
Self-Supervised Motion Magnification by
Backpropagating Through Optical Flow

Zhaoying Pan∗ Daniel Geng∗ Andrew Owens
University of Michigan

https://dangeng.github.io/FlowMag

Abstract

This paper presents a simple, self-supervised method for magnifying subtle motions
in video: given an input video and a magnification factor, we manipulate the video
such that its new optical flow is scaled by the desired amount. To train our model,
we propose a loss function that estimates the optical flow of the generated video and
penalizes how far if deviates from the given magnification factor. Thus, training
involves differentiating through a pretrained optical flow network. Since our
model is self-supervised, we can further improve its performance through test-time
adaptation, by finetuning it on the input video. It can also be easily extended to
magnify the motions of only user-selected objects. Our approach avoids the need
for synthetic magnification datasets that have been used to train prior learning-based
approaches. Instead, it leverages the existing capabilities of off-the-shelf motion
estimators. We demonstrate the effectiveness of our method through evaluations of
both visual quality and quantitative metrics on a range of real-world and synthetic
videos, and we show our method works for both supervised and unsupervised
optical flow methods.

1 Introduction

Motion magnification methods [32, 58, 40] increase the size of tiny motions in a video, revealing
subtle details that are difficult to discern with the naked eye. However, existing methods come with
significant limitations. Early hand-crafted methods generally require small periodic motions [64, 58]
or a human in the loop [32]. More recent supervised learning methods [40] require ground-truth
training examples, such as videos before and after magnification, which are difficult to obtain without
synthetic data. Creating this synthetic data is a challenging problem, since it seemingly requires
capturing all of the possible objects and motions that one might ever want to magnify.

In parallel, the field of motion estimation has addressed many closely related challenges. Modern
optical flow networks [65, 54, 51, 10] are designed to track objects undergoing complex motions, both
large and small. Most of these methods are trained on supervised datasets that capture a wide variety
of objects, but parallel work has shown the effectiveness of unsupervised flow estimation [33, 27].
We ask whether we can use motion estimation models to train magnification models, taking advantage
of their existing capabilities and reducing the need for special-purpose training data.

We propose a simple motion magnification model whose supervision signal comes from an off-
the-shelf motion estimation model. Our method exploits the fact that optical flow networks are
differentiable, and thus can be used as part of a loss function. We train a model to take a pair of video
frames and a magnification factor α as input, and to generate a new pair whose predicted optical
flow is α times as large as that of the input. We simultaneously optimize a regularization loss that
preserves the visual appearance of each tracked pixel in the generated video. Notably, our model can

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://dangeng.github.io/FlowMag

(b) Test-time Adaptation

(iv) Original

(v) No TTA

(vi) TTA

(i) Original Frame

(iii) TTA Frame

(ii) No-TTA Frame

(a) Magnification

(i) Original Frame (ii) Left Fork (iii) Right Fork

(iv) Original

(v) No Targeting

(vi) Magnifying Left Fork

(vii) Magnifying Right Fork

(c) Targeted Magnification

(i) Original

(ii) Magnified

(i) Original

(ii) Magnified

𝑦𝑦

𝑡𝑡

Figure 1: Magnifying Motions in Video. (a) We show frames along with closeups (Left) or y-t slices (Right)
from original videos and magnified videos. The spatial location of the y-t slice is visualized by superimposing a
colored line on to the still frames, and the location of closeups is shown with a rectangle colored green. (b) We
show the frames from the original video, the magnified frame (No-TTA), the magnified frame after test-time
adaptation (TTA), and the y-t slices of the three videos. Test-time adaptation (i.e., finetuning on the input video)
improves generation quality as can be seen in the y-t slices. (c) We magnify the motions within a user-selected
object segmentation [29] and show y-t slices of the magnified videos on different targets. We use red/green
colored lines to indicate the locations of y-t slices for different targets.

be trained solely using real unlabeled videos. The optical flow estimator is only used within the loss
function during training—we do not require it at test time.

Our model’s simplicity and its ability to be trained solely through self-supervision provides it with
several advantages over other approaches. We show that we can improve our generated videos
through test-time adaptation [52, 26] by finetuning on a given input video. Our formulation can also
be easily extended to magnify the motions of a single object, specified via a user-provided mask. In
addition, we show results using both off-the-shelf supervised [54] and unsupervised [33] optical flow
methods.

Our method is closely related to Lagrangian magnification methods [32, 19], which tracks individual
pixels through a video and then amplifies their motion. While this approach is intuitively appealing
and was the basis for the earliest magnification methods, a major shortcoming is that it is not clear
how to combine the tracking and synthesis together. Previous Lagrangian approaches [32] often rely
on hand-crafted pipelines that combine motion estimation, warping, and inpainting steps. By contrast,
our method avoids these pitfalls by using off-the-shelf image-to-image translation architectures [45],
and uses tracking only within the loss function.

We demonstrate the effectiveness and flexibility of our model in several ways. First, we show through
experiments on real and synthetic videos that the optical flow in the generated videos more closely
matches the desired motion than videos generated by baseline approaches, such as methods based on
warping or supervised learning [40]. Second, we show qualitatively that our model can successfully
magnify motions for a variety of videos, containing both small and large motions. Finally, we show
that we can improve generation quality using test-time adaptation, and magnify individual objects
using user-supplied segmentation maps.

2 Related Work

Lagrangian magnification. Motion magnification methods can be broadly categorized as either
Lagrangian [32] or Eulerian [64], a classification borrowed from fluid dynamics. Lagrangian methods
explicitly track pixels, then generate new frames by forward warping (i.e., splatting) using magnified
velocity estimates. Liu et al. [32] originally proposed the motion magnification problem and solved
it using a Lagrangian approach. They modeled motion as feature trajectories and (with human-
in-the-loop assistance) cluster pixels by similarity in position, color, and motion. Recent methods
have extended Lagrangian magnification with more accurate optical flow [17]. While our approach
performs explicit tracking and thus is closely related to Lagrangian methods, we decouple generation
from tracking: we produce images using off-the-shelf networks and track only within the loss function.
This allows us to avoid some of the challenges of the “warp and inpaint” approach, such as handling
occlusions and filling holes.

2

Eulerian magnification. Eulerian methods magnify motions without explicit motion estimation.
Instead, they generate a magnified video by amplifing the temporal changes at fixed locations/pixels.
Wu et al. [64] decomposed a video into frequency bands and applied temporal filters to extract
a signal at a specific bandpass. The extracted signal is then amplified by a magnification factor
and added back to the video. Wadhwa et al. [58] proposed a phase-based method, using complex
steerable pyramids [47] to decompose the video and separate the phase from the amplitude to amplify
the temporally-bandpassed phases. Later work improves efficiency using Riesz pyramids [59] and
removes large motion by decomposing a scene into foreground and background layers [11]. Zhang
et al. [72] magnified small motions while ignoring large motions by amplifying the motion field
acceleration using second-order temporal filters. Concurrent work [15] extended 2D Eulerian methods
to 3D motion magnification. Eulerian methods are well-suited to tracking small motions at high
spatial frequencies, and may struggle when handling large motions [58], whereas Lagrangian methods’
magnification quality is determined by the quality of the optical flow predictions [64]. Since our
method’s loss function is defined using optical flow, its capabilities are more similar to those of
Lagrangian methods.

Learning-based magnification. Several recent works have proposed learning-based motion mag-
nification models. Oh et al. [40] created a synthetic dataset containing image segments extracted
from PASCAL VOC [12] as moving foreground and images from COCO [30] as background, and
trained a model to regress a ground truth magnified image from two video frames. Inspired by
the steerable pyramid used in Eulerian methods [58], they also proposed an architecture that has
inductive biases that encourage it to generate crisp images akin to those in Eulerian magnification,
by decomposing the image into a shape and texture representation. Other work has extended this
supervised magnification approach using 3D CNNs [28] and lightweight architectures [48], and
has magnified microexpressions using attention-based models [63]. In contrast to these approaches,
our method is self-supervised and learns from unlabeled videos. Recently, Gao et al. [19] use a
very similar supervised learning objective and dataset but augment the model of Oh et al. [40] with
inductive biases that encourage Lagrangian-like magnification by adding an attention map that is
guided by an optical flow field. Instead of making optical flow part of our architecture, as an inductive
bias that aids supervised training, we use it to define a self-supervised loss function.

Motion estimation. The field of motion estimation is closely related to motion magnification.
Early work solved linearized models after making color constancy assumptions [35] or solved
smoothness-regularized models with variational methods [23]. Later work added robust losses and
inference strategies [49, 3, 31, 14]. While these methods are well-suited to the subtle motions
considered in motion magnification, it is difficult to use them as part of a loss function (as we do
in this work), since it is not straightforward to differentiate through during gradient-based learning.
Recent methods based on neural networks address this issue, since they are differentiable and
highly accurate. A variety of recent methods train neural networks using real or synthetic optical flow
data [16, 25, 43, 24, 67, 51, 65] or unlabeled video data [71, 44, 61, 34, 27, 2]. Our use of a pretrained
flow model removes the need for special-purpose supervised motion magnification datasets.

Optical flow within a loss function. We take inspiration from recent work that uses differentiable
optical flow models to define loss functions that internally perform motion reasoning. Geng et al. [20]
used flow to obtain robustness to small positional errors on image generation tasks. Goyal et al. [21]
used flow to measure the distance to a goal state for robotic planning. Other work has backpropagated
through optical flow as part of a pose estimation model [55]. By contrast, we use flow to compare the
motions in two videos.

3 Method

We describe traditional Lagrangian motion magnification, and our proposed self-supervised La-
grangian magnification model.

3.1 Lagrangian Motion Magnification Overview

Lagrangian motion magnification methods magnify motion by tracking pixels over time, then resyn-
thesizing the video such that the motion of each pixel has increased by a desired amount. More
concretely, a point x in the initial frame I0 of a video might be displaced by motion field T (x; t) in

3

U-Net
<latexit sha1_base64="MOZlTbsHYcZ87WeksGaS4GaJr9g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi94imgckS5id9CZDZmeXmVkhLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHssHM07Qj+hA8pAzaqx0f9tze+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrn1bO700rtKo+jCAdwCMfgwQXU4Abq0AAGA3iCF3h1hPPsvDnv89aCk8/swy84H9/Fw416</latexit>

I0

<latexit sha1_base64="XI1uTDybDlUcbOSUY5QPVychc1Y=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi94imgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG11O/9ci1EbF6wHHC/YgOlAgFo2il+9se9soVt+rOQP4SLycVyFHvlT+7/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUKOrNInYaxtKSQz9edERiNjxlFgOyOKQ7PoTcX/vE6K4aWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb78lzRPqt559ezutFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d6Tw7b877vLXg5DP78AvOxzcs4o2+</latexit>

It

<latexit sha1_base64="3MUkKiCoiAzY5Y40sOOBicuGr2A=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEnons8mY2Z1lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9oapkqyhpUCqnaAWomeMwahhvB2oliGAWCtYLR7dRvPTGluYwfzDhhfoSDmIecorFSs4siGWKvXHGr7gxkmXg5qUCOeq/81e1LmkYsNlSg1h3PTYyfoTKcCjYpdVPNEqQjHLCOpTFGTPvZ7NoJObFKn4RS2YoNmam/JzKMtB5Hge2M0Az1ojcV//M6qQmv/YzHSWpYTOeLwlQQI8n0ddLnilEjxpYgVdzeSugQFVJjAyrZELzFl5dJ86zqXVYv7s8rtZs8jiIcwTGcggdXUIM7qEMDKDzCM7zCmyOdF+fd+Zi3Fpx85hD+wPn8AY7BjyI=</latexit>↵

<latexit sha1_base64="F9pKUedY8xMd7/YPROMSq53bbD8=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRLxtSy60V0F+4A0lMlk0g6dzISZG6GEfoYbF4q49Wvc+TdO2yy09cCFwzn3cu89YSq4Adf9dkorq2vrG+XNytb2zu5edf+gbVSmKWtRJZTuhsQwwSVrAQfBuqlmJAkF64Sj26nfeWLacCUfYZyyICEDyWNOCVjJ7wEXEcvv+zDpV2tu3Z0BLxOvIDVUoNmvfvUiRbOESaCCGON7bgpBTjRwKtik0ssMSwkdkQHzLZUkYSbIZydP8IlVIhwrbUsCnqm/J3KSGDNOQtuZEBiaRW8q/uf5GcTXQc5lmgGTdL4ozgQGhaf/44hrRkGMLSFUc3srpkOiCQWbUsWG4C2+vEzaZ3Xvsn7xcF5r3BRxlNEROkanyENXqIHuUBO1EEUKPaNX9OaA8+K8Ox/z1pJTzByiP3A+fwCQjZF0</latexit>

Ĩt
<latexit sha1_base64="EqA3S6XwkRw2alI6vID+lo3IjDg=">AAACT3icbZHLSysxFMYzvT7rq/e6dBMsghvLjPgCuSC6ceGiglWhKUMmPdMGMw+TM3LLdP7Du9Gd/4YbF14upnUUXwcCP77vJDn5EqRKGnTde6fyY2Jyanpmtjo3v7C4VPv569wkmRbQEolK9GXADSgZQwslKrhMNfAoUHARXB2N/Isb0EYm8RkOUuhEvBfLUAqOVvJrIYs49gVX+Unh5wzhD+bjU4uC/qYs1FzkXpEP39qaxbBgJov8dwpTECIbsuuMd9k+3XgFpmWvbw3f82t1t+GOi34Fr4Q6Kavp1+5YNxFZBDEKxY1pe26KnZxrlEJBUWWZgZSLK96DtsWYR2A65eR0zSpdGibarhjpWH2/I+eRMYMosJ2jR5jP3kj8zmtnGO51chmnGUIsXi4KM0UxoaNwaVdqEKgGFrjQ0s5KRZ/bDNF+QdWG4H1+8lc432x4O43t0636wWEZxwxZIatknXhklxyQY9IkLSLIX/JAnsg/59Z5dP5XytaKU8Iy+VCV2WcX4LbA</latexit>

Lcolor =
1

|P|
X

P
k � k1

<latexit sha1_base64="MGSDOFu3udM3Xszvxjk+f/q5Am8=">AAACkHicnVFNbxMxEPUuhbaBQijHXiwiJC5EuxRoD1QUekGIQ5FIWymOVrPe2cSq9wN7FhGZ/T38H278mzrJHtqGU0f26OnNG3n8Jq21shRF/4Lw3sb9B5tb272Hj3YeP+k/3T2zVWMkjmSlK3ORgkWtShyRIo0XtUEoUo3n6eXJon7+E41VVfmd5jVOCpiWKlcSyFNJ/48ogGYStPvaJk4Q/iLnJW3Lj7jQmJP4LUDXM+DiRwPZKuUGpFvPrRMyq6htXXeWav7q7q3CqOnMj5DESX8QDaNl8HUQd2DAujhN+n9FVsmmwJKkBmvHcVTTxIEhJTW2PdFYrEFewhTHHpZQoJ24paEtf+GZjOeV8bckvmSvdzgorJ0XqVcu7LO3awvyf7VxQ/nhxKmybghLuXoobzSnii+2wzNlUJKeewDSKD8rlzPwDpHfYc+bEN/+8jo4ez2M3w3ffnszOP7U2bHF9thz9pLF7IAds8/slI2YDHaC/eB9cBTuhofhh/DjShoGXc8zdiPCL1eTDs4m</latexit>

Lmag =

������
↵

·

�
·

������
1

<latexit sha1_base64="EdpFq7SZ4COSFlPB5Ot1zrPmmWI=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEClIS8bUsCmJ3FewD2hAm00k7dPJg5kYooeCvuHGhiFu/w51/46TNQqsHBg7n3Ms9c7xYcAWW9WUUFhaXlleKq6W19Y3NLXN7p6WiRFLWpJGIZMcjigkesiZwEKwTS0YCT7C2N7rO/PYDk4pH4T2MY+YEZBByn1MCWnLNvV5AYEiJSG8mlbprHeO6C0euWbaq1hT4L7FzUkY5Gq752etHNAlYCFQQpbq2FYOTEgmcCjYp9RLFYkJHZMC6moYkYMpJp/En+FArfexHUr8Q8FT9uZGSQKlx4OnJLKya9zLxP6+bgH/ppDyME2AhnR3yE4EhwlkXuM8loyDGmhAquc6K6ZBIQkE3VtIl2PNf/ktaJ1X7vHp2d1quXeV1FNE+OkAVZKMLVEO3qIGaiKIUPaEX9Go8Gs/Gm/E+Gy0Y+c4u+gXj4xuBGJSM</latexit>F(I0, It)
<latexit sha1_base64="Cmtj4eadCZR0KQ8wKVXv9x2XYSY=">AAACBXicbVDJSgNBEO2JW4xb1KMeGoMQQcKMuB2DgphbBLNAMgw9PZ2kSU/P0F0jhCEXL/6KFw+KePUfvPk3dpaDJj4oeLxXRVU9PxZcg21/W5mFxaXllexqbm19Y3Mrv71T11GiKKvRSESq6RPNBJesBhwEa8aKkdAXrOH3r0d+44EpzSN5D4OYuSHpSt7hlICRvPx+OyTQo0SkN8NixbOPcRu4CBiueHDk5Qt2yR4DzxNnSgpoiqqX/2oHEU1CJoEKonXLsWNwU6KAU8GGuXaiWUxon3RZy1BJQqbddPzFEB8aJcCdSJmSgMfq74mUhFoPQt90jm7Ws95I/M9rJdC5dFMu4wSYpJNFnURgiPAoEhxwxSiIgSGEKm5uxbRHFKFggsuZEJzZl+dJ/aTknJfO7k4L5atpHFm0hw5QETnoApXRLaqiGqLoET2jV/RmPVkv1rv1MWnNWNOZXfQH1ucPn+uXYA==</latexit>

F(I0, Ĩt)

(a) Architecture (b) Losses

correspondences
 from

<latexit sha1_base64="U5NgBVzIfpRXf++zdbcOGRje1VE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1kUxGUF+4DpUDJppg3NJENyRyhDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJoIbcN1vp7Syura+Ud6sbG3v7O5V9w/aRqWashZVQuluSAwTXLIWcBCsm2hG4lCwTji+zf3OE9OGK/kIk4QFMRlKHnFKwEp+LyYwokRkd9N+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBZtWeqlhCaFjMmS+pZLEzATZLPIUn1hlgCOl7ZOAZ+rvjYzExkzi0E7mEc2il4v/eX4K0XWQcZmkwCSdfxSlAoPC+f14wDWjICaWEKq5zYrpiGhCwbZUsSV4iycvk/ZZ3busXzyc1xo3RR1ldISO0Sny0BVqoHvURC1EkULP6BW9OeC8OO/Ox3y05BQ7h+gPnM8feyeRZg==</latexit>F

Figure 2: Motion Magnification Model. Given a reference frame I0, a frame to be magnified It, and a map of
per-pixel magnification factors α, we predict a magnified frame Ĩt. We minimize two losses that each use an
off-the-shelf optical flow estimator F(·, ·). First, we use a magnification loss Lmag that encourages the optical
flow of the generated video to be α times as large as that of the input video. And second, we also include a
consistency loss Lcolor that measures the visual similarity of corresponding pixels in It and Ĩt.

frame t. Assuming color constancy, we have:

It(x+ T (x; t)) = I0(x), (1)

where It is the frame at time t and I(·) indicates pixel access. To generate a version of the video
magnified by a factor α1, one could synthesize a new frame Ĩt by increasing the distance traversed by
each pixel:

Ĩt(x+ αT (x; t))← I0(x). (2)
For example, early work in Lagrangian motion magnification [32] aimed to achieve this by performing
forward warping (splatting). However, this leads to holes and aliasing artifacts [53]. Moreover, there
is no mechanism for dealing with occlusions: after warping, background pixels may move in front of
the foreground. Finally, such a model would not be able to deal with appearance changes without
additional constraints (e.g., due to lighting variation).

3.2 Self-Supervised Lagrangian Magnification

We propose a motion magnification model that avoids the limitations of previous Lagrangian methods,
and that can be trained solely using unlabeled video (Figure 2). Consider F(I0, It), the motion field
obtained by computing optical flow between a reference frame I0 and another frame It. Our goal is to
generate a magnified frame Ĩt such that its predicted flow is αF(I0, It), where α is the magnification
factor. To do this, we optimize an objective to minimize the difference between the estimated flow
F(I0, Ĩt) and the desired flow:

Lmag = ∥αF(I0, It)−F(I0, Ĩt)∥1, (3)

which we term the magnification loss. When F is implemented as a neural network, we can optimize
this loss using gradient-based learning methods.

Optical flow models are invariant to a variety of photometric changes (e.g., changes in illumination).
Thus, optimizing Eq. 3 alone would result in an underconstrained problem. To ensure that the
generated frames match the colors in the input video and to also regularize our problem, we use an
additional color loss. This loss ensures that corresponding pixels in generated frame Ĩt and original
frame It are the same color. To enforce this, we put both frame It and Ĩt into correspondence with the
common reference frame I0 by backward warping each frame with their respective flows: F(I0, It)
and F(I0, Ĩt). We then measure the distance between the warped frames. This results in a loss:

Lcolor = ∥warp(It,F(I0, It))− warp(Ĩt,F(I0, Ĩt))∥1. (4)

1 Note that some previous works [64, 58, 40] define the magnification factor in a way that is equivalent to
α+ 1 (instead of α), which is more conducive to their theoretical analysis.

4

This loss also disincentivizes adversarial examples against the flow network. Our full loss is a
weighted sum of these two losses:

L = Lmag + λcolorLcolor. (5)

One benefit of putting optical flow into the loss function is that our model needs access to the flow
network only during training; at inference time the model simply takes in two frames and outputs a
magnified frame. Pseudocode for our method for training and inference can be found in Algorithm 1
and Algorithm 2 respectively.

3.3 Image Generation Architecture

Algorithm 1 Pseudocode in a PyTorch-like style
for training a U-Net for motion magnification.

Load data of two-frame videos
for (im0, im1) in dataloader:

Sample alpha and get embedding
a = sample_alpha(min_alpha, max_alpha)
pe_a = positional_embedding(a)
pe_a = spatial_tile(pe_a)

Predict magnified frame with a network
input = concat([im0, im1, pe_a])
im1_mag = UNet(input)

Estimate the motion
F_src = optical_flow(im0, im1)
F_tgt = optical_flow(im0, im1_mag)

Warp the second frame
warp_im1 = warp(im1, F_src)
warp_im1_mag = warp(im1_mag, F_tgt)

Calculate losses
mag_loss = l1_loss(a * F_src, F_tgt)
color_loss = l1_loss(warp_im1, warp_im1_mag)
loss = mag_loss + weight * color_loss

loss.backward()
optimizer.step()

Algorithm 2 Pseudocode in a PyTorch-like style
for inference (targeted magnification).

im0 = video[0]
magnified_video = [im0]
Load frames from the input video
for frame in video[1:]:

Get masked embedding for input alpha
pe_a = positional_embedding(a)
pe_a = spatial_tile(pe_a)
pe_a = mask * pe_a

Predict magnified frame with a network
input = concat([im0, frame, pe_a])
mag_frame = UNet(input)
magnified_video.append(mag_frame)

One benefit of our formulation is that our proposed
loss (Eq. 5) is independent of the image generation
architecture, so that “off-the-shelf” image translation
architectures can be used to create a magnified im-
age. This is in contrast to other learning-based meth-
ods, which incorporate inductive biases within the
network to generate images that closely resemble the
input (e.g., by altering the structure of an image while
preserving the texture [40]). To generate magnified
frames, we use a standard U-Net architecture [45] that
takes two input frames (the reference frame and the
frame to be magnified) concatenated channel-wise.
We encode magnification factor α using a sinusoidal
positional embedding [39] and tile it to match the
same spatial dimensions as the input frames. We con-
catenate this embedding channel-wise to the input
frames. Please see Section A2 in the appendix for
full architectural details.

3.4 Targeted Magnification

Our model gives us the ability to vary the magnifi-
cation factor spatially within an image. We achieve
this by providing different values of α for each pixel
at inference time. This works even when training
with spatially constant alpha maps, due to the fully
convolutional nature of our network2. As a special
case, we magnify the motion of a single object by
setting the magnification factor to a value of α within
an object segment, and to 1 everywhere else. In
practice, we use the recent Segment Anything Model
(SAM) [29] to extract a mask for a given object in
the reference frame and then dilate the segmentation
mask by a small fixed number of pixels. We pro-
vide pseudocode for targeted magnification during
inference in Algorithm 2.

3.5 Test-Time Adaptation

Since our model is entirely self-supervised, we can finetune it at inference time on the input video [52,
26, 18]. This allows us to adapt to new motions and content. We find that this can significantly
improve results, especially for out-of-domain videos. Previous supervised approaches do not have
this capability as they require labeled data. To perform test-time adaptation we take the frames in a
given inference video, apply minor cropping and color augmentations, and finetune the model with
our loss.

2 While the model could be trained with random spatially-varying α values, we did not see a qualitative
improvement when doing this.

5

4 Experiments

We evaluate our model both quantitatively through experiments with real and synthetic data, and
qualitatively on real videos. We highly encourage the reader to view our website, since the magnified
motions can be challenging to visualize in static images.

4.1 Implementation Details

We train two variations of our model. One that uses ARFlow [33], and one that uses RAFT [54] as
the optical flow network. Since ARFlow is self-supervised, using it results in a fully self-supervised
motion magnification method. RAFT on the other hand is a supervised flow model with very good
performance, giving us a weakly-supervised magnification method that serves as a rough upper bound
to the performance of a fully self-supervised method. More discussion can be found in Section A2
in the appendix. All qualitative results presented in this paper are from the RAFT model, except in
Figure 6 in which we compare the ARFlow and RAFT models.

Because motion magnification is multiplicative, we sample random magnification factors α exponen-
tially, such that log2(α) ∼ U(log2(αmin), log2(αmax)), where αmin = 1 and αmax = 16. For larger
magnification factors that exceed αmax, we find that recursive application of our model produces
high-quality predictions. More implementation details are available in Section A2 in the appendix.

4.2 Dataset

Because our method is self-supervised, we benefit from a large, diverse dataset of videos. To
this end we curate a dataset containing 145k unlabeled frame pairs from several existing datasets,
including YouTube-VOS-2019 [68], DAVIS [42], Vimeo-90k [66], Tracking Any Object (TAO) [8],
and Unidentified Video Objects (UVO) [60]. We remove frame pairs with large motions (e.g., from
the camera or objects), since these frames are less likely to be used in magnification appliactions. We
also remove frame pairs that are near-identical by setting a lower bound on the MSE between the two
frames. In addition to a training set, we collect a test set consisting 650 frame pairs for evaluation,
which we refer to as real-world test set. We provide more details of dataset collection and filtering
in Section A3 of the appendix.

For testing, we also use the synthetic test set from Oh et al. [40], which is generated by compositing
objects from PASCAL VOC [12] to backgrounds from COCO [30] at varying levels of subpixel
motion and noise. We refer to this test set as the synthetic test set. Finally, we qualitatively assess
our method and baselines on various real-world videos, which vary greatly in subject matter, motion
complexity, and lighting conditions. These videos include de-facto standard benchmarks for motion
magnification used in previous works [64, 58, 59, 5, 40], as well as new videos.

4.3 Metrics and Baselines

Metrics. Similar to Oh et al. [40], we use SSIM [62] as an evaluation metric. However, because
SSIM requires ground-truth magnified images, we can only use this metric to evaluate models on
the synthetic test set. In order to evaluate our method on the real-world test set, we propose another
metric for motion magnification that does not require ground truth, which we term motion error.
Inspired by the accuracy and robustness of recent optical flow methods, we assume that the flow
estimate from an optical flow method is ground truth and calculate an end-point error between the
predicted flow and the desired magnified flow.

This metric is identical to Lmag if the same optical flow model is used for evaluation as is used during
training. In order to ensure a robust metric, we calculate the motion error metric using a wide range
of optical flow networks, including PWC-Net, GMFlow, and RAFT, that have been trained on various
datasets. We set the number of iterations for RAFT to 20 during evaluation, while keeping it at 5
during training. This serves the dual purpose of allowing us to train more efficiently, but also evaluate
more equitably.

In addition, we compute the per-pixel ratio between the flow magnitudes of the unmagnified and
magnified frames, and calculate their average deviation from the desired magnification factor α. This
metric, which we refer to as magnification error, was not explicitly trained for and serves as another
indicator of magnification quality.

6

https://dangeng.github.io/FlowMag/

(i) Original

(ii) Warp Nearest

(iii) Warp Bilinear

(iv) Oh et al.

(v) Ours

(vi) Ours (TTA)

(a) Baby

(i) Original

(ii) Warp Nearest

(iii) Warp Bilinear

(iv) Oh et al.

(v) Ours

(vi) Ours (TTA)

(b) Cats

(i) Original

(ii) Warp Nearest

(iii) Warp Bilinear

(iv) Oh et al.

(v) Ours

(vi) Ours (TTA)

(c) Pole

Figure 3: Qualitative Comparison. (Top) We visualize the results of various models by plotting y-t slices
through video volumes. (Bottom) We also show the reference frame and the locations of the y-t slices. Oh et
al. (iv) shows noticeable artifacts, indicated by red circles. In (vi) we see that test time adaptation (TTA) can
improve our method on out-of-domain inference videos.

Ours

Oh et al.

Input (Train) Oh et al. OursInput (Camel)Input (Boiler) Oh et al. Ours

Figure 4: Image Quality Comparison. We show magnified frames generated from the method of Oh et al.
and our method. Because the model of Oh et al. is trained on a synthetic dataset, it may not generalize to the
presence of novel motions such as the camel chewing, or novel scenes, such as the train and boiler sequences.

Baselines. We compare primarily against the method of Oh et al. [40], a neural network based
approach trained on a synthetic dataset. Additionally, we implement forward warp baselines that
use nearest and bilinear sampling to warp pixels according to the amplified flow, along with a
nonparametric inpainting method [41], which we term Warp Nearest and Warp Bilinear respectively.
We also compare against FLAVR [28], a 3D U-Net trained for frame interpolation and finetuned
on the same synthetic dataset as Oh et al., albeit at a constant magnification factor of α = 10.
Finally, we provide qualitative comparisons in Section A5 of the appendix to Neural Implicit Video
Representations (NIVR) [36], a method that fits an implicit representation to a video and displays
emergent motion manipulation behavior.

4.4 Comparison with the State-of-the-Art

Visual quality. We show qualitative results on real-world videos. In Figure 4 we show still frames
and closeups of results from Oh et al. and our method. And in Figure 3 we plot y-t slices through the
video volume, with one dimension being time and the other being spatial3.

One qualitative finding is that while the flow network may be noisy on a specific video, our model
trained with the same flow network can be much more robust. This can be seen clearly in the baby
sequence of Figure 3. The forward warp methods, which depend on the optical flow estimate on the
inference video, are very jittery whereas our predictions are much smoother. In effect, our method
distills a given flow network into a more robust estimator of object motion.

3For simplicity, we refer both vertical and horizontal slices to y-t slices.

7

(i) Original

(ii) No Targeting

(iii) Magnifying Black Cat

(iv) Magnifying White Cat

(a) Original (b) No Targeting (c) Targeted

Figure 5: Targeted Magnification. Our network is capable of targeting motion magnification. This is useful
when we want to focus on a specific object, as in the cat sequence above, or when we want to ignore an object
that may be challenging to magnify, such as the quickly moving arm in the bookshelf sequence above.

ARFlow

RAFT

ARFlow

RAFT

ARFlow

RAFTInput (Bookshelf) Input (Tuning Forks) Input (Drum)

Figure 6: Qualitative Comparison between Models Trained with ARFlow and RAFT. We present y-t
slices from videos magnified by models trained with ARFlow and RAFT. The model (ARFlow) produces
magnifications of comparable quality as the model (RAFT), despite being trained on an unsupervised optical
flow method.

Another point to note is that the model of Oh et al., trained using synthetic data with piece-wise linear
motions, tends to suffer when the motion is complex. For example in Figure 3, with the moving fur in
the cat sequence, or in Figure 4 with the train tracks. Oh et al. also fails when the motion is extreme,
as is in the case of the pole sequence in Figure 3 where it fails to magnify an object to its full range of
motion. Our model on the other hand generalizes to these methods quite well and is further improved
on such out-of-domain videos with test time adaptation.

Targeted magnification. In Figure 5 we show results of targeted magnification. Given a mask, we
can easily magnify just the motion in that mask. This is useful when we want to focus on the motion
of a specific object, such as in the cat sequence, or when we want to mask out an object whose motion
is too large to be magnified, as is the case with the arm in the bookshelf sequence.

ARFlow and RAFT models. We additionally provide qualitative comparisons between our method
trained with the unsupervised, and less powerful, ARFlow optical flow model and our method trained
with the supervised RAFT model, in Figure 6. As can be seen, despite making slightly less accurate
flow estimates, the ARFlow model is fairly comparable in quality to the RAFT model. This shows that
our method can enable a fully self-supervised motion magnification model, in which each component
is trained with unlabeled data. For all other figures in the paper, we visualize videos generated by our
RAFT model.

Quantitative evaluation on real-world videos. We compare our method to baselines on our real-
world test set in Table 1 and Figure 7. We magnify frame pairs by magnification factors of α ranging
from 1 to 64. Because FLAVR is only trained for α = 10, we also evaluate this setting. We achieve
the best results on almost all evaluation metrics, even with flow models that we did not train for such
as PWC-Net and GMFlow, indicating that we can robustly magnify motions.

Quantitative evaluation on synthetic videos. Additionally, we evaluate our method and base-
lines on the synthetic test sets. The subpixel subset contains frame pairs with 15 levels of purely
translational motion varying from 0.04 pixels to 1.0 pixel, and with a fixed target magnified motion
magnitude of 10 pixels. The noise subset contains 21 groups of frame pairs with simulated photon
noise injected at increasing multiplicative factors, all with a max motion of 2 pixels and fixed magni-
fied motion magnitude of 10 pixels. We report the motion error, magnification error, and SSIM in
Table 2 and Figure 8. To compute the motion and magnification error, we use GMFlow [65] trained

8

20 21 22 23 24 25 26
Magnification Factor

2 3
2 1
21
23
25

M
ot

io
n

Er
ro

r

Warp Nearest
Warp Bilinear
Oh et al.
Ours (ARFlow)
Ours (RAFT)

(a) PWC-Net

20 21 22 23 24 25 26
Magnification Factor

2 3
2 1
21
23
25

M
ot

io
n

Er
ro

r

(b) RAFT (FlyingThings)

20 21 22 23 24 25 26
Magnification Factor

2 3

2 1

21

23

25

M
ot

io
n

Er
ro

r

(c) GMFlow (FlyingThings)

20 21 22 23 24 25 26
Magnification Factor

2 3
2 1
21
23
25

M
ot

io
n

Er
ro

r
(d) GMFlow (Sintel)

Figure 7: Evaluation on real-world test set. We
evaluate the methods with α ranging from 1 to 64 and
various flow methods. Error bars show the standard er-
ror. On motion error, our method consistently obtains
more accurate magnified motions.

2 5 2 4 2 3 2 2 2 1 20
Input Motion Amount (px)

21

22

23

24

25

M
ot

io
n

Er
ro

r Warp Nearest
Warp Bilinear
Oh et al.
Ours (ARFlow)
Ours (RAFT)

(a) Motion Error for Subpixel Test

2 5 2 4 2 3 2 2 2 1 20
Input Motion Amount (px)

2 1

20

SS
IM

(b) SSIM for Subpixel Test

10 2 10 1 100 101 102
Noise Factor

100

101

102

103

M
ot

io
n

Er
ro

r

(c) Motion Error for Noise Test

10 2 10 1 100 101 102
Noise Factor

10 1

100

SS
IM

(d) SSIM for Noise Test

Figure 8: Evaluation on synthetic data. We evaluate
our model using the synthetic test dataset from Oh et
al. [40]. We use two subsets and two metrics (motion
error and SSIM). Error bars show the standard error.

Table 1: Quantitative Evaluation Results on Real-world Test Set. We report the motion error of our method
and baselines on our collected evaluation set. A smaller motion error represents better magnification quality. For
fair comparison, we show results for optical flow methods not used during training, including PWC-Net [51] and
GMFlow [65] trained with FlyingThings [37]. These results are a subset of those in Figure 7. We achieve better
motion magnification on almost all evaluation metrics.

PWC-Net RAFT GMFlow

Method α=2 α=4 α=10 α=16 α=64 α=2 α=4 α=10 α=16 α=64 α=2 α=4 α=10 α=16 α=64

Warp Nearest 0.59 1.42 4.15 7.24 35.76 0.40 0.83 2.91 5.49 28.87 0.56 1.26 3.84 6.86 33.61
Warp Bilinear 0.57 1.40 4.12 7.28 35.78 0.35 0.78 2.97 5.52 28.70 0.53 1.24 3.79 6.88 33.72
FLAVR - - 4.24 - - - - 3.87 - - - - 4.40 - -
Oh et al. 0.51 1.37 4.29 7.60 39.49 0.47 1.21 3.86 6.95 37.53 0.52 1.40 4.34 7.64 37.31
Ours (ARFlow) 0.38 1.15 3.70 6.58 34.21 0.33 1.03 3.52 6.33 32.89 0.41 1.30 4.15 7.23 35.02
Ours (RAFT) 0.30 0.95 3.32 6.01 32.01 0.26 0.78 2.82 5.20 29.26 0.37 1.19 3.88 6.73 33.49

Table 2: Quantitative Evaluation Results on Synthetic Videos. We report the motion error, magnification error,
and SSIM of our method and baselines on two synthetic evaluation sets. Smaller motion error or magnification
error, and larger SSIM indicate better quality. We use GMFlow trained with Flying Things to calculate motion
error and magnification error. These results are a subset of those plotted in Figure 8.

Motion Error ↓ Magnification Error ↓ SSIM ↑
Subpixel Test Noise Test Subpixel Test Noise Test Subpixel Test Noise Test

Method 0.04px 0.2px 1px 0.01x 1x 100x 0.04px 0.2px 1px 0.01x 1x 100x 0.04px 0.2px 1px 0.01x 1x 100x

Warp Nearest 10.60 3.01 2.12 0.65 0.91 221.32 209.10 22.61 3.12 0.16 0.23 1.90 0.77 0.92 0.97 0.97 0.85 0.18
Warp Bilinear 10.61 3.02 2.12 0.61 0.90 226.37 209.35 22.61 3.10 0.15 0.23 1.68 0.78 0.93 0.97 0.98 0.90 0.19
Oh et al. 9.82 2.93 2.26 1.01 0.94 181.26 193.78 22.05 3.15 0.28 0.25 1.70 0.93 0.97 0.98 0.98 0.97 0.31
Ours (ARFlow) 12.29 3.26 2.35 0.82 0.70 167.77 222.16 20.87 3.05 0.20 0.18 1.69 0.75 0.89 0.94 0.97 0.94 0.10
Ours (RAFT) 10.02 2.80 2.05 0.69 0.68 164.36 175.45 17.01 2.48 0.17 0.17 1.49 0.82 0.90 0.94 0.97 0.94 0.10

with FlyingThings [37]. We achieve satisfactory results on the motion error metrics and lag slightly
behind on SSIM.

5 Discussion

We present a method for learning to magnify subtle motions through self-supervised learning. We
demonstrated its effectiveness through a variety of experiments, using quantitative evaluations on
real and synthetic data, and through qualitative results on videos containing complex motions. We
also showed that the flexibility of our model allowed it to be extended through test-time adaptation
and targeted motion magnification. We see our work as opening new directions in visualizing subtle
motions. First, while we have shown one method for defining the loss function, based on optical flow,
our approach could be applied to other differentiable motion estimation techniques, such as emerging

9

methods for long-range tracking [9, 22, 2]. Second, the flexibility of our model opens the possibility
for other “user in the loop” extensions, beyond allowing for segmentation-based magnification.

Broader impacts. Motion magnification methods have a range of applications, such as ampli-
fying subtle motions in biology and engineering [57], amplifying microexpressions for assistive
technology [63], assisting measurement techniques [41], and for video forensics [6, 7]. Please see
our website for potential applications. It also has the potential negative use of revealing body motions
that a person may think are undetectable, such as one’s pulse [64, 1], which may impinge on privacy.

Limitations. The performance of our model is closely tied to the limitations and capabilities of the
underlying optical flow estimator. We share the limitation with existing work [40] that our method
works by magnifying motion between the first frame and every subsequent frame, which may pose
challenges in the presence of occlusion and disocclusion. The magnification loss (Eq. 3) may still
be applicable in these cases, since modern optical flow models are trained to track occluded pixels.
However, the photoconsistency assumption (Eq. 4) will no longer hold. For simplicity, we do not
inpaint missing image regions [32], and we use distance between pixels in lieu of a perceptual loss or
a generative model. This simplicity has potential advantages for visualization applications, since it
avoids hallucinating scene structure that is not present in the original images, but it also sometimes
results in undesirable artifacts.

Acknowledgements. We thank Tae-Hyun Oh for the extensive discussions and data. We also
thank Byung-Ki Kwon, Tarun Kalluri, Long Mai, and Stella Yu for helpful discussions. Daniel
Geng is supported by a National Science Foundation Graduate Research Fellowship under Grant No.
1841052. This work was supported in part by DARPA Semafor, Program No. HR001120C0123. The
views, opinions and/or findings expressed are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

References
[1] G. Balakrishnan, F. Durand, and J. Guttag. Detecting pulse from head motions in video. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 3430–3437, 2013. 10

[2] Z. Bian, A. Jabri, A. A. Efros, and A. Owens. Learning pixel trajectories with multiscale contrastive
random walks. CVPR, 2022. 3, 10

[3] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory
for warping. In European conference on computer vision, pages 25–36. Springer, 2004. 3

[4] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ramanan,
et al. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 8748–8757, 2019. 16

[5] J. G. Chen, N. Wadhwa, Y.-J. Cha, F. Durand, W. T. Freeman, and O. Buyukozturk. Modal identification
of simple structures with high-speed video using motion magnification. Journal of Sound and Vibration,
345:58–71, 2015. 6

[6] U. A. Ciftci and I. Demir. How do deepfakes move? motion magnification for deepfake source detection.
arXiv preprint arXiv:2212.14033, 2022. 10

[7] V. Conotter, E. Bodnari, G. Boato, and H. Farid. Physiologically-based detection of computer generated
faces in video. In 2014 IEEE International Conference on Image Processing (ICIP), pages 248–252. IEEE,
2014. 10

[8] A. Dave, T. Khurana, P. Tokmakov, C. Schmid, and D. Ramanan. Tao: A large-scale benchmark for
tracking any object. In European Conference on Computer Vision, 2020. 6, 16

[9] C. Doersch, A. Gupta, L. Markeeva, A. Recasens, L. Smaira, Y. Aytar, J. Carreira, A. Zisserman, and
Y. Yang. Tap-vid: A benchmark for tracking any point in a video. Advances in Neural Information
Processing Systems, 2022. 10

[10] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pages 2758–2766, 2015. 1

10

https://dangeng.github.io/FlowMag

[11] M. Elgharib, M. Hefeeda, F. Durand, and W. T. Freeman. Video magnification in presence of large motions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4119–4127,
2015. 3

[12] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes challenge: A retrospective. International journal of computer vision, 111:98–136, 2015. 3, 6

[13] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu, C. Liao, and H. Ling. Lasot: A high-quality
benchmark for large-scale single object tracking. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5374–5383, 2019. 16

[14] P. Felzenszwalb and D. Huttenlocher. Efficient belief propagation for early vision. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.,
volume 1, pages I–I. IEEE, 2004. 3

[15] B. Y. Feng, H. AlZayer, M. Rubinstein, W. T. Freeman, and J.-B. Huang. Visualizing subtle motions with
time-varying neural fields. In International Conference on Computer Vision (ICCV), 2023. 3

[16] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. Van der Smagt, D. Cremers, and
T. Brox. Flownet: Learning optical flow with convolutional networks. arXiv preprint arXiv:1504.06852,
2015. 3

[17] P. Flotho, C. Heiss, G. Steidl, and D. J. Strauss. Lagrangian motion magnification with double sparse
optical flow decomposition. arXiv preprint arXiv:2204.07636, 2022. 2

[18] Y. Gandelsman, Y. Sun, X. Chen, and A. Efros. Test-time training with masked autoencoders. Advances in
Neural Information Processing Systems, 35:29374–29385, 2022. 5

[19] S. Gao, Y. Feng, L. Yang, X. Liu, Z. Zhu, D. Doermann, and B. Zhang. Magformer: Hybrid video motion
magnification transformer from eulerian and lagrangian perspectives. 2022. 2, 3

[20] D. Geng, M. Hamilton, and A. Owens. Comparing correspondences: Video prediction with correspondence-
wise losses. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3365–3376, 2022. 3

[21] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng, and D. Fox. Ifor: Iterative flow
minimization for robotic object rearrangement. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022. 3

[22] A. W. Harley, Z. Fang, and K. Fragkiadaki. Particle video revisited: Tracking through occlusions using
point trajectories. In European Conference on Computer Vision, 2022. 10

[23] B. Horn and B. Schunck. Determining optical flow. In Artificial Intelligence, pages 185–203, 1981. 3, 21

[24] T.-W. Hui, X. Tang, and C. C. Loy. Liteflownet: A lightweight convolutional neural network for optical
flow estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
8981–8989, 2018. 3

[25] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution of optical flow
estimation with deep networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2462–2470, 2017. 3

[26] A. Jabri, A. Owens, and A. Efros. Space-time correspondence as a contrastive random walk. Advances in
neural information processing systems, 33:19545–19560, 2020. 2, 5

[27] R. Jonschkowski, A. Stone, J. T. Barron, A. Gordon, K. Konolige, and A. Angelova. What matters in
unsupervised optical flow. arXiv preprint arXiv:2006.04902, 2020. 1, 3

[28] T. Kalluri, D. Pathak, M. Chandraker, and D. Tran. Flavr: Flow-agnostic video representations for fast
frame interpolation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2071–2082, 2023. 3, 7, 15, 18

[29] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023. 2, 5

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014. 3, 6

11

[31] C. Liu et al. Beyond pixels: exploring new representations and applications for motion analysis. PhD
thesis, Massachusetts Institute of Technology, 2009. 3

[32] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and E. H. Adelson. Motion magnification. ACM transactions
on graphics (TOG), 24(3):519–526, 2005. 1, 2, 4, 10

[33] L. Liu, J. Zhang, R. He, Y. Liu, Y. Wang, Y. Tai, D. Luo, C. Wang, J. Li, and F. Huang. Learning by
analogy: Reliable supervision from transformations for unsupervised optical flow estimation. In IEEE
Conference on Computer Vision and Pattern Recognition(CVPR), 2020. 1, 2, 6, 15

[34] P. Liu, I. King, M. R. Lyu, and J. Xu. Ddflow: Learning optical flow with unlabeled data distillation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 8770–8777, 2019. 3

[35] B. D. Lucas, T. Kanade, et al. An iterative image registration technique with an application to stereo vision.
Vancouver, British Columbia, 1981. 3

[36] L. Mai and F. Liu. Motion-adjustable neural implicit video representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10738–10747, 2022. 7, 15, 16, 18

[37] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train
convolutional networks for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4040–4048, 2016. 9, 15

[38] M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3061–3070, 2015. 15

[39] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. Communications of the ACM, 2021. 5

[40] T.-H. Oh, R. Jaroensri, C. Kim, M. Elgharib, F. Durand, W. T. Freeman, and W. Matusik. Learning-based
video motion magnification. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 633–648, 2018. 1, 2, 3, 4, 5, 6, 7, 9, 10, 15, 18, 19

[41] E. Pérez and E. Zappa. Video motion magnification to improve the accuracy of vision-based vibration
measurements. IEEE Transactions on Instrumentation and Measurement, 71:1–12, 2022. 7, 10

[42] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung, and L. Van Gool. The 2017 davis
challenge on video object segmentation. arXiv:1704.00675, 2017. 6, 16

[43] A. Ranjan and M. J. Black. Optical flow estimation using a spatial pyramid network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4161–4170, 2017. 3

[44] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha. Unsupervised deep learning for optical flow estimation.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017. 3

[45] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer,
2015. 2, 5, 15

[46] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes:
Crowdsourcing data collection for activity understanding. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 510–526.
Springer, 2016. 16

[47] E. P. Simoncelli and W. T. Freeman. The steerable pyramid: A flexible architecture for multi-scale
derivative computation. In Proceedings., International Conference on Image Processing, volume 3, pages
444–447. IEEE, 1995. 3

[48] J. Singh, S. Murala, and G. Kosuru. Lightweight network for video motion magnification. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2041–2050, 2023. 3

[49] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles. In 2010 IEEE
computer society conference on computer vision and pattern recognition, pages 2432–2439. IEEE, 2010.
3, 21

[50] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of current practices in optical flow estimation and
the principles behind them. International Journal of Computer Vision, 106:115–137, 2014. 21

12

[51] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
8934–8943, 2018. 1, 3, 9

[52] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt. Test-time training with self-supervision for
generalization under distribution shifts. In International conference on machine learning, pages 9229–9248.
PMLR, 2020. 2, 5

[53] R. Szeliski. Computer vision: algorithms and applications. Springer Nature, 2022. 4

[54] Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages
402–419. Springer, 2020. 1, 2, 6, 15

[55] Z. Teed and J. Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras. Advances in
neural information processing systems, 34:16558–16569, 2021. 3

[56] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. Yfcc100m:
The new data in multimedia research. Communications of the ACM, 59(2):64–73, 2016. 16

[57] N. Wadhwa, J. G. Chen, J. B. Sellon, D. Wei, M. Rubinstein, R. Ghaffari, D. M. Freeman, O. Büyüköztürk,
P. Wang, S. Sun, et al. Motion microscopy for visualizing and quantifying small motions. Proceedings of
the National Academy of Sciences, 114(44):11639–11644, 2017. 10

[58] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman. Phase-based video motion processing. ACM
Transactions on Graphics (TOG), 32(4):1–10, 2013. 1, 3, 4, 6

[59] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman. Riesz pyramids for fast phase-based video
magnification. In 2014 IEEE International Conference on Computational Photography (ICCP), pages
1–10. IEEE, 2014. 3, 6

[60] W. Wang, M. Feiszli, H. Wang, and D. Tran. Unidentified video objects: A benchmark for dense, open-
world segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10776–10785, 2021. 6, 16

[61] Y. Wang, Y. Yang, Z. Yang, L. Zhao, P. Wang, and W. Xu. Occlusion aware unsupervised learning of
optical flow. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4884–4893, 2018. 3

[62] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004. 6

[63] M. Wei, W. Zheng, Y. Zong, X. Jiang, C. Lu, and J. Liu. A novel micro-expression recognition ap-
proach using attention-based magnification-adaptive networks. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2420–2424. IEEE, 2022. 3, 10

[64] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman. Eulerian video magnification for
revealing subtle changes in the world. ACM transactions on graphics (TOG), 31(4):1–8, 2012. 1, 2, 3, 4, 6,
10

[65] H. Xu, J. Zhang, J. Cai, H. Rezatofighi, and D. Tao. Gmflow: Learning optical flow via global matching. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8121–8130,
2022. 1, 3, 8, 9

[66] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman. Video enhancement with task-oriented flow.
International Journal of Computer Vision (IJCV), 127(8):1106–1125, 2019. 6, 16

[67] G. Yang and D. Ramanan. Volumetric correspondence networks for optical flow. In Advances in neural
information processing systems, pages 794–805, 2019. 3

[68] L. Yang, Y. Fan, and N. Xu. The 2nd large-scale video object segmentation challenge - video object
segmentation track, Oct. 2019. 6, 16

[69] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell. Bdd100k: A diverse
driving dataset for heterogeneous multitask learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2636–2645, 2020. 16

[70] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form image inpainting with gated convolution.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 4471–4480, 2019. 19,
20

13

[71] J. J. Yu, A. W. Harley, and K. G. Derpanis. Back to basics: Unsupervised learning of optical flow via
brightness constancy and motion smoothness. In Computer Vision - ECCV 2016 Workshops, Part 3, 2016.
3

[72] Y. Zhang, S. L. Pintea, and J. C. Van Gemert. Video acceleration magnification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 529–537, 2017. 3

14

A1 Video Results

We highly encourage the reader to visit our webpage to see qualitative results and comparisons against
other methods. Results on the website include:

• Videos magnified at various magnification factors, and side-by-side comparisons against
Oh et al. [40], FLAVR [28] and NIVR [36].

• Targeted magnification results.

• Test-time adaptation results.

• Failure cases (see Section A8).

• Ablations with no regularization (see Section A6).

A2 Training Details

Architecture. We use a U-Net [45] that takes in 2 frames as input (concatenated channel-wise) and
a positional encoding for α (described below) and outputs a single frame. Our U-Net is composed of
5 layers of downsampling and 5 layers of upsampling, with skip connections between corresponding
layers during downsampling and upsampling. We use a filter size of 64 at the shallowest layer, with
the number of filters doubling at each downsampling, ending with a filter size of 1024 for the coarsest
layer. Downsampling is performed via max pooling with a kernel size 2 × 2 and stride 2, and the
upsampling is performed using bilinear upsampling. Each layer is composed of a convolution of
kernel size 3× 3, batch normalization, and a ReLU activation, all applied twice. We apply a sigmoid
activation at the very end to transform the final output into the range (0, 1). Our model has a total of
17.3M trainable parameters, and the model of Oh et al. has 0.92M parameters. Note that the model
of Oh et al. uses a bespoke architecture designed specifically for motion magnification, consisting of
an encoder, a decoder, and a manipulator, and is fundamentally different from ours.

To encode magnification factors for input, we transform a single scalar α indicating the desired
magnification factor to a 32 dimensional vector. We use sinusoidal positional embeddings with
frequencies ranging geometrically from 2−3 to 27. In order to feed the embeddings into the U-Net
we tile it spatially and concatenate it with the two input frames. The resulting input to the U-Net has
a channel size of 38, where 6 come from the two input frames and 32 come from the encoding. At
training time the spatially tiled positional embeddings are constant—they all represent the same α
value. However, at test time it is possible for the embeddings to vary spatially, allowing for various
magnification factors in different areas of the video, and enabling targeted magnification.

Training parameters. The parameter λcolor is set to 10, while the magnification factors α range
from 1 to 16, sampled geometrically. The learning rate is 3× 10−4, and model training is performed
using a batch size of 40 with 4 A40 GPUs and an image size of 512 × 512. In terms of data
augmentation, a random area is initially cropped with a scale within the range of (0.7, 1.0). The
cropped area is then resized to dimensions of 512 × 512. Furthermore, the image is subjected to
random horizontal or vertical flipping with a probability of 0.5, as well as random rotation within the
range of (−15◦, 15◦). Finally, strong color jittering is applied to the frames. These transformations
are applied identically to both frames. For the optical flow model, we select ARFlow [33] pretrained
with KITTI 2015 [38] and RAFT [54] pretrained on FlyingThings [37]. We use 5 iterations of the
RAFT model to compute the flows required by our losses.

Choice of optical flow models. We implemented our algorithm using two distinct optical flow
models, namely RAFT [54] and ARFlow [33]. During the training process, we kept the pretrained
optical flow model weights fixed, employing them solely to provide motion estimates for our
loss computations and gradients for backpropagation to train the U-Net. We use ARFlow, an
unsupervised model, to demonstrate that our method works in a truly self-supervised manner, in
which no component is trained with labeled data. We then use RAFT, a strong supervised flow
network, to train a high quality, weakly-supervised magnification model that serves as a rough
upper bound to the performance of a fully self-supervised model. We note that the comparison of
quantitative results of both models indicates that our method has better performance with better
optical flow quality, hinting that our framework can be benefit from future improvement of optical
flow models.

15

https://dangeng.github.io/FlowMag

Table A1: Dataset Statistics (Train Set). We report basic statistics of our training dataset, including the temporal
sampling stride and the number of frame pairs before and after filtering.

YouTube-VOS DAVIS Vimeo-90k TAO UVO Total

Sampling Stride 1 1 1 1 5 1 5 -
Raw Pairs 46,858 3,089 193,836 176,092 175,434 71,836 70,830 737,975
Seleted Pairs 4,050 370 28,734 50,441 29,795 22,462 9,749 145,601

A3 Dataset Details

Dataset overview. To train and evaluate our model, we compile a large dataset of frame pairs by
sampling from various existing datasets: Youtube-VOS-2019 [68], DAVIS [42], Vimeo-90k [66],
Tracking Any Object (TAO) [8], and Unidentified Video Objects (UVO) [60].The train set is collected
by sampling from the train sets of the above datasets, with the exception of DAVIS, where we
use the trainval split due to its smaller size. To construct a real-world test set, a total of 50 frame
pairs are randomly collected from each dataset’s test set, except for the TAO dataset, in which the
validation set is used. Because the TAO dataset is comprised of five distinct datasets (ArgoVerse [4],
BDD-100K [69], Charades [46], LaSOT [13], and YFCC100M [56]), we sample 50 frame pairs from
each of these sub-datasets. In total, 650 frame pairs are acquired across all datasets for evaluation
purposes. Basic statistics of the collected dataset is listed in Table A1.

Sampling and filtering. We use consistent filtering and sampling approaches for both the training
dataset and the real-world test set. We use two sampling methods, characterized by different temporal
strides (1 or 5) indicating the temporal distance between two sampled frames. Specifically, a stride of
5 means that frame i+ 5 is sampled to form a frame pair alongside frame i. When using a stride of 1,
non-overlapping consecutive frame pairs are sampled. For the datasets Youtube-VOS-2019, DAVIS,
and Vimeo-90k, a stride of 1 is used. In the case of TAO and UVO, strides of 1 and 5 are utilized to
supplement the dataset with additional samples due to the high framerates in these datasets.

After obtaining raw frame pairs from these datasets, a filtering process is conducted to eliminate
frame pairs exhibiting significant object or camera motion. We estimate motion using RAFT and
set upper bounds for different quantiles of the per-pixel flow magnitude distribution. These include
an upper bound of 20 on the 99.9th percentile, an upper bound of 2 on the 80th percentile, and an
upper bound of 0.1 on the 0.01st percentile. We find empirically that these thresholds result in frame
pairs that have little camera motion and small object motions. To filter out identical or near-identical
frame pairs, an additional lower bound is introduced to filter out frame pairs with a mean squared
error (MSE) of less than 10 between the two frames.

After sampling and filtering, we obtain a training dataset of 145k frame pairs. Detailed information
regarding the number of sampled raw pairs and the number of selected pairs can be found in Table A1
in our paper.

A4 Figure Parameters

We give a comprehensive summary of the magnification factors used and location of y-t slices or
closeups for each sequence in Table A2 and Table A3. Additionally, we also provide the corresponding
figure index in our paper, and the frame index, indicating which frame we displayed in our figures.
Note that some images are cropped or stretched to optimize their presentation within the figures.

A5 Additional Qualitative Results

Comparison with NIVR. Neural implicit video representations (NIVR) [36] is a method that
encodes a video into a neural implicit representation. Additionally, the method uses a phase-based
positional encoding which allows for control over motion. However, the method does not give precise
control over magnification factors as the manipulation is over the latent positional encodings, and is
only shown to perform motion magnification up to a factor of about 2 (our work and previous works
can achieve factors of up to 200). Furthermore, the code for their method is unreleased. Therefore we
compare our method against their results obtained through correspondence with the authors. We show
y-t slices in Figure A1. We achieve comparable performance on y-t slices for the flower and guitar

16

Table A2: Information on y-t Slices of Magnified Sequences. We represent the location of y-t slices with the
upper left (x1, y1) coordinate and bottom right coordinate (x2, y2) for every sequence appeared in our paper.
We also provide magnification factors for each y-t slices. For frames with two y-t slices in the same frame,
we report the left and right locations accordingly, and mark with “L” for left, “R” for right in the table. For
sequences magnified by different magnification factors, we report information for every motion magnification
factor.

Sequence Drum Pole Tuning Forks (L) Tuning Forks (R) Baby Cats (L)

Figure Figure 1,6 Figure 1, 3 Figure 1, 6, A3 Figure 1, 6, A3 Figure 3 Figure 5
α 5 20 5 5 20 20
Upper Left (180, 250) (20, 120) (175, 200) (340, 260) (510, 212) (280, 160)
Bottom Right (181, 310) (140, 121) (315, 201) (480, 261) (511, 292) (281, 300)

Sequence Cats (R) Bookshelf (L) Bookshelf (R) Flower Guitar1 Camel

Figure Figure 3,5 Figure 5,6 Figure 5 Figure A1 Figure A1 Figure A1
α 20 15 15 2 2 2
Upper Left (710, 130) (240, 340) (560, 260) (260, 50) (20, 120) (250, 90)
Bottom Right (711, 270) (241, 400) (561, 320) (350, 51) (21, 160) (280, 91)

Sequence Cats (R) Bookshelf (L) Boiler Flower Guitar2

Figure Figure A2 Figure A2 Figure A3,A4 Figure A5 Figure A5
α 10 10 30 20 25
Upper Left (710, 130) (240, 340) (100, 200) (240, 10) (280, 50)
Bottom Right (711, 270) (241, 400) (200, 201) (241, 50) (281, 100)

Table A3: Information on Closeups of Magnified Sequences. We represent the location of closeups with the
upper left (x1, y1) coordinate and bottom right coordinate (x2, y2). We include frame index that appears in our
figures, and frame index starts from 1 for a video. We also provide magnification factors for each closeups in our
paper.

Sequence Train Pole Train Camel Boiler

Figure Figure 1 Figure 1 Figure 4 Figure 4 Figure 4
α 20 20 20 20 30
Upper Left (20, 520) (0, 0) (50, 520) (280, 50) (100, 120)
Bottom Right (300, 710) (200, 200) (240, 710) (420, 300) (350, 576)
Frame Index 417 1, 190 417 30 19

Sequence Train Tuning Forks Boiler Boiler Camera

Figure Figure A2 Figure A3 Figure A3 Figure A4 Figure A5
α 10 5 30 30 75
Upper Left (50, 520) - - (80, 120) (0, 0)
Bottom Right (240, 710) - - (280, 320) (45, 200)
Frame Index 417 10 19 19 16

Table A4: Quantitative Evaluation Results on Real-world Videos. We report full evaluation results on
real-world videos. Performance is measured by motion error and magnification error for various optical flow
estimators.

Motion Error ↓ Magnification Error ↓
α=1 α=2 α=4 α=8 α=16 α=32 α=64 α=1 α=2 α=4 α=8 α=16 α=32 α=64

PWC-Net

Warp Nearest 0.32 0.59 1.42 3.16 7.24 16.24 35.76 0.56 1.07 2.28 4.65 9.54 19.94 43.51
Warp Bilinear 0.28 0.57 1.40 3.16 7.28 16.18 35.78 0.63 1.08 2.21 4.51 9.45 19.82 43.37
Oh et al. 0.05 0.51 1.37 3.27 7.60 17.52 39.49 0.20 0.80 2.06 4.51 9.65 21.58 50.36
Ours (ARFlow) 0.04 0.38 1.15 2.81 6.58 15.18 34.21 0.13 0.74 2.13 4.52 9.19 19.68 41.51
Ours (RAFT) 0.05 0.30 0.95 2.48 6.01 14.05 32.01 0.13 0.55 1.56 3.62 7.74 16.22 34.82

RAFT

Warp Nearest 0.24 0.40 0.83 2.19 5.49 12.71 28.87 0.65 1.18 2.25 4.33 8.79 18.04 39.63
Warp Bilinear 0.18 0.35 0.78 2.20 5.52 12.81 28.70 0.76 1.15 2.08 4.46 9.01 17.90 38.22
Oh et al. 0.05 0.48 1.21 2.92 6.94 16.39 37.55 0.29 0.83 1.90 4.20 9.33 21.44 51.07
Ours (ARFlow) 0.04 0.33 1.03 2.64 6.33 14.63 32.89 0.19 0.75 2.06 4.68 10.25 22.51 47.28
Ours (RAFT) 0.04 0.26 0.78 2.10 5.20 12.66 29.26 0.16 0.56 1.58 3.79 8.34 17.49 35.59
Warp Nearest 0.27 0.56 1.26 2.93 6.86 15.43 33.61 0.61 1.20 2.52 5.14 10.43 21.17 44.56

GMFlow Warp Bilinear 0.24 0.53 1.24 2.94 6.88 15.46 33.72 0.64 1.17 2.42 5.05 10.38 21.44 45.14
(FlyingThings) Oh et al. 0.09 0.52 1.40 3.31 7.64 16.84 37.31 0.47 0.92 2.11 4.75 10.53 22.74 51.99

Ours (ARFlow) 0.07 0.41 1.30 3.18 7.23 16.68 35.02 0.28 0.82 2.18 4.64 9.72 21.47 44.74
Ours (RAFT) 0.07 0.37 1.19 2.98 6.73 15.32 33.49 0.26 0.65 1.81 4.36 9.11 19.62 42.17
Warp Nearest 0.26 0.55 1.43 3.64 8.02 17.32 36.69 0.66 1.36 3.25 7.73 16.76 33.61 66.49

GMFlow Warp Bilinear 0.23 0.51 1.39 3.45 8.04 17.19 36.84 0.96 1.70 3.57 7.79 16.64 33.53 66.57
(Sintel) Oh et al. 0.06 0.53 1.49 3.60 8.13 17.53 37.31 0.65 1.09 2.40 5.26 11.28 24.01 51.71

Ours (ARFlow) 0.05 0.39 1.38 3.49 7.87 17.25 36.10 0.26 0.96 2.91 6.45 13.27 28.34 55.73
Ours (RAFT) 0.06 0.39 1.24 3.22 7.43 16.33 34.44 0.28 0.72 2.03 4.94 10.88 23.45 47.67

17

Original

NIVR

OursInput (Guitar1)

Original

NIVR

OursInput (Flower) O
rig

in
al

N
IV

R

O
ur

s

Input (Camel)

Figure A1: Qualitative Comparison with NIVR. NIVR [36] magnifies a learned implicit representation, which
does not map cleanly to a precise magnification factor. We found using α = 2 with our method gave comparable
magnification to the results from NIVR. Because there is no publicly released code for NIVR, we compare
against videos and results from the NIVR website. Above we visualize the y-t slices of the original videos,
NIVR videos, and our videos for comparison.

Input (Cats)

FLAVR

Ours (TTA) Input (Train)

FLAVR

Ours

FLAVR

OursInput (Bookshelf)

Figure A2: Qualitative Comparison with FLAVR. We use α = 10 for our method and compare the results
with the magnified videos of FLAVR. We show the y-t slices of FLAVR videos and our videos. We also show a
closeup in the train sequence, shown in the green rectangle.

Table A5: Quantitative Evaluation Results on Synthetic Videos. We report the evaluation results on the
sub-pixel test with synthetic videos with all different input motion amount, with three metrics including motion
error, magnification error, and SSIM.

Motion Error ↓
Input Motion 0.04px 0.05px 0.06px 0.08px 0.10px 0.13px 0.16px 0.20px 0.25px 0.32px 0.40px 0.50px 0.63px 0.79px 1.00px

Warp Nearest 10.60 8.34 6.80 5.45 4.77 4.13 3.80 3.01 2.80 2.56 2.57 2.49 2.21 2.24 2.12
Warp Bilinear 10.61 8.34 6.80 5.44 4.77 4.13 3.58 3.02 2.80 2.56 2.57 2.49 2.20 2.23 2.12
Oh et al. 9.82 7.93 6.46 5.17 4.44 3.85 3.60 2.93 2.87 2.51 2.57 2.61 2.44 2.26 2.26
Ours (ARFlow) 12.29 9.86 8.16 6.38 5.37 4.48 3.99 3.26 3.02 2.65 2.69 2.53 2.42 2.42 2.35
Ours (RAFT) 10.02 7.96 6.55 5.22 4.50 3.86 3.55 2.80 2.68 2.39 2.38 2.29 2.16 2.15 2.05

Magnification Error ↓
Input Motion 0.04px 0.05px 0.06px 0.08px 0.10px 0.13px 0.16px 0.20px 0.25px 0.32px 0.40px 0.50px 0.63px 0.79px 1.00px

Warp Nearest 209.10 155.27 117.06 85.36 62.23 45.11 32.52 22.61 16.61 12.75 10.71 7.98 5.29 4.59 3.12
Warp Bilinear 209.35 153.32 116.98 85.40 62.24 45.37 30.09 22.61 16.55 12.73 10.70 7.99 5.29 4.58 3.10
Oh et al. 193.78 145.86 106.22 79.79 56.42 42.23 30.96 22.05 17.37 12.50 10.53 7.90 5.55 4.39 3.15
Ours (ARFlow) 222.16 165.24 122.15 86.58 62.42 42.24 29.68 20.87 15.86 11.45 8.78 6.67 5.03 3.99 3.05
Ours (RAFT) 175.45 133.33 97.06 69.86 52.10 36.56 25.42 17.01 13.36 9.86 8.23 5.94 4.20 3.32 2.48

SSIM ↑
Input Motion 0.04px 0.05px 0.06px 0.08px 0.10px 0.13px 0.16px 0.20px 0.25px 0.32px 0.40px 0.50px 0.63px 0.79px 1.00px

Warp Nearest 0.77 0.80 0.82 0.86 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.95 0.96 0.96 0.97
Warp Bilinear 0.78 0.81 0.83 0.86 0.89 0.91 0.91 0.93 0.94 0.94 0.95 0.95 0.96 0.97 0.97
Oh et al. 0.93 0.94 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98
Ours (ARFlow) 0.75 0.77 0.79 0.82 0.84 0.86 0.87 0.89 0.89 0.90 0.92 0.92 0.93 0.93 0.94
Ours (RAFT) 0.82 0.83 0.84 0.86 0.88 0.89 0.89 0.90 0.89 0.90 0.91 0.91 0.92 0.93 0.94

sequences, and our y-t slice for the camel sequence is crisper than NIVR. Comparison of videos is
available on our webpage.

Comparison with FLAVR. We also compare against FLAVR [28], a 3-D U-Net proposed for
frame interpolation and downstream tasks including motion magnification. Following correspondence
with the authors, we replicate their experiments and finetune the public frame interpolation FLAVR
checkpoint for motion magnification by training on a subset of the synthetic dataset of Oh et al. [40]
with α ≈ 10. The results of this comparison are displayed in Figure A2. Our magnification has
crisper boundary and clearer visual quality. Comparison of videos is available on our webpage.

A6 Additional Experiments

Full evaluation results. In our main paper, due to space limitations we presented selected groups
of evaluation results in tables. We present all evaluation results in the following tables for reference,

18

https://dangeng.github.io/FlowMag
https://dangeng.github.io/FlowMag

w/o regularization w/ regularization w/ regularizationw/o regularization

Figure A3: Qualitative Comparison with No Regularization Experiments. We show magnified frames and
y-t slices from our model with and without the color loss regularization.

Table A6: Quantitative Evaluation Results on Synthetic Videos. We report the evaluation results on the noise
test with synthetic videos with all different noise factors, with three metrics including motion error, magnification
error, and SSIM.

Motion Error ↓
Noise Factor 0.01 0.02 0.03 0.04 0.06 0.10 0.16 0.25 0.40 0.63 1.00 1.59 2.51 3.98 6.31 10.00 15.85 25.12 39.81 63.10 100.00

Warp Nearest 0.65 0.66 0.69 0.66 0.64 0.65 0.71 0.75 0.76 0.76 0.91 1.30 3.49 2.87 2.85 12.43 35.57 82.03 155.00 190.06 221.32
Warp Bilinear 0.61 0.62 0.66 0.62 0.61 0.63 0.68 0.73 0.73 0.74 0.90 1.22 2.21 1.84 2.51 12.85 31.72 78.00 153.10 182.60 226.37
Oh et al. 1.01 1.00 1.05 0.94 0.97 0.96 0.96 0.96 0.96 0.90 0.94 1.07 1.14 1.45 2.18 8.92 17.20 51.44 119.34 163.99 181.26
Ours (ARFlow) 0.82 0.81 0.85 0.82 0.81 0.79 0.80 0.79 0.74 0.70 0.70 0.80 1.01 1.09 1.38 6.44 16.08 46.03 115.04 135.26 167.77
Ours (RAFT) 0.69 0.67 0.71 0.69 0.69 0.68 0.70 0.71 0.68 0.66 0.68 0.79 0.95 1.00 1.15 6.32 14.49 44.04 107.10 128.67 164.36

Magnification Error ↓
Noise Factor 0.01 0.02 0.03 0.04 0.06 0.10 0.16 0.25 0.40 0.63 1.00 1.59 2.51 3.98 6.31 10.00 15.85 25.12 39.81 63.10 100.00

Warp Nearest 0.16 0.17 0.16 0.16 0.15 0.16 0.18 0.17 0.20 0.20 0.23 0.42 0.93 1.13 0.84 2.22 6.51 11.34 9.65 2.74 1.90
Warp Bilinear 0.15 0.17 0.16 0.15 0.14 0.16 0.17 0.17 0.19 0.19 0.23 0.39 0.58 0.51 0.74 2.21 6.19 9.40 8.47 2.68 1.68
Oh et al. 0.28 0.30 0.29 0.25 0.26 0.26 0.26 0.25 0.26 0.24 0.25 0.30 0.31 0.37 0.54 1.10 1.72 4.00 3.45 1.71 1.70
Ours (ARFlow) 0.20 0.20 0.22 0.20 0.20 0.19 0.20 0.19 0.19 0.18 0.18 0.22 0.24 0.27 0.34 0.71 1.48 1.97 2.67 1.65 1.69
Ours (RAFT) 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.17 0.21 0.22 0.24 0.31 0.81 1.32 2.28 1.70 1.50 1.49

SSIM ↑
Noise Factor 0.01 0.02 0.03 0.04 0.06 0.10 0.16 0.25 0.40 0.63 1.00 1.59 2.51 3.98 6.31 10.00 15.85 25.12 39.81 63.10 100.00

Warp Nearest 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.95 0.92 0.85 0.75 0.59 0.42 0.29 0.20 0.14 0.14 0.15 0.18 0.18
Warp Bilinear 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.97 0.96 0.94 0.90 0.83 0.70 0.53 0.39 0.27 0.19 0.17 0.17 0.19 0.19
Oh et al. 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.96 0.93 0.87 0.78 0.66 0.55 0.45 0.38 0.34 0.31
Ours (ARFlow) 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.94 0.92 0.86 0.74 0.61 0.46 0.32 0.21 0.15 0.13 0.10
Ours (RAFT) 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.94 0.91 0.84 0.72 0.59 0.43 0.30 0.20 0.14 0.12 0.10

including results on real-world videos with different optical flow methods in Table A4 and on all
subsets of the synthetic data from Oh et al. [40] in Table A5 and Table A6.

No regularization. To demonstrate the significance of the color loss, Lcolor, we ablate it out and
show qualitative results for comparison. In Figure A3, we compare our method with and without a
color loss with frames from the magnified videos. Notably, we observe that although the magnified
motion appears similar to our method with regularization, the color of the results obtained with
λcolor = 0 significantly deviates from the correct colors and has many artifacts.

A7 Forward Warp with Inpainting

Implementation. We introduced two forward warp techniques, which we refer to as Warp Nearest
and Warp Bilinear, as the Lagrangian magnification baselines. To implement these methods, we
initially computed optical flow using the same model applied in our experiments (RAFT trained
with FlyingThings). Subsequently, we employed forward warping in either a nearest or bilinear
manner, applying optical flow values scaled by magnification factors to relocate pixels within the
image. Furthermore, we utilized nonparametric inpainting with the built-in functions from OpenCV
to address areas left blank due to pixel relocation.

In addition to using nonparametric inpainting, we explored the option of inpainting with DeepFillv2,
a powerful learning-based inpainting method proposed by Yu et al. [70]. Two different inpainting
methods imply that inpainting is not the bottleneck for Lagrangian magnification without deep
learning, thus highlighting the advantage of our method. Our evaluation results indicate comparable
performance between forward warp techniques with different inpainting methods. Since the forward
warp method employing nonparametric inpainting yielded slightly better qualitative and quantitative
results, we used forward warping with nonparametric inpainting in our main paper.

19

(i) Original Frame (iv) Warp Nearest
w Inpainting

(v) Warp Bilinear
w Inpainting

(vi) Ours(ii) Warp Nearest
wo Inpainting

(iii) Warp Bilinear
wo Inpainting

Figure A4: Failure Cases of Forward Warp Baselines. We show one frame from the boiler sequence, along
with the magnified frame from warp nearest/bilinear without inpainting, warp nearest/bilinear with nonparametric
inpainting. The closeups and y-t slices obtained through forward warp methods with and without inpainting
exhibit difficulties in managing object boundaries and the background. In contrast, our method successfully
produces a satisfactory magnified frame under these challenging conditions.

Table A7: Evaluation on Real-world Videos for Different Inpainting Methods for Forward Warp. Similar
to Table 1, we evaluated and compared among different inpainting methods for both warp nearest and warp
bilinear, including no inpainting (labeled as “None”), nonparametric inpainting, and DeepFillv2 [70] inpainting.

PWC-Net RAFT GMFlow

Method Inpainting α=2 α=4 α=10 α=16 α=64 α=2 α=4 α=10 α=16 α=64 α=2 α=4 α=10 α=16 α=64

None 0.92 1.86 5.43 9.12 42.23 0.50 1.18 3.87 7.13 39.82 0.91 1.70 5.29 9.05 50.38
Warp Nearest Nonparametric 0.59 1.42 4.15 7.24 35.76 0.40 0.83 2.91 5.49 28.87 0.56 1.26 3.84 6.86 33.61

DeepFillv2 0.61 1.40 4.21 7.44 36.20 0.39 0.84 2.96 5.47 29.21 0.55 1.27 3.91 6.95 33.63

None 0.68 1.49 4.32 7.44 36.93 0.39 0.91 3.07 5.79 30.60 0.66 1.62 4.26 7.40 35.71
Warp Bilinear Nonparametric 0.57 1.40 4.12 7.28 35.78 0.35 0.78 2.97 5.52 28.70 0.53 1.24 3.79 6.88 33.72

DeepFillv2 0.57 1.43 4.14 7.34 35.93 0.34 0.78 2.96 5.50 28.95 0.53 1.24 3.92 7.04 33.45

Table A8: Evaluation on Synthetic Videos for Different Inpainting Methods for Forward Warp. Similar to
Table 2, we evaluated and compared among different inpainting methods for both warp nearest and warp bilinear,
including no inpainting (labeled as “None” in this Table), nonparametric inpainting, and DeepFillv2 [70].

Motion Error ↓ Magnification Error ↓ SSIM ↑
Subpixel Test Noise Test Subpixel Test Noise Test Subpixel Test Noise Test

Method Inpainting 0.04px 0.2px 1px 0.01x 1.0x 100.0x 0.04px 0.2px 1px 0.01x 1.0x 100.0x 0.04px 0.2px 1px 0.01x 1.0x 100.0x

None 36.20 3.74 2.25 0.71 0.89 207.76 1238.97 28.68 3.19 0.16 0.23 1.95 0.19 0.44 0.75 0.87 0.71 0.03
Warp Nearest Nonparametric 10.60 3.01 2.12 0.65 0.91 221.32 209.10 22.61 3.12 0.16 0.23 1.90 0.77 0.92 0.97 0.97 0.85 0.18

DeepFillv2 10.66 3.00 2.13 0.66 0.91 220.66 206.04 22.39 3.13 0.16 0.24 2.06 0.72 0.91 0.97 0.97 0.85 0.14

None 13.09 3.02 2.13 0.64 0.89 201.72 281.45 22.56 3.12 0.15 0.23 1.88 0.55 0.89 0.94 0.94 0.86 0.04
Warp Bilinear Nonparametric 10.61 3.02 2.12 0.61 0.90 226.37 209.35 22.61 3.10 0.15 0.23 1.68 0.78 0.93 0.97 0.98 0.90 0.19

DeepFillv2 10.56 3.02 2.12 0.62 0.90 225.30 207.24 22.64 3.11 0.15 0.23 2.32 0.77 0.93 0.97 0.98 0.90 0.09

Table A7 and Table A8 present a detailed comparison between the forward warp baselines without
inpainting and with the two inpainting methods. In our evaluation of real-world videos, we observed a
notable decrease in motion error when using inpainting methods in comparison to the warp baselines
without inpainting, as expected. On the other hand, during noise tests, especially when using large
noise factors, the warp baselines without inpainting exhibited better performance. Notably, we
detected an increase in SSIM with noise factor increasing (see Table A6 for more details), for warp
baselines with inpainting in noise tests. Our examination revealed that warp baselines produced
distorted frames with significant noise factors and struggled to magnify motion when input motion was
minimal. Consequently, the evaluation for forward warping baselines may not be able to reflect the
actual performance in such cases. Therefore, given the slight advantage of nonparametric inpainting
on real-world evaluations, we show the baselines with nonparametric inpainting in visualizations.

Discussion. The two forward warp methods, implemented with advanced techniques as the motion
estimator and the inpainter, serve as powerful baselines for Lagrangian techniques, effectively estab-
lishing an upper performance limit for straightforward Lagrangian methods. The magnified frames
produced through forward warping closely resemble the input frames, thus exhibiting favorable
image quality due to their inherent implementation characteristics. Nevertheless, our method consis-
tently outperforms or matches these baselines across various evaluation metrics. Upon qualitative
assessment, our approach excels as well, particularly in complex scenarios involving occlusion and

20

Original

Oh et al.

OursInput (Flower)

Original

Oh et al.

OursInput (Guitar2) Input (Camera) Ours

Figure A5: Failure Cases. We report several typical failure cases of thin structures or background artifacts. See
Section A8 for details.

disocclusion or challenging flow patterns. We provide one challenging case in Figure A4, where large
motion and occlusion were involved. While the results from forward warping methods with/without
inpainting suffer from handling the object boundary and background, our method is still capable to
provide a satisfactory magnified frame.

A8 Failure Cases

While our method demonstrates favorable performance in most videos, there are cases where it falls
short. One particular failure mode occurs when a video contains thin structures such as tree branches
and guitar strings. In these cases it appears the flow network has incorrectly estimated the optical
flow during training, causing our model to either “bleed" motion into the stationary background or
fail to magnify the motion at all (see flower and guitar in Figure A5). The failure may be attributed to
smoothness assumptions of flow estimators [50, 49, 23], and we expect results to improve as optical
flow methods get more accurate. Another common failure is incorrectly magnifying background that
has zero flow. This happens when small errors from the optical flow model are magnified, as shown
in the camera sequence in Figure A5.

21

