44 ±1.99
DyRep 63.50 ±0.66 66.27 ±0.73 65.09 ±0.86 91.03 ±0.34
TGN 64.50 ±1.17 69.36 ±0.94 76.52 ±1.25 97.70 ±0.18

TGAT 60.02 ±0.75 66.42 ±1.17 66.62 ±1.99 93.99 ±0.30
CAW 57.67 ±0.33 64.38 ±1.01 72.99 ±0.46 98.75 ±0.14
TDLG 74.31 ±1.58 83.85 ±1.65 85.22 ±3.89 45.77 ±3.06

NeurTWs 91.83 ±0.13 94.20 ±0.26 96.08 ±0.38 94.63 ±0.47
ESSEN 98.33 ±0.28 98.07 ±0.64 98.67 ±0.31 98.80 ±0.10

dataset of MathOverflow. (b) Bitcoin trading data: BitcoinAlpha Dataset and BitcoinOTC Dataset
[9; 8]. (c) Social networks: Wikipedia Dataset[10]. Table 2 gives more details concerning the
properties of these datasets.

Baselines. In addition to reporting the performance of our ESSEN method, we report results for
several popular dynamic graph learning methods, namely a) JODIE [10]; b) DyRep [21]; c) TGAT
[25]; d) TGN [19]; e) CAW [24]; f) TDLG[4]; and g) NeurTWs[6]. We give more details concerning
these baselines in Appendix C.

Link Prediction Task Settings. We evaluate our model on the link prediction task with two different
settings:

• Transductive Setting. The model under the transductive setting is trained on the available nodes
and their connections to predict future links between the nodes. The setting assumes that the
network will not add unseen nodes at future testing times. This mainly evaluates the transductive
ability of the model.

• Inductive Setting. The inductive setting predicts missing links for existing nodes together with
potential new nodes that may be added at future times. This generalizes link prediction beyond
the known nodes, considering the possibility of the addition of new nodes. In this way, it learns
network patterns and characteristics to make predictions applicable to both known and unknown
nodes.

Implementation Training Details. For each dataset, we used the training time points Ttr = 70%
to split the dataset results in approximately 70%-15%-15% of the total edges [25]. The principal
hyperparameters are set as follows: a) the number of attention heads U = {2, 3}, b) the number of
the GNN layers L = 2, c) the maximum number of aggregated neighbors n ∈ {60, 80, 100}, d) the
total number of experts in MoTE Y = {4, 6, 8, 10}, and e) the dimension of the node embedding
dn = 172. We use the ADAM optimization algorithm for model training with a learning rate 1e-3
and batch size of 128. All the models are implemented in PyTorch and evaluated on a single Tesla
A100 GPU.

4.2 Results and Discussion

Table 1 reports the transductive and inductive link prediction task results on four datasets, demonstrat-
ing the state-of-the-art performance of our method on link prediction tasks. Our method significantly
outperforms all baselines on all datasets. In particular, in the MathOverflow dataset, compared with
NeurTWs, the second strongest baseline, ESSEN improved the AUC(%) by 5.04% and 6.50% on
average in the transductive and inductive setting. The results demonstrate that our method has a
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clear advantage for temporal networks. Specifically, our method performs well on both long and
short-evolution time networks, while the effectiveness of baseline models varies significantly. CAW
and TGAT have significant gaps in performance with MathOverflow and Wikipedia for all tasks.
This indicates that our framework better represents networks with ever-changing evolution states.
This superiority in performance can be attributed to a) our von Neumann entropy aware mechanism,
b) the virtual evolution node representation learning, and c) the MoTE decoder. In addition, our
method is effective under both transductive and inductive settings. By contrast, the baseline JODIE
method cannot predict interactions well between unseen nodes because it pays more attention to node
identities rather than the evolution states of temporal networks.

4.3 Ablation Study

MathOverflow BitcoinAlpha
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Figure 3: Ablation Study

To validate the effectiveness of the novel elements comprising
ESSEN, we conduct a series of ablation studies and report the
AUC results. We investigate the performance of the proposed
modules with three ablated models on the MathOverflow and
BitcoinAlpha dataset: a) ESSEN-E, here we remove the von
Neumann edge entropy bias in the attention mechanism of
ESSEN. b) ESSEN-V , here we remove the virtual evolution
node representation and only use the node embeddings of the
original graph for decoding. c) ESSEN-D, here we replace the
MoTE decoder with a simple MLP decoder. In Fig. 3, we can
see that the performance degrades without considering the von
Neumann entropy information for edges. This demonstrates the effectiveness of the proposed von
Neumann entropy aware attention mechanism. Disabling the virtual evolution node representation
also degrades performance. Furthermore, when the MoTE decoder is removed, the MathOverflow
and BitcoinAlpha datasets exhibit more severe drops in performance, demonstrating that the MoTE
decoder excels on temporal networks with a long time span and a greater number of evolution states.

4.4 Qualitative Analysis of Evolution States
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Figure 4: Von Neumann en-
tropy changes on temporal net-
works.

In Fig. 4, we show curves of the von Neumann entropy change for
different networks over the same time interval. Compared with the
BitcoinOTC dataset, the MathOverflow leads to the generation of
more nodes with high degrees, and these have higher entropy. The
von Neumann entropy increases at varying rates, depending on the
evolution states of the network in question. This reveals the potential
relationship between von Neumann entropy and evolution states.
Moreover, we can further understand network structure using von
Neumann entropy. For evolution states with low entropy, networks
tend to be tree-like or string-like and have more low-degree nodes.
For networks with evolution states with high entropy there are more
high-degree nodes and the networks tend to be fully connected.

4.5 Parametric Sensitivity

We investigate the sensitivity of our ESSEN to various parameters and evaluate their impact on model
performance. In Fig. 5, we report the results of this study and draw the following observations: a) By
exploring different training time split points, we evaluate ESSEN’s performance with lower training
samples and more testing samples. Our model sustains excellent performance even when the number
of samples in the training set is reduced. The results clearly show the robustness of ESSEN for
complex evolution states. b) Considering the number of experts Y , both datasets have "sweet spots".
This finding indicates that different datasets exhibit a preference for specific numbers of experts in the
MoTE decoder. This can be attributed to the varying complexity of evolution states in the temporal
network. c) We observe a strong correlation between the evolution-aware neighborhood size N and
the number of nodes in the temporal networks. The link prediction performance decreases when
N ≪ |V |. For example, the total number of nodes in the MathOverflow dataset is 21688, which is
also the maximum value of |V | because nodes will added and deleted over time. The AUC results for
the MathOverflow dataset reduced from 98.56% to 95.43% when varying N from 200 to 50. This
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Figure 5: Study on important settings. We report the results of the inductive link prediction.

result shows a promising trade-off between computational efficiency and the loss of information due
to sampling.

5 Related Work

Temporal Network Representation Learning. Network representation learning is often used to
transform large networks into lower-dimensional vectors. For instance, CTDNE [15] learns node
embedding from a continuous-time dynamic network instead of a sequence of snapshots. Besides,
JODIE [10] uses two recurrent neural networks (RNNs) to learn trajectories of users and items
and updates the embedding when interaction occurs. Expanding on this, TGAT [25] utilizes a self-
attention mechanism and presents an encoding method to learn inductively. Additionally, CAW [24]
and NeuralTWs [6] learn temporal structure using random walk. Specifically, CAW proposes a new
anonymization strategy, and NeuralTWs considers structural and tree traversal properties. TDLG[4]
aims to model the edges in temporal networks directly instead of calculating from node embedding.
Despite these advancements, capturing the global network evolution states within acceptable time
complexities remains a formidable challenge.

Von Neumann Entropy of Static Graph. Von Neumann graph entropy serves as a pivotal descriptor
of a network system’s statistical state [3; 16; 17]. Researchers like De Domenico et al. [5] have
employed von Neumann graph entropy for structural reduction in multiplex networks, showcasing its
versatility. Li et al. [11] explored convergence using von Neumann entropy in the context of network-
ensemble comparison, illuminating its potential applications. Moreover, Liu et al. [13] delved into
universal patterns of the dynamic genome through von Neumann graph entropy, broadening the scope
of its utility. Wang [23] took a different route by approximating von Neumann graph entropy with
node degrees, effectively modeling network evolution. Despite these endeavors, the application of
von Neumann entropy in representing temporal structures has remained largely unexplored. To the
best of our knowledge, our work pioneers the incorporation of von Neumann entropy in temporal
network representation learning, opening new avenues for research and exploration in this domain.

6 Conclusion

In this paper, we propose ESSEN, an evolution states aware network for recognizing and analyzing
the evolution states in temporal networks. We addressed the limitations of existing methods in
capturing the time-varying nature of network structures, especially in complex evolution states. Our
framework incorporates a von Neumann entropy aware attention mechanism and network evolution
state contrastive learning for graph encoding. The decoding stage utilizes a unique decoder referred
to as the Mixture of Thermodynamic Experts (MoTE). We evaluated ESSEN on link prediction
tasks under transductive and inductive settings and compared it to state-of-the-art baselines. The
experimental results demonstrate the effectiveness of our proposed method in capturing temporal
dynamics where it outperforms existing approaches. Our work contributes to advancing the field of
temporal network analysis and opens up possibilities for future research in both alternative domains
and under additional network dynamics. In the future, we will focus on improving ESSEN’s efficiency
and scalability, allowing it to handle larger datasets and real-time analysis.
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A Additional Algorithm Details

A.1 The Derivation of Approximate Von Neumann Entropy on Temporal Network

In the following, We commence by summarizing the approximation of the undirected graph von Neumann
entropy presented by [27]. First, we introduce the von Neumann entropy, which can be computed from the
normalized Laplacian spectrum as follows:

SVN(G) = −Tr(P logP ) = −
|V |∑
i=1

λi

|V | log
λi

|V | , (19)

where λ1, . . . ., λ|V | are the eigenvalues combinatorial Laplacian matrix. Scaling the normalized Laplacian
matrix by the reciprocal of its trace, we obtain a density matrix L̂

|V | , The eigenvalues of the density matrix is(
λ̂1
|V | ,

λ̂2
|V | , . . . ,

λ̂|V |
|V |

)
and thus the von Neumann entropy of density matrix associated with the normalized

Laplacian matrix of the graph is defined as

SVN(G) = −
|V |∑
j=1

λ̂j

|V | ln
λ̂j

|V | . (20)

The von Neumann entropy above relies on the computation of the normalized Laplacian spectrum, therefore its
computational complexity is cubic in the number of nodes. The Taylor expansion for ln λi

|V | is(
λ̂j

|V | − 1

)
− 1

2

(
λ̂j

|V | − 1

)2

+
1

3

(
λ̂j

|V | − 1

)3

− 1

4

(
λ̂j

|V | − 1

)4

+ · · · . (21)

If we keep the first item of the expansion and discard the remaining that contribute to a small amount,

ln λ̂i
|V | is approximated using

(
λ̂j

|V | − 1
)

. Then the entropy SVN(G) can be replaced by the quadratic entropy∑
j

λ̂j

|V |

(
1− λ̂j

|V |

)
, then we obtain

SVN(G) = −
∑
j

λ̂j

|V | ln
λ̂j

|V | ≃
∑
j

λ̂j

|V |

(
1− λ̂j

|V |

)

=
1

|V |
∑
j

λj −
1

|V |2
∑
j

λ2
j .

(22)

Using the fact that Tr
[
L̂k
]
=
∑

j λ̂
k
j , the quadratic entropy can be rewritten as

SVN(G) =
Tr[L̂]

|V | −
Tr
[
L̂2
]

|V |2 . (23)

The normalized Laplacian matrix L̂ has unit diagonal elements. For the trace of the normalized Laplacian matrix
we have

Tr
[
L̂
]
= |V |. (24)

Similarly, for the trace of the square of the normalized Laplacian, we have

Tr
[
L̂2
]
=
∑
u∈V

∑
v∈V

L̂uvL̂uv =
∑
u∈V

∑
v∈V

(
L̂uv

)2
=

∑
u,v∈V u=v

(
L̂uv

)2
+
∑

u,v∈V
u̸=v

(
L̂uv

)2
= |V |+

∑
(u,v)∈e

1

dudv
.

(25)

Substituting Eq.24 and Eq.25 into Eq.23, the entropy becomes

SVN(G) =
Tr[L̂]

|V | −
Tr
[
L̂2
]

|V |2 =
|V |
|V | −

|V |
|V |2 −

∑
(u,v)∈e

1

|V |2dudv
= 1− 1

|V | −
1

|V |2
∑

(u,v)∈e

1

dudv
. (26)

We project the temporal network to the time-independent 2-D plane as an edge-weighted graph, resulting in
a simplified depiction of the underlying network structure at a given time. As a result, The expression of the
approximate entropy is quadratic in the number of nodes.
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Table 3: Performance of AP(%) for link prediction. The best results in each column are highlighted
in bold font and the second-best results are underlined.

Task Methods MathOverflow BitcoinAlpha BitcoinOtc Wikipedia

Transductive

JODIE 84.95 ±0.43 90.32 ±0.19 91.50 ±0.19 92.95 ±2.27
DyRep 80.97 ±0.25 79.42 ±2.23 78.95 ±2.76 94.63 ±0.20
TGN 81.51 ±1.73 86.47 ±0.42 88.76 ±1.70 98.52 ±0.09

TGAT 74.35 ±0.29 79.18 ±0.54 79.53 ±0.84 93.18 ±0.13
CAW 61.40 ±0.28 71.27 ±0.87 79.29 ±0.76 98.82 ±0.12
TDLG 82.87 ±0.16 91.19 ±0.24 92.24 ±0.25 87.25 ±0.15

NeurTWs 93.07 ±0.54 94.14 ±0.24 96.17 ±0.08 96.01 ±0.52
Ours 98.60 ±0.26 99.06 ±0.20 98.83 ±0.47 99.04 ±0.26

Inductive

JODIE 68.58 ±0.49 75.02 ±0.20 77.44 ±0.14 89.33 ±5.04
DyRep 65.65 ±0.44 66.54 ±1.04 65.94 ±0.86 91.94 ±0.27
TGN 67.04 ±1.42 70.52 ±1.06 79.74 ±1.21 97.83 ±0.16

TGAT 62.77 ±0.64 67.09 ±0.88 68.32 ±1.84 94.18 ±0.43
CAW 64.79 ±0.31 70.70 ±0.93 78.21 ±0.29 99.11 ±0.13
TDLG 70.18 ±2.16 79.53 ±3.19 80.95 ±6.88 53.47 ±2.41

NeurTWs 92.68 ±0.40 94.16 ±0.27 96.44 ±0.34 96.12 ±0.22
Ours 98.41 ±0.17 97.91 ±0.69 98.55 ±0.33 98.83 ±0.10

B Additional Experimental Results

B.1 Performances in Average Precision

Table 3 reports the detailed transductive and inductive link prediction results of AP.

B.2 Time Comparison

Fig. 6 compares the training times of ESSEN against the second-strongest baseline NeurTWs. For fairness, we
use the same batch size for both models and experiment in the same environment. Note that the running time of
ESSEN is down quickly because the approximate thermodynamic quantities have been computed at the first
epoch and use cache after that.
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Figure 6: Time Comparison

C Experimental Setting

C.1 Datasets

We introduce the datasets used in this paper as follows. In Fig. 7, we report the degree distribution on the 30th
Day and 270th Day in datasets BitcoinOTC and MathOverflow. In order to align the timestamps, we shift the
time so that they begin with zero. Additionally, we renumber the nodes to optimize space usage. Further details
regarding the preprocessing steps undertaken to prepare these datasets for our method are discussed below.
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Figure 7: Degree distribution at the 30th Day and 270th Day in different networks.

• MathOverflow dataset.2 It is a temporal network of interactions on the stack exchange website Math
Overflow. The nodes represent users, and the edges represent the answers to questions. For example, a
directed edge (u, v, t) represents user u answered user v’s question at time t. Since edge features and
node features are not provided, we use the all-zero vectors instead.

• BitcoinOTC dataset.3 It is a who-trusts-whom network of people trade using Bitcoin on the Bit-
coinOTC platform. Each line records a trade from rater to rate and the rating ranges from -10 to +10
in step 1.

• Bitcoin Alpha dataset.4 It is a similar network to the Bitcoin Alpha platform. Both of the datasets
have no edge features or node features, so we initialize them as all-zero vectors.

• Wikipedia dataset.5 It is a dataset of edited records from Wiki pages over a month. We use the
top-edited pages and active users as nodes, and each row in our data represents a user editing a page.
This dataset records user editing of pages over the course of a month. The timestamp indicates the time
when the user edited the page. As with the Reddit dataset, the features of these nodes were processed
through LIWC. The user labels indicate if users are temporarily banned from editing.

C.2 Baselines

The introduction of baselines and their setting details are shown as follows. Baselines not specially mentioned
use the default settings of the cited paper.

• JODIE uses two recurrent neural networks (RNNs) to learn trajectories of users and items, and updates
the embedding when the interaction occurs. we set the number of epochs to 50 and the dimensions of
node and time embedding to 100.

• DyRep is a temporal point process model capturing both topological evolution and nodes’ activities.
we set the number of epochs to 50 and the patience for early stopping to 5.

• TGAT utilizes a self-attention mechanism and presents a novel encoding method to learn graph
embedding inductively. The batch size is 200 and the number of epochs is 50. We set the dimensions
of node and time embedding to 100 and 20 neighbors are sampled in aggregation.

2https://snap.stanford.edu/data/sx-mathoverflow.html
3https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
4https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
5http://snap.stanford.edu/jodie/wikipedia.csv
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• TGN is a generic and efficient framework for deep learning on dynamic graphs for discrete representa-
tion. We set the number of runs to 10 in our experiments. The max number of sampling neighbors is
set to 10 and two heads are used in the attention layer. The dropout probability is 0.1 and the learning
rate is 0.0001.

• CAW utilizes a new anonymization strategy to represent a temporal network inductively. We set the
dimension of the positional embedding to 108, batch size to 64, and bias to 1e-5. The maximum
number of neighbors when sampling is 64.

• TDLG constructs line graphs to model edges directly instead of computing from node embedding.
We discard the attributes of the Wikipedia dataset because the original module could not process data
with attributes.

• NeurTWs improves the causal anonymous walks strategy in CAW and considers structural and tree
traversal properties in the process of walking. The dimension of position embedding is 108 and 32
neighbors are sampled for each node. The temporal bias, spatial bias, and ee bias are set to 1e-5, 1,
and 0 respectively.
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