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Abstract

Membership inference attacks are designed to determine, using black box access to
trained models, whether a particular example was used in training or not. Mem-
bership inference can be formalized as a hypothesis testing problem. The most
effective existing attacks estimate the distribution of some test statistic (usually the
model’s confidence on the true label) on points that were (and were not) used in
training by training many shadow models—i.e. models of the same architecture as
the model being attacked, trained on a random subsample of data. While effective,
these attacks are extremely computationally expensive, especially when the model
under attack is large.
We introduce a new class of attacks based on performing quantile regression on
the distribution of confidence scores induced by the model under attack on points
that are not used in training. We show that our method is competitive with state-of-
the-art shadow model attacks, while requiring substantially less compute because
our attack requires training only a single model. Moreover, unlike shadow model
attacks, our proposed attack does not require any knowledge of the architecture of
the model under attack and is therefore truly “black-box". We show the efficacy of
this approach in an extensive series of experiments on various datasets and model
architectures. Our code is available at github.com/amazon-science/quantile-mia.

1 Introduction

The basic goal of privacy-preserving machine learning is to find models that are predictive on some
underlying data distribution, without being disclosive of the particular data points on which they were
trained. The simplest kind of attack that can be launched on a trained model—falsifying privacy
guarantees—is a membership inference attack. A membership inference attack, informally, is a
statistical test that is able to reliably determine whether a particular data point was included in the
training set used to train the model or not.

Almost all membership inference attacks are based on the observation that models tend to overfit their
training sets in different ways. In particular, they tend to systematically predict higher confidence
in the true labels of data points from their training set, compared to points drawn from the same
distribution not in their training set. The confidence that a model places on the true label of a
data-point is thus a natural test statistic to build a membership-inference hypothesis test around. A
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variety of recent methods [Shokri et al., 2017, Long et al., 2020, Sablayrolles et al., 2019, Song and
Mittal, 2021, Carlini et al., 2022] are based around this idea, and aim to estimate the distribution
of the test statistic (the confidence assigned to the true label of a datapoint) over the distribution of
datapoints that were not used in training (and sometimes, also over the distribution of datapoints that
were used in training) for the purpose of designing tests that can reject the null hypothesis—that a
data point under attack was not used in training—with the desired level of confidence.

Figure 1: Comparing the true positive rate vs. false
positive rate of our membership inference attack with the
marginal baseline proposed in Yeom et al. [2018] and the
state-of-the-art LiRA proposed in Carlini et al. [2022]
evaluated at 2, 4, 6, and 8 shadow models. We also pro-
vide a visual readout of their 64 shadow model results,
as reported in their paper (we did not have the compute
necessary to reproduce this). We faithfully replicated
LIRA’s attack setup and produced better results than
their reported values. Our single-model quantile regres-
sion attack can reliably identify training samples on a
ResNet-50 ImageNet target model (67.5% test accuracy)
without knowledge of the target architecture.

The efficacy of this class of attacks depends in
large part on the granularity to which the distri-
bution of the test statistic can be estimated. The
simplest (and most computationally efficient)
approach, originally proposed by Yeom et al.
[2018], is to estimate this distribution marginally
— i.e. without conditioning on the covariates x
of the example being attacked. This reduces the
problem to a simple one-dimensional estimation
problem, and—under mild assumptions—the op-
timal hypothesis test (by the Neyman-Pearson
Lemma) is simply a fixed threshold τ on the test
statistic—examples are declared to have been
used in training if the confidence the model
places on their true label exceeds τ , and are
declared to have been not used in training oth-
erwise. More sophisticated methods attempt to
estimate the distribution of the test statistic con-
ditional on the inclusion of a target point x in
the training data (over the randomness of the se-
lection of the other points used in training). Our
method and others follow this approach, where
the confidence score produced by each example
x by the target model is compared to a sample-
dependent threshold τ(x)— points x with scores
exceeding this threshold are declared to be used
in training. The most common method under
this approach is to train shadow models [Shokri
et al., 2017, Long et al., 2020, Sablayrolles et al.,
2019, Song and Mittal, 2021, Carlini et al., 2022]. Informally, shadow models are trained with the
same architecture as the model being attacked, using random subsets of training data, that either
include or do not include the target point x. As a result, each shadow model gives a sample of the test
statistic conditional on x’s inclusion (or non-inclusion) in the training set, where the randomness is
over the other examples in the training set and any randomness involved in training. Because many
samples from this distribution on the test statistic are needed to estimate it, membership inference
attacks based on shadow models generally require training many shadow models of the same architec-
ture as the model under attack; between 64 and 256 shadow models were used in Carlini et al. [2022]
(Figure 1 compares the receiver operating characteristic (ROC) of the attack on ImageNet against our
proposed approach). Especially for large models, this makes shadow model attacks prohibitive, for at
least two reasons:

1. Training Cost: Widely used commercial models, on which membership inference attacks
would be most damaging, are extremely large and expensive to train. An attacker launching a
membership inference attack based on shadow models must train many (dozens to hundreds)
models of the same architecture. Thus the computational costs can be hundreds of times
larger than the costs of training the model under attack, which for commercial models is
prohibitive for attackers without enormous resources.

2. Knowledge of the Model Under Attack: As argued in Carlini et al. [2022], and also shown
in Appendix A, when the shadow model is of the same complexity as or more complex than
the target model, the LiRA attack performs well, and when less complex shadow models are
deployed, the success rate of the attack drops precipitously. Hence the success of the attack
depends on knowledge of the model under attack. But many aspects of the architecture and
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training process for large commercial models are not publicly known, making this style of
attack less effective in realistic settings.

1.1 Our Results

We introduce a new class of membership inference attacks, based on quantile regression, that is able
to mitigate these issues:

1. Like attacks based on shadow models, it is a conditional attack, subjecting different examples
x to different thresholds τ(x). However,

2. It only requires training a single model, and
3. The architecture of the model used in the attack need not be related to the architecture of the

model under attack, and so no knowledge of the model architecture or training algorithm
used to train the model under attack is needed.

Our quantile regression attack. Given a model f that we intend to attack, we collect a dataset of
labelled examples {(xi, yi)}ni=1 from the underlying data distribution, known to not have been used
in training.1 For each example (xi, yi) in our dataset, we evaluate the model f on example xi, and
record the (real-valued) confidence score s(xi, yi) that the model places on the correct label y. We
then train a quantile regression model q on the dataset {(xi, s(xi, yi))} consisting of examples x
labeled with their confidence scores s(x, y). Informally, the quantile regression model is trained to
predict q(x), a target 1− α quantile of the conditional distribution on s(xi, yi), given xi.2 Intuitively,
a score s(xi, yi) larger than the 1− α quantile q(xi) indicates that f assigns a confidence on the true
label that is higher than a 1−α fraction of the examples not used in training — giving us evidence that
the example in question was part of the training set. Thus, given a new target point (x, y), we reject
the null hypothesis that x was not used in training (i.e. we declare x to have been used in training)
whenever s(x, y) exceeds q(x) — i.e. when s(x, y) ≥ q(x). Similarly, whenever s(x, y) < q(x), we
do not reject the null hypothesis, and declare the point (x, y) to have not been used in training.

This attack by design has a false positive rate of α— the probability that it incorrectly declares a
randomly selected point (x, y) that was not used in training to have been used in training is α. The
ability of q to correctly label those examples used in training as such, measured by its true positive
rate or precision or related statistics, will vary with α (the higher α, the larger the number of positive
labels our test will assign). So, in varying our target α, we can sweep out our test’s tradeoff between
false positive and true positive rates.

The primary strength of our attack is that we need only a single quantile regression model q, rather
than a large number of shadow models. Furthermore, because the success of our attack depends only
on how well q predicts the quantiles of the confidence score distribution of f (rather than producing
confidence scores drawn from the same distribution as f ), q need not have any relationship to the
architecture of f or any knowledge of it— the only access to f that is needed is the ability to evaluate
confidence scores s(x, y) produced by f given examples x. Our attack is, therefore, more “black-box"
than those which use shadow models of the same architecture as f .

We derive a basic theory for our approach based on quantile regression, which trains a model to
predict quantiles by minimizing pinball loss. We run an extensive series of experiments and find that
our quantile regression approach is competitive with (and sometimes more effective than) much more
computationally expensive shadow model approaches. The relative effectiveness of our approach
appears to grow the more complex the classification task and model under attack are. For example,
when attacking a ResNet-50 model trained on ImageNet-1k, our attack (which trains only a single
model) outperforms shadow model approaches trained much more expensively at every false positive
rate. On simpler and less data rich tasks (like CIFAR-10), the accuracy of our approach dominates
the marginal baseline of Yeom et al. [2018], but falls short of shadow model approaches. Thought
provokingly, however, we find that when this occurs, it is because the shadow model approach has

1Under the presumption that only a small fraction of data sampled from the distribution were used in
training, then we may simply take a random sample from the underlying distribution, and be confident that it is
representative of data not used in the training procedure for f .

2This is an informal description, as in realizable settings, conditioning on xi in its entirety leaves a point
mass distribution on s(xi, yi) — i.e. the deterministic confidence score for yi predicted by the model f(xi).
See Section 3 for precise guarantees.
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found thresholds that correspond to a quantile model with lower pinball loss than our trained quantile
regression model. This suggests that our fundamental approach of pinball loss minimization is sound,
and that our attempts to directly optimize for it are less successful when data is less plentiful. Across
all experiments, we find that the best quantile regression method (as measured by pinball loss) is
uniformly the best membership inference attack.

1.2 Additional Related Work

Starting with the seminal work of Homer et al. [2008], membership inference has become one of the
most widely studied classes of privacy attacks. Most approaches for membership inference determine
whether an example is part of the training set via some score function, which can be loss [Yeom et al.,
2018, Sablayrolles et al., 2019], confidence [Salem et al., 2018], entropy [Song and Mittal, 2021], or
difficulty calibration [Watson et al., 2021] among others. Another common approach is to query the
model on similar or related examples to the target point [Wen et al., 2023, Jayaraman et al., 2020,
Long et al., 2018, Li and Zhang, 2020].

We focus the remainder of our discussion on related work on shadow model approaches to membership
inference since they are our main benchmarks. Most work on shadow models considers a setup
where there is a private dataset Dprivate (unknown to the attacker) drawn from a distribution Q, and
an algorithm A for training a model f = A(Dprivate). The attacker has access to a set of data Dpublic

drawn from the same distribution Q and partial query access to the model f from which the attacker
can compute scores s(x, y) given target examples (x, y). The attacker aims to predict, for a data
point (x, y), whether (x, y) ∈ Dprivate.

Likelihood Ratio Attacks. Membership inference attacks are fundamentally hypotheses tests
between two competing hypotheses (H0 : (x, y) ̸∈ Dprivate, H1 : (x, y) ∈ Dprivate). By the Neyman-
Pearson lemma [Neyman and Pearson, 1933], the optimal hypothesis test based on a test statistic
s(x, y) computes the likelihood ratio of the score under the null and alternative hypothesis, and
subjects the likelihood ratio to a threshold τ . The choice of the threshold τ determines the trade-off
between precision (the fraction of examples labeled as belonging to the private dataset which did
belong to the dataset) and recall (or true positive rate) of the resulting classifier. We call a membership
inference attack carried out with this classifier a likelihood ratio attack (LiRA), introduced by Carlini
et al. [2022]. LiRA was designed to achieve very high precision (very few false positives relative
to the number of positive predictions), as they noted high precision corresponds to a high degree
of confidence that the data points accused of being part of the training set were, in fact, part of the
training set. Prior work had looked at global notions of inference attack quality, at possibly much
lower degrees of precision [Ye et al., 2021, Jayaraman et al., 2021].

The main difficulty with implementing LiRA directly is that the density functions of the score under
the null and alternative hypothesis are unknown. Instead, the literature aims to estimate these density
functions, primarily by training a collection of shadow models [Shokri et al., 2017, Long et al., 2020,
Sablayrolles et al., 2019, Song and Mittal, 2021, Carlini et al., 2022]. Shadow model attacks split
the attacker’s dataset Dpublic into several pairs of shadow public/private datasets Dprivate

i , Dpublic
i , and

for each of these shadow datasets, a shadow model fi is trained on Dprivate
i . The shadow model fi,

and corresponding datasets Dprivate
i , Dpublic

i are used to generate private and public score samples
sprivate
i , spublic

i from which to estimate the likelihood ratio function given parametric assumptions.
Carlini et al. [2022] used a large number of shadow models to achieve high precision. This approach
works well—but it is computationally demanding because it requires training many shadow models.

2 Preliminaries

We study attacks on models f that solve a supervised learning problem defined over a distribution
D ∈ ∆(X × Y) of labeled examples (x, y), consisting of feature vectors x ∈ X and labels y ∈ Y .
We make no assumptions about X or Y (e.g. Y could be a discrete set in a multi-class classification
problem, or we could have Y = R in a regression problem). We assume that the model f outputs a
confidence score in [0, 1] for each possible label ŷ ∈ Y : in other words, f : X → [0, 1]Y , and for each
ŷ ∈ Y , we write fŷ(x) ∈ [0, 1] for the confidence score that f assigns to label ŷ given input x. Such
models are often used to make point predictions by predicting the label ŷ = argmaxy∈Y fy(x) on
input x — but we will interact with such models f only at the level of confidence score predictions.
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A model f is derived from a training process that did not have direct access to D, but rather to a finite
sample Dprivate called the training set. The training process correlates f with Dprivate. A membership
inference attack is a hypothesis test that must use a test statistic derived only from f that aims to
determine whether a labeled example (x, y) is a member of the training set Dprivate or not. Formally,
we model this as a hypothesis test that aims to solve the following simple hypothesis testing problem:

H0 : (x, y) ∼ D H1 : (x, y) ∼ Dprivate

Here, (x, y) ∼ Dprivate denotes sampling a point (x, y) uniformly at random from Dprivate. Observe
that since we derive the test statistic from f , even if Dprivate was itself sampled i.i.d. from D, H0

and H1 are distinct hypotheses since the training process has correlated f with Dprivate. In particular,
we will base our attack on the presumption that f will tend to be over-confident on examples
(x, y) ∈ Dprivate. Towards this, we choose as our test statistic s(x, y) = zy(x) − maxy′ ̸=y zy′(x)
the logit difference between the true label and its most likely alternative, where z(x) denotes the
logits (unnormalized features before the softmax nonlinearity) of the model. This choice follows the
scoring rule used in Carlini et al. [2022] and will be useful for experimental comparisons. However,
the remainder of our theoretical treatment will be agnostic as to this choice.

In this paper we restrict attention to membership inference attacks (hypothesis tests) that apply a
threshold function to s(x, y), with a threshold that may depend on x. Given a function q : X → R
that maps examples x to thresholds, the corresponding membership inference attack is given by:

Aq(x, y) =

{
⊤ (x ∼ D) if s(x, y) < q(x)

⊥ (x ∼ Dprivate) if s(x, y) ≥ q(x).

Here ⊥ is shorthand for “We reject the null hypothesis that (x, y) ∼ D (and thus declare (x, y) of
being in the training set)”, and ⊤ is shorthand for “we do not reject the null hypothesis (and thus do
not accuse (x, y) of being in the training set)”.

A natural baseline is to set q(x, y) = τ to be a constant. This is the attack proposed by Yeom et al.
[2018], and we write this baseline as Aτ . If τ is set to be a 1−α quantile of the marginal distribution
on s(x, y) when (x, y) ∼ D, then this attack can easily be seen to have false positive rate α. Below
we define quantiles assuming (for simplicity) that the distribution in question is continuous—but it is
also possible to define quantiles without this assumption.

Definition 1. Fix a continuous distribution P ∈ ∆R. A number τ ∈ R is a (1− α)-quantile of P if:

Pr
s∼P

[s ≤ τ ] = 1− α

We can evaluate the performance of a membership inference attack by evaluating its false positive
rate, true positive rates, and precision3:

Definition 2. Fix an arbitrary membership inference attack A : X × Y → {⊤,⊥}. We define the
following performance metrics

FPR(A) = Pr
(x,y)∼D

[A(x, y) = ⊥], TPR(A) = Pr
(x,y)∼Dprivate

[A(x, y) = ⊥],

Prec(A) =
FPR(A)

FPR(A) + TPR(A)
.

It is immediate that the baseline membership inference attack achieves its target false positive rate;
the true positive rate and precision of the attack can be evaluated empirically:

Lemma 1. Let τ be a 1− α quantile of P , the distribution on confidence scores s(x, y) that results
from sampling (x, y) ∼ D. Then the baseline membership inference attack Aτ has FPR(Aτ ) = α.

Proof. This follows from the definitions: FPR(Aτ ) = Pr(x,y)∼D[s(x, y) ≥ τ ] = α.

3Precision is equivalent to the accuracy of the attack conditioned on a positive prediction ⊥ when Pr[⊥] = 0.5

5



3 Our Attack

Our attack is Aq(x, y), where q is derived from a quantile regression model trained to predict
quantiles of our test statistic s(x, y) on a dataset of points (x, y) drawn from our null hypothesis
distribution (x, y) ∼ D. A popular non-parametric quantile regression method is to minimize pinball
loss, which elicits quantiles (just as squared loss elicits means):
Definition 3. The pinball loss function defined for a 1− α quantile is:

PB1−α(ŷ, y) = max{α(ŷ − y), (1− α)(y − ŷ)}

Pinball loss is a useful objective function because it elicits quantiles:
Lemma 2. Fix any distribution P ∈ ∆R. Let:

τ ∈ argmin
ŷ∈R

E
y∼P

[PB1−α(ŷ, y)]

Then τ is a (1− α)-quantile of P .

Viewed through this lens, the baseline attack can be thought of as the end result of the following
simple pipeline:

1. Select a target false positive rate α,
2. Choose a threshold τ by solving the minimization problem

τ ∈ arg min
τ ′∈R

E
(x,y)∼D

[PB1−α(τ
′, s(x, y))]

3. Instantiate the baseline membership inference attack Aτ .

Our attack departs from this baseline attack by training a model q : X → R on feature/confidence
score pairs to optimize pinball loss, rather than a single threshold τ :

1. Select a target false positive rate α and a class of model architectures H consisting of models
q : X → R.

2. Train a model q ∈ H by solving the following risk minimization problem:

q ∈ arg min
q′∈H

E
(x,y)∼D

[PB1−α(q(x), s(x, y))] (1)

3. Instantiate the membership inference attack Aq

We train our quantile regression model on a dataset consisting of points (x, y) drawn from the
underlying distribution (of points not used in training), labeled by the confidence scores s(x, y)
derived from the model. Thus our attack assumes only that we have API access to the model under
attack f , and are able to query it on a finite set of points to obtain confidence scores.

We now establish some basic properties of our attack. The first is that, like the baseline attack, it
actually achieves its target false positive rate. Unlike the baseline attack, this is no longer immediate,
but can be derived from properties of the pinball loss:
Theorem 1. Fix a distribution D ∈ ∆(X × Y) over labeled examples and a model f . Suppose that
the marginal distribution over s(x, y) for (x, y) ∼ D is continuous. Let H be any class of models
that is closed under additive shifts — i.e. such that for each q ∈ H and ∆ ∈ R, then we also have
q′ ∈ H for q′(x) = q(x)+∆. Then for the membership inference attack Aq produced by our method,
FPR(Aq) = α.

We defer the proof to Appendix C.1. Thus by varying α, we can use our attack to sweep out a curve
trading off our target false positive rate with our (empirically measured) true positive rate, just as we
can for the baseline attack Aτ .

Is this guarantee stronger than the baseline attack, and if so, in what sense? To give one perspective
on this, it will be helpful to define group conditional quantile consistency, which is related to
multicalibration, a concept originating from the fairness in machine learning literature [Hébert-
Johnson et al., 2018, Gupta et al., 2022, Bastani et al., 2022, Jung et al., 2023, Noarov and Roth,
2023].
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Definition 4. Fix a collection G of group indicator functions g : X → {0, 1} and a model q : X → R.
q satisfies group conditional quantile consistency with respect to a distribution P ∈ ∆(X × R), a
target quantile 1− α, and the collection of groups G if for every g ∈ G:

Pr
(x,s)∼P

[q(x) ≤ s|g(x) = 1] = 1− α

Group conditional quantile consistency asks that our quantile predictions be correct not just marginally
over the data, but also (simultaneously) conditionally on membership in a large number of potentially
intersecting groups. If we optimize pinball loss over a richer set of models (that are closed under
shifts by a class of group indicator functions, rather than just constant functions), then our attack will
achieve its target false positive rate even when conditioning on membership in each of the groups
specified by the functions g ∈ G, rather than just marginally. This is a stronger guarantee, as a
marginal false positive rate on its own need not hold subject to additional conditioning events.
Theorem 2. Fix a distribution D ∈ ∆(X ×Y) over labeled examples and a model f . Fix a collection
of group indicator functions G and a class of models H such that:

1. H is closed under shifts from G: for every h ∈ H, g ∈ G, and η ∈ R, the function
h′(x) = h(x) + ηg(x) is such that h′ ∈ H.

2. The conditional distribution over s(x, y) for (x, y) ∼ D, conditional on g(x) = 1 is
continuous for all g ∈ G.

Then for the membership inference attack Aq produced by our method, its false positive rate is 1− α
conditional on membership in each group g ∈ G: Pr(x,y)∼D[Aq(x, y) = ⊥|g(x) = 1] = 1− α.

We defer the proof to Appendix C.2.

4 Experiments

We present two sets of experiments on two different data domains, including images and tabular data.
Here, we mainly focus on attacking widely-used classification models in these two domains, however,
our theoretical claims generalizes to other data domains as well.

4.1 Image Classification Experiments

We evaluate the effectiveness of our proposed approach on four image classification datasets: CIFAR-
10 [Krizhevsky et al., 2009], a standard image classification dataset with 10 target classes; CIFAR-100
[Krizhevsky et al., 2009] another image classification dataset with 100 target classes; ImageNet-1k
[Russakovsky et al., 2015], a substantially larger image classification task with 1000 target classes;
and CINIC-10 [Darlow et al., 2018], an extension of CIFAR-10 that additionally uses images from
ImageNet-1k corresponding to the original 10 target classes. To provide a realistic evaluation, we
ensure our base models use common, well-performing architectures and follow standard guidelines
for hyperparameter selection [He et al., 2015], including data augmentation, learning rate schedule,
and l2 regularization(weight decay). For CIFAR-10 and CIFAR-100, target (classification) models
include ResNet-10, ResNet-18, ResNet-34, and ResNet-50 [He et al., 2015]. For ImageNet-1k and
CINIC-10, the target model is a ResNet-50. In all experiments, 50% of the dataset is used for training
the target model, and, following the common standards, the resolution of the target model is 32x32
for CIFAR and CINIC datasets, and 224x224 for the ImageNet-1k dataset. The accuracy of each
target model is presented in Appendix B.

To perform our membership inference attack, we train a single quantile regression model following
our proposal in Eq.(1). One of the advantages of our attack is that it is model-agnostic: since it does
not require the knowledge of the model architecture of the target or the knowledge of the training
algorithm, we use the same model architecture for our quantile regression model in all settings : a
pretrained ConvNext-Tiny model [Liu et al., 2022]. On CINIC-10 we additionally experimented with
a ResNet-50 model as our quantile model architecture.

For the scoring function, we use the hinge score proposed in Carlini et al. [2022] shinge(x, y) =
zy(x) − maxy′ ̸=y zy′(x). This scoring rule is closely related to the logit function of the model’s
confidence s(x, y) = log(fy(x))− log(1− fy(x)) for models with high label confidence, and has
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been empirically shown to be approximately normally distributed. On the largest dataset, ImageNet-
1k, we directly train a quantile regression model to predict (log-spaced) quantiles at α ∈ [0.9996, 1]
An alternative is to learn a parameterized model so that, for each sample, the model predicts the mean
µ(x) and the log of the standard deviation log σ(x), and the quantiles of a sample can be generated
from the Gaussian distribution N (µ(x), (elog σ(x))2). Due to the fact that CIFAR and CINIC datasets
are much smaller (25000 samples available for training on CIFAR), rather than directly learning
quantiles, we opt to learn the parametrized models with Gaussian parameters on these datasets.

All images are processed at 224x224 resolution by the quantile model, which is trained on the
remaining 50% of the training samples that were not used to train the target model. Since there is a
smaller body of literature on stable hyperparameters for regression models, we use Ray Tune [Liaw
et al., 2018] for hyperparameter tuning (tuning is used to minimize validation pinball loss in a held
out dataset). The compute budget for our attack was approximately 30 GPU minutes per quantile
regression attack (4 hours including hyperparameter optimization) on CIFAR-10/CIFAR-100, 18
minutes (4 hours 40 minutes including hyperparameter optimization) on CINIC-10, and 16 hours (128
hours including hyperparameter optimization) on ImageNet-1k. Final hyperparameters were found to
be consistent across all tasks sharing an architecture; more information is provided in Appendix D

Figures 1 and 2 shows ROC curves of our proposed approach on ImageNet-1k and CINIC-10
respectively; FPR is computed on a held-out dataset that was not used to train the target or the quantile
regression model. Both the marginal quantile approach from Yeom et al. [2018] and the shadow
model approach LIRA from Carlini et al. [2022] are also shown for reference. In these experiments,
our quantile regression approach dominates the shadow model approach at all comparison points
for ImageNet-1k, and is roughly comparable to 4 shadow models on CINIC-10. Appendix E shows
the same comparison against all CIFAR-10/100 target models (ResNet-10, ResNet18, ResNet34,
ResNet-50). In these latter experiments, our attack outperforms the marginal baseline but falls short
of the shadow model approach. We note that in this case, the shadow models actually produce
thresholds that have lower pinball loss than our quantile regression algorithm, suggesting that on the
smaller CIFAR datasets, our optimization heuristic was unable to sufficiently minimize test pinball
loss.We find this observation to be consistent across experiments, that the attack with smaller pinball
loss on public data is generally the attack with the best TPR at that FPR level α

Figure 2: Comparing the true positive rate vs. false positive rate of our membership inference attack
(with parametric Gaussian loss) on the CINIC-10 dataset (an extension of the CIFAR-10 dataset with
270,000 images, 4.5 times that of CIFAR-10) with the marginal baseline proposed by Yeom et al.
[2018] and the state-of-the-art LiRA proposed in Carlini et al. [2022] evaluated at 2, 4, 6, and 8
shadow models. Both the model under attack and our quantile regression model use a ResNet-50
architecture. Both LiRA and our method are able to reliably identify train samples at very low false
positive rates.
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Table 1: Precision of all membership inference attack at 1% and 0.1% false positive rates on ResNet-
50 architectures. Our attack consistently dominates the marginal baseline and produces excellent
results on ImageNet-1k compared to shadow model approaches. We do not beat the shadow model
approach on the smaller CIFAR datasets, potentially owing to their small dataset size. On CINIC-10,
a larger dataset than CIFAR, we obtain comparable results to 4 shadow models. Additional results for
the remaining architectures are presented in Appendix E

Precision @ 1% FPR Precision @ 0.1% FPR
Method C-10 C-100 CIN10 IN-1k C-10 C-100 CIN10 IN-1k
Marginal 48.56% 58.81% 49.02% 47.62% 60.94% 65.75% 45.76% 46.81%
LIRA (n=2) 78.55% 95.21% 55.43% 62.70% 83.18% 98.65% 54.07% 56.04%
LIRA (n=4) 80.52% 95.87% 78.71% 89.11% 91.48% 98.94% 86.99% 95.18%
LIRA (n=6) 83.19% 96.20% 88.75% 93.74% 93.17% 99.02% 96.40% 98.38%
LIRA (n=8) 83.00% 96.07% 91.86% 94.57% 93.70% 98.98% 97.94% 98.73%
Ours 62.95% 79.57% 76.67% 97.45% 64.48% 85.41% 85.46% 99.64%

Table 1 shows precision of the proposed membership inference attack at 1% and 0.1% false positive
rate on the ResNet-50 target networks (additional results shown in Appendix E). Our attack robustly
predicts membership in the private dataset with high precision even at low FPR. The proposed
approach works on all target architectures and datasets, but works particularly well on the more
complex and data intensive ImageNet-1k task.

Since LIRA produces an explicit score distribution N (s(x, y);µ(x, y), σ(x, y)) based on the shadow
model’s predictions, we can compare all 3 methods (Ours, LIRA, marginal baseline) in terms of
pinball loss on public data (x ∼ D). We find that the attack with the smallest pinball loss on
public data is the better membership inference attack across all datasets. This shows that a
strong quantile predictor on public data is a strong membership inference attack; which validates the
core premise of our approach in Section 3.

A possible explanation for the relative lack of success of directly learning a quantile regression model
on CIFAR datasets could be the relatively low number of available samples (25000). In such low data
scenarios, training shadow models is also computationally affordable. The opposite holds true for the
much larger ImageNet1k dataset, on which the computational cost of training a single target model,
much less multiple shadow models far exceeds the cost of a single quantile regression model.

4.2 Tabular Classification Experiments

In addition to experiments on image datasets, we here demonstrate the effectiveness of our member-
ship inference attack on tabular datasets, including large datasets from derived from the US Census’
American Community Survey (ACS) [Ding et al., 2021] and small ones from OpenML 4 [Grinsztajn
et al., 2022]. Gradient boosting with decision trees is widely-used for classification tasks with tabular
data, so in our experiments, to achieve a reasonable performance, we train a gradient boosting model
with 5-fold cross validation for hyperparameter tuning on the private portion of the data. For our
attack model, gradient boosting with regression trees is applied, but now with regression targets as
mentioned above. Hyperparameters for regression tasks are also tuned using a public portion of the
data to avoid overfitting. In our experiments, catboost is used for model training, and Optuna [Akiba
et al., 2019] is used for hyperparameter tuning.

Table 2 shows that our attack, which involves learning a single regression model, performs on par
with the LiRA attack, which requires learning at least 16 models on some tasks and more on other
tasks. Since each model, including our regression model and a shadow model in LiRA, has the same
latency in terms of hyperparameter tuning and model training, our attack requires significantly less
compute (equivalent to a single shadow model), and it reduces a successful attack from training many
models to only one model. Figure 3 shows ROC curves of our proposed approach on OpenML.

5 Discussion

We have introduced a new family of membership inference attacks that are competitive with the state
of the art (and in our ImageNet experiments, substantially and uniformly better), while requiring

4https://www.openml.org
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Table 2: Precision @ 1% FPR on OpenML datasets and 0.5% on ACS datasets. Evaluating at different
FPR levels is due to the fact that OpenML datasets have around 5,000 samples, and ACS datasets
have around 20,000 samples. n here denotes the number of shadow models trained for LIRA.

Precision @ 1% FPR (OpenML) Precision @ 0.5% FPR (ACS NY)
Task ID 361057 361064 361067 361070 Coverage Income Travel Mobility

LIRA (n=16) 70.33% 85.44% 85.52% 73.33% 66.07% 50.71% 66.07% 72.74%
LIRA (n=32) 76.22% 88.52% 89.62% 78.35% 66.28% 52.53% 67.52% 68.84%
LIRA (n=64) 82.73% 90.31% 89.46% 79.57% 69.23% 50.24% 65.64% 65.26%

Ours 83.35% 88.05% 87.35% 86.54% 67.31% 56.35% 63.98% 85.27%

(a) OpenML Datasets

(b) ACS Task on NY data

Figure 3: Comparing the true positive rate vs. false positive rate of our membership inference attack
against LIRA evaluated at 16, 32, and 64 shadow models on OpenML and ACS datasets. A single
quantile regression model can produce similar results as multiple shadow models at a fraction of the
compute cost for gradient boosting models.

substantially fewer computational resources and less knowledge of the target model. Moreover, we
have identified pinball loss as a key target objective: uniformly across all of our experiments, the
methods that produce thresholds minimizing pinball loss are the most effective attacks. Together,
this brings membership inference closer to practicality on large commercial models. This serves to
highlight a growing risk to privacy—but also provides a more efficient means to audit models by
subjecting them to our attacks. We hope that our methods encourage and enable a more widespread
practice of auditing models for privacy violations by subjecting them to membership inference attacks
before deployment.
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A Shadow Model Architecture Mismatch

Here we explore how a shadow model membership inference attack is affected by the lack of
knowledge of the target model. For this, we vary the shadow model’s and target model’s architecture
between 6 different configurations: 3 CNN models with 32 filters each and varying number of pooling
layers between 1 and 3, 4 Wide Residual Networks Zagoruyko and Komodakis [2016] of depth 28
and varying width ([1, 2, 5, 10]). We train a single target model and 4 shadow models; all models are
trained with SGD with momentum and random augmentations. The results are shown in Figure 4,
where small architecture mismatches (i.e, same model family of target and test architecture) generally
degrade performance very little, but larger architecture mismatches can cause significant performance
degradation.

(a) CIFAR-10 (b) CIFAR-100

Figure 4: Comparing the precision at 0.1% false positive rate of the LIRA attack on CIFAR-10 and
CIFAR-100 on mismatched target and shadow model architectures. Red circles are used to denote
scenarios where target and shadow model architectures match.

B Target Model Accuracies

Here we summarize the accuracy of all target model architectures.

Architecture
Dataset ResNet-10 Acc ResNet-18 Acc ResNet-34 Acc ResNet-50 Acc

CIFAR-10 90.3% 90.5% 90.7% 91.0%
CIFAR-100 66.7% 68.6% 68.3% 68.6%

ImageNet-1k - - - 67.5%
Table 3: Accuracy of target classifiers. All target classifiers are trained on 50% of the usual training
data split using the training setup described in He et al. [2015]. Due to the reduced ammount of
training data, these target networks have lower accuracies than those initially reported in He et al.
[2015].

C Proofs

C.1 Proof of Theorem 1

Proof. To establish this theorem, the following lemma will be useful, which informally states that
if we can shift a model’s quantile predictions to get its “marginal coverage rate” to be closer to the
target 1− α, then we will also decrease the pinball loss of that model:

13



Lemma 3 (Jung et al. [2023], Roth [2022]). Fix any continuous distribution P ∈ ∆R with density
bounded by ρ. Suppose q̂ is a model such that Pry∼P [y ≤ q̂(x)] = 1− α′, and let ∆ ∈ R be such
that Pry∼P [y ≤ q̂(x) + ∆] = 1− α. Let q(x) = q̂(x) + ∆. Then:

E
y∼P

[PB1−α(q̂(x), y)]− E
y∼P

[PB1−α(q(x), y)] ≥
(α− α′)2

2ρ

Recall that q is chosen such that:
q ∈ arg min

q′∈H
E

(x,y)∼D
[PB1−α(q(x), s(x, y))]

For point of contradiction, suppose that FPR(Aq) = α′ for some α′ ̸= α. Expanding out the
definition of the false positive rate, we have that:

α′ = FPR(Aq)

= Pr
(x,y)∼D

[Aq(x, y) = ⊥]

= Pr
(x,y)∼D

[s(x, y) ≥ q(x)]

= 1− Pr
(x,y)∼D

[s(x, y) ≤ q(x)]

So Pr(x,y)∼D[s(x, y) ≤ q(x)] = 1− α′. Let ∆ ∈ R be such that Pr(x,y)∼D[s(x, y) ≤ q(x) + ∆] =
1 − α—Note that such a ∆ is guaranteed to exist by continuity of the distribution on s(x, y). Let
q′(x) = q(x) + ∆. By Lemma 3,

E
(x,y)∼D

[PB1−α(q
′(x), s(x, y))] < E

(x,y)∼D
[PB1−α(q(x), s(x, y))]

But because H is closed under additive shifts, we also have that q′ ∈ H. Together, these contradict
the optimality of q as measured by pinball loss, which completes the proof.

C.2 Proof of Theorem 2

Proof. Recall that q is chosen such that:
q ∈ arg min

q′∈H
E

(x,y)∼D
[PB1−α(q(x), s(x, y))]

For point of contradiction, suppose that there is some g ∈ G and some α′ ̸= α such that Aq’s false
positive rate conditional on g(x) = 1 is α′. Let Dg be the conditional distribution on D conditional
on g(x) = 1, and let Dḡ be the conditional distribution on D conditional on g(x) = 0. Expanding
out definitions, we have that:

α′ = Pr
(x,y)∼D

[Aq(x, y) = ⊥|g(x) = 1]

= Pr
(x,y)∼Dg

[s(x, y) ≥ q(x)]

= 1− Pr
(x,y)∼Dg

[s(x, y) ≤ q(x)]

So Pr(x,y)∼Dg
[s(x, y) ≤ q(x)] = 1−α′. Let η ∈ R be such that Pr(x,y)∼Dg

[s(x, y) ≤ q(x) + η] =
1 − α—Note that such an η is guaranteed to exist by continuity of the distribution on s(x, y)
conditional on g(x) = 1. Let q′(x) = q(x) + ηg(x). By Lemma 3,

E
(x,y)∼Dg

[PB1−α(q
′(x), s(x, y))] < E

(x,y)∼Dg

[PB1−α(q(x), s(x, y))]

We can relate this decrease in pinball loss conditional on g(x) = 1 to the decrease in pinball loss on
the underlying distribution D:

E
(x,y)∼D

[PB1−α(q
′(x), s(x, y))]

= Pr
D
[g(x) = 1] E

(x,y)∼Dg

[PB1−α(q
′(x), s(x, y))] + Pr

D
[g(x) = 0] E

(x,y)∼Dḡ

[PB1−α(q
′(x), s(x, y))]

< Pr
D
[g(x) = 1] E

(x,y)∼Dg

[PB1−α(q
′(x), s(x, y))] + Pr

D
[g(x) = 0] E

(x,y)∼Dḡ

[PB1−α(q(x), s(x, y))]

= Pr
D
[g(x) = 1] E

(x,y)∼Dg

[PB1−α(q
′(x), s(x, y))] + Pr

D
[g(x) = 0] E

(x,y)∼Dḡ

[PB1−α(q
′(x), s(x, y))]
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But because H is closed under additive shifts by all g ∈ G, we also have that q′ ∈ H. Together, these
contradict the optimality of q as measured by pinball loss, which completes the proof.

D Hyperparameters

We use Ray Tune Liaw et al. [2018] for hyperparameter tuning on image datasets. All experiments
use Async Hyperband Scheduler Li et al. [2020] and the Hyperopt search package Bergstra et al.
[2013]. Table 4 summarizes the hyperparameters that were tuned and their configurations

Table 4: Summary of hyperparameters optimized for our quantile regressor model on all image
experiments

Hyperparameter Configuration Description
lr loguniform(10−6, 10−2) Learning rate

Weight Decay loguniform(2 ∗ 10−6, 5 ∗ 10−3) l2 weight regularization (excluding biases)
Hidden dims choice([], [512,512]) size and number of hidden dimensions of MLP

Accumulate gradient batches choice([1, 2, 4, 8, 16, 32, 64]) number of batches to accumulate (base batch size=32)
Epochs randint(start=5, stop=50, step=5) number of training epochs

We ran 32 trials to find the optimal configuration per experiment. After examining the results, we
found that a hidden dim of [512, 512] and accumulate gradient batches of 2 (Effective batch size
64) were consistently chosen across all experiments. Similarly, epochs were mostly chosen on the
10 − 20 range, learning rates and weight decays were consistently chosen near the middle of the
value range. This indicates that hyperparameter tuning may not be especially task sensitive and can
be shared across attacks.

For tabular data, we use Catboost for model training, and Optuna Akiba et al. [2019] for hyperparam-
eter tuning. Table 5 presents the hyperparameters that were tuned and their corresponding ranges.
Each model was tuned with 300 trials with 5-fold cross-validation.

Table 5: Summary of hyperparameters optimized for our quantile regressor model on tabular data
Hyperparameter Configuration Description

depth uniform(1,10) Depth of a tree
l2_leaf_reg loguniform(1e-2,1e+6) Strength of L2 regularization

learning_rate loguniform(1e-6,1) Learning rate of gradient boosting
subsample loguniform(1e-2,1) Subsampling ratio at each leave node
iterations loguniform(1,1000) Number of boosting iterations

E Additional Results

Here we show extended results on membership inference attacks on CIFAR-10 and CIFAR-100 for
ResNet-10, -18, -34, and -50 architectures. Tables 6 and 7 show precision and pinball loss at 1%
and 0.1% FPR for all target architectures on CIFAR-10 and CIFAR-100 respectively. We observe
a strong correlation between lowest pinball loss on test samples and highest precision across the
majority of experiments. Figure 5 additionally presents a visual comparison of the true positive
rate and false positive rate trade-off for all tested methods on CIFAR-10 and CIFAR-100 for the
ResNet-50 architecture.
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Table 6: Precision and pinball loss of all membership inference attack at 1% and 0.1% false positive
rates on CIFAR10 for ResNet-10, -18, -34, and -50 architectures. Pinball losses are computed on a
held out test set. Lower pinball losses consistently predict better membership inference performance.

Method PB1% Precision @ 1% FPR PB0.1% Precision @ 0.1% FPR
CIFAR-10 ResNet-10

LIRA (n=2) 0.1454 80.43% 0.0194 89.20%
LIRA (n=4) 0.1439 83.45% 0.0193 93.15%
LIRA (n=6) 0.1441 84.46% 0.0193 94.47%
LIRA (n=8) 0.1442 84.79% 0.0193 94.67%
Marginal Baseline 0.2157 47.84% 0.0262 46.81%
Ours 0.1543 62.69% 0.0262 57.83%

CIFAR-10 ResNet-18
LIRA (n=2) 0.1637 82.17% 0.0222 94.09%
LIRA (n=4) 0.1607 84.91% 0.0216 93.90%
LIRA (n=6) 0.1603 85.33% 0.0215 94.68%
LIRA (n=8) 0.1603 85.26% 0.0215 95.04%
Marginal Baseline 0.1853 43.43% 0.0223 50.00%
Ours 0.1707 63.08% 0.0213 65.65%

CIFAR-10 ResNet-34
LIRA (n=2) 0.1674 82.75% 0.0225 92.45%
LIRA (n=4) 0.1672 84.16% 0.0223 94.45%
LIRA (n=6) 0.1669 85.65% 0.0222 95.40%
LIRA (n=8) 0.1668 85.79% 0.0222 95.30%
Marginal Baseline 0.1893 51.42% 0.0230 47.92%
Ours 0.1743 73.06% 0.0230 80.39%

CIFAR-10 ResNet-50
LIRA (n=2) 0.1913 78.55% 0.0262 83.18%
LIRA (n=4) 0.1926 80.52% 0.0261 91.48%
LIRA (n=6) 0.1930 83.19% 0.0260 93.17%
LIRA (n=8) 0.1933 83.00% 0.0260 93.70%
Marginal Baseline 0.2163 48.70% 0.0287 60.94%
Ours 0.2070 62.95% 0.0277 59.68%

(a) CIFAR-10 (b) CIFAR-100

Figure 5: Comparing the true positive rate vs. false positive rate of our membership inference attack
against the state-of-the-art shadow model approach LIRA proposed in Carlini et al. [2022] evaluated
at 2, 4, 6, and 8 shadow models, and the marginal baseline proposed in Yeom et al. [2018] Our
single-model quantile regression attack can reliably perform membership inference attacks on a
ResNet-50 CIFAR-10/CIFAR-100 target model (91% and 68.6% test accuracies respectively) without
relying on any knowledge of the target architecture. We include a visual readout of the 256-shadow
model attack shown in Carlini et al. [2022] for reference. Our attack’s effectiveness is dominates
the marginal baseline but falls short of LIRA in this scenario. We find pinball loss to be a strong
predictor of performance for membership inference attacks.
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Table 7: Precision and pinball loss of all membership inference attack at 1% and 0.1% false positive
rates on CIFAR100 for ResNet-10, -18, -34, and -50 architectures. Pinball losses are computed on a
held out test set. Lower pinball losses consistently predict better membership inference performance.

Method PB1% Precision @ 1% FPR PB0.1% Precision @ 0.1% FPR
CIFAR-100 ResNet-10

LIRA (n=2) 0.1486 95.44% 0.0188 99.06%
LIRA (n=4) 0.1386 95.95% 0.0170 98.97%
LIRA (n=6) 0.1385 96.19% 0.0170 99.10%
LIRA (n=8) 0.1385 96.14% 0.0170 99.06%
Marginal Baseline 0.2749 50.84% 0.0390 47.92%
Ours 0.1775 83.30% 0.0390 77.37%

CIFAR-100 ResNet-18
LIRA (n=2) 0.1612 96.29% 0.0193 99.11%
LIRA (n=4) 0.1523 96.74% 0.0179 99.46%
LIRA (n=6) 0.1524 97.02% 0.0181 99.51%
LIRA (n=8) 0.1525 96.94% 0.0181 99.48%
Marginal Baseline 0.2754 51.71% 0.0364 59.02%
Ours 0.2492 90.37% 0.0364 89.63%

CIFAR-100 ResNet-34
LIRA (n=2) 0.1840 95.73% 0.0213 99.10%
LIRA (n=4) 0.1732 96.34% 0.0203 99.17%
LIRA (n=6) 0.1726 96.45% 0.0202 99.31%
LIRA (n=8) 0.1727 96.42% 0.0202 99.28%
Marginal Baseline 0.2065 62.13% 0.0270 66.67%
Ours 0.1913 81.80% 0.0270 79.64%

CIFAR-100 ResNet-50
LIRA (n=2) 0.1926 95.21% 0.0239 98.65%
LIRA (n=4) 0.1832 95.87% 0.0227 98.94%
LIRA (n=6) 0.1828 96.20% 0.0228 99.02%
LIRA (n=8) 0.1828 96.07% 0.0228 98.98%
Marginal Baseline 0.2188 58.81% 0.0272 65.75%
Ours 0.2006 79.57% 0.0272 85.41%
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