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Abstract

PopSign is a smartphone-based bubble-shooter game that helps hearing parents
of deaf infants learn sign language. To help parents practice their ability to sign,
PopSign is integrating sign language recognition as part of its gameplay. For
training the recognizer, we introduce the PopSign ASL v1.0 dataset that collects
examples of 250 isolated American Sign Language (ASL) signs using Pixel 4A
smartphone selfie cameras in a variety of environments. It is the largest publicly
available, isolated sign dataset by number of examples and is the first dataset to
focus on one-handed, smartphone signs. We collected over 210,000 examples
at 1944x2592 resolution made by 47 consenting Deaf adult signers for whom
American Sign Language is their primary language. We manually reviewed 217,866
of these examples, of which 175,022 (approximately 700 per sign) were the sign
intended for the educational game. 39,304 examples were recognizable as a sign
but were not the desired variant or were a different sign. We provide a training set
of 31 signers, a validation set of eight signers, and a test set of eight signers. A
baseline LSTM model for the 250-sign vocabulary achieves 82.1% accuracy (81.9%
class-weighted F1 score) on the validation set and 84.2% (83.9% class-weighted
F1 score) on the test set. Gameplay suggests that accuracy will be sufficient for
creating educational games involving sign language recognition.

1 Introduction

PopSign is a bubble-shooter smartphone-based game that helps hearing parents of deaf infants learn
American Sign Language. It builds on significant past user studies on such games [Xu, 2013, Summet,
2010]. PopSign focuses on vocabulary from the MacArthur-Bates Communicative Development
Inventories (CDI) [Fenson and Marchman, 2007], which are the first concepts one teaches a child in
any language. Originally, PopSign required players to recognize a short video of a sign and match
it to one of five types of bubbles labeled with English words. The player shoots a bubble and, if it
strikes two or more contiguous bubbles of the same type, all the bubbles disappear. The goal is to
clear the screen. The initial game was enjoyable but had limitations as it solely emphasized receptive
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Figure 1: PopSignAI incorporates sign recognition as part of PopSign’s bubble shooter game play.
Left: Instructions. Middle: Practicing five signs before each level. Right: The player holds their
phone and touches the screen with their thumb to aim the bubble. The other hand performs the sign
to select which type of bubble will be shot. Here, the player is aiming at the red balls and signing
FROG. Google’s MediaPipe hand tracking overlays the player’s selfie camera video in real-time.

skills. Incorporating sign language recognition into the game (see Figure 1) allows parents to practice
signing themselves, developing expressive rather than just receptive signing skills. These expressive
skills are necessary in order for hearing parents to teach sign language to their infants.

To create a version of PopSign that includes sign recognition, we collected a large number of examples
of 250 individual signs from people for whom ASL is their primary language. Since PopSign only
engages five English/ASL concepts at a time, the expectation is that a recognition engine, coupled
with a hand tracker such as Google’s MediaPipe, could run sufficiently well on a smartphone to
support gameplay [Lugaresi et al., 2019]. This assumption has proven correct. The eventual goal
is a general-purpose recognition engine developed for the full 250-sign vocabulary as a plug-in for
popular game creation engines, such as Unity, to support development of educational games in sign.

2 Background and Motivation

Ninety-five percent of deaf children are born to hearing parents [Moores, 2000], and most of those
parents never learn enough sign language to teach their children. The majority of deaf children of
hearing parents remain significantly delayed in language development throughout their lives when
compared with hearing children and deaf children of deaf parents [Johnson et al., 1989, Spencer,
1993a,b]. The children’s slow development of language has been attributed to incomplete language
models and interaction [Hamilton and Lillo-Martin, 1986, Lederberg and Everhart, 1998]. An
environment without access to language results in language deprivation, which leads to health,
education and quality-of-life issues such as social isolation [Crowe, 2003, Twersky Glasner and
Miller, 2010], mental health problems (2-7x that of hearing children) [Dammeyer, 2009], and suicide
(6-60x hearing) [Turner et al., 2007, You, 2017]. In many cases, deaf children of hearing parents (in
the United States) are fluent neither in English nor ASL [Woll, 1998, Kannapell, 1989]. For these
deaf individuals, language is sometimes a life-long struggle [Jean F. Andrews, 2019]. Language
acquisition is dependent upon the availability of that language and the opportunities a child [Clark
et al., 2001] or an adult learner [Kramsch, 2000, Schutz, 2005] have for interacting with skilled users
of the language. Deaf children of hearing parents typically grow up in linguistically impoverished
surroundings due to the inability of family members to use sign [Goldin-Meadow, 1999, Goldin-
Meadow and Mylander, 1990]. The quantity and quality of adult-child language interaction at an
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early age has also been shown to affect the language development and subsequent school success of
hearing children [Panagos, 1998].

Once a decision is made to use sign language, which 75% of parents eventually do [Meadow-Orlans
et al., 2003], the family faces the task of learning a new language in a modality (visual-gestural) that
is foreign to them as the main avenue of communication. Local ASL classes may not focus on the
topics and vocabulary that new parents need; one-on-one family government services may be helpful
but are often infrequent; classes may not be accessible in terms of cost or location; and books can be
dry, demotivating, and not the best method for conveying ASL [Summet, 2010]. Given these daunting
obstacles, many families may opt to follow the advice of doctors and adopt cochlear implant and
spoken language-only approaches Hall [2017]. However, it has been demonstrated that not only is
some level of ASL exposure for deaf children empirically not harmful to their development Hall et al.
[2019] and vastly superior to no language exposure [Singleton and Newport, 2005], but in fact, sign
language is more effective at reducing cognitive delays and improving communication skills than
hearing-based approaches Hall [2017], particularly among the many children whose brains are unable
to understand speech through cochlear implants Humphries et al. [2012]. Further, while vocabulary
knowledge alone does not constitute fluency or command of ASL, it has been shown that a knowledge
of approximately 150 words is enough to increase the rate at which new words and grammatical skills
are acquired [Marchman and Bates, 1994]. Even “survival level” signing is a worthwhile endeavor
for families with deaf children Berger et al. [2023]. PopSign seeks to help address this silent crisis by
providing hearing parents a tool by which they may learn ASL vocabulary.

2.1 Isolated Sign Language Recognition (ISLR) Datasets

PopSign ASL v1.0 collects examples of 250 isolated American Sign Language signs using the selfie
camera on Pixel 4A smartphones in a variety of environments. It is the largest isolated sign language
dataset publicly available, the first to focus on one-handed signing with smartphones, and one of the
few of its size that has been manually reviewed.

The majority of isolated sign datasets are collected in laboratory settings with controlled lighting and
angles. Some have been collected by users with their own cameras in private settings. Sign language
data collection carries its own unique challenges. For one, the data collected is usually in video
format [Quer and Steinbach, 2019]. Video introduces variables such as lighting, background textures,
field of view, resolution, participant diversity, and cost. Since participants are directly recorded,
there are additional challenges in acquiring consent [Quer and Steinbach, 2019]. Finally, ASL has a
vocabulary with many thousands of signs and varies considerably by region, ethnicity, gender, and
even by household [LeMaster and Monaghan, 2005].

Table 1 details major publicly available ISLR datasets. ASLLVD, Purdue86RVL-SLLL, and RWTH-
BOSTON 50 were all collected in a studio setting [Athitsos et al., 2008, Martinez et al., 2002, Zahedi
et al., 2005]. More recent efforts include WLASL, ASL-100-RGBD, MS-ASL, and ASL Citizen [LI
et al., 2020, Joze and Koller, 2018, Desai et al., 2023]. ASLLVD features a large number of signs,
but the dataset has few videos per sign. Furthermore, since there are six signers at most per sign,
generalization across users is difficult. RWTH-Boston 50 and WLASL suffer from the same problem
of having few videos per sign but not to the same degree. Purdue RVL-SLLL addresses the issue of
having too few videos per sign, but it does not feature many signers. All of those datasets have been
collected using studios for recording, which is too prohibitively expensive for scalable data collection.
ASL Citizen fixes many of these issues by collecting a very large number of videos over many signs
and features enough participants to increase generalizability over users. The signs are collected via
webcam, making large scale data collection less expensive. MS-ASL is cost-effective in collection,
since it is scraped from public videos. However, participants do not explicitly consent to such scraped
collections, and annotation can be difficult (as highlighted by Bragg et al. [2021].) There are many
datasets for other sign languages, some of which are listed in Table 1. We note that these datasets
suffer from the same issues in existing ASL datasets. In particular, there are often too few signs and
signers or too few examples per sign for useful downstream applications. Furthermore, these sets are
recorded under tightly controlled studio setups, limiting data collection and utility.
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Dataset Lang Signs Signers Videos Videos/Sign Source Citation

ASLLVD ASL 3000 6 9800 3.27 Studio 2008
Purdue RVL-SLLL ASL 101 14 2576 25.50 Studio 2002
RWTH-BOSTON 50 ASL 50 3 483 9.66 Studio 2005
WLASL ASL 2000 119 21083 10.54 Studio 2020
MS-ASL ASL 1000 222 25513 25.51 Web 2018
ASL Citizen ASL 2731 52 83912 30.73 Webcam 2023
PopSign ASL v1.0 ASL 250 47 214326 857.30 Smartphone
BSLDict BSL 9283 148 14210 1.53 Studio 2020
DEVISIGN-G CSL 36 8 432 12.00 Studio 2013
DEVISIGN-D CSL 500 8 6000 12.00 Studio 2013
DEVISIGN-L CSL 2000 8 24000 12.00 Studio 2013
CSL 500 CSL 500 50 125000 250.00 Studio 2019
DGS Kinect 40 DGS 40 14 2800 70.00 Studio 2012
SMILE DSGS 100 30 - - Studio 2018
GSL 982 GSL 982 1 4910 5.00 Studio 2012
INCLUDE ISL 263 7 4287 16.30 Studio 2020
LSA64 LSA 64 10 3200 50.00 Studio 2016
LSE-Sign LSE 2400 2 2400 1.00 Studio 2015
LSFB-ISOL LSFB 395 100 47551 120.38 Studio 2021
BosphorusSign TSL 855 10 >51300 >60.00 Studio 2016
BosphorusSign22K TSL 744 6 22542 30.30 Studio 2020
AUTSL TSL 226 43 38336 169.63 Studio 2020

Table 1: Isolated Sign Language Datasets

2.2 Smartphone Signing

We took an approach similar to ASL Citizen but used smartphone selfie cameras for data collection.
Smartphone cameras tend to be of higher quality than webcams or cameras embedded in a laptop.
Laptop and webcam cameras often have a smaller field-of-view than recent smartphones, making it
difficult for a signer to interact with a keyboard or mouse during data collection and still be distant
enough to capture the full signing box (the volume of space in which signers move their hands while
signing). Our ASLRecorder data collection smartphone app (see below) requires the user to hold
and interact with the phone with one hand while signing with the other. This posture is surprisingly
commonplace for Deaf signers, who often make video calls from their smartphones. Signers either
hold the phone or rest it on a desk or their body while communicating. Signers are used to aligning
the camera so that the lighting is sufficient and the camera can see the signing hand and the face.
While many signs are two-handed, smartphone signing Morris [2022b] has become so common that
many signers will adjust their signs so that they can be made with one hand or fingerspell a sign if the
one-handed version is ambiguous. From a collection standpoint, smartphones are simple to ship to
participants, the collection system is self-contained, and most participants are familiar with how to
use a smartphone.

3 Collection Methodology

The Deaf Professional Arts Network (DPAN) recruited 50 Deaf signers for whom ASL was their
primary language, and 47 completed the task. DPAN shipped Pixel 4A smartphones to each participant
with the ASLRecorder open-source data collection smartphone app1, and participants were given
guidance on using it2. Participants returned the phones after completion. Upon receipt, DPAN
confirmed that all recorded videos had been uploaded to an on-line repository.

3.1 Choosing Lemmas

Examples of processes for choosing which lemmas to include in a sign language dataset can be found
for British Sign Language Fenlon et al. [2015], Sign Language of the Netherlands (NGT) Schüller

1https://github.com/matthew-so/ASLRecorder/
2https://tinyurl.com/2p99s299
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et al. [2021], ASL Hochgesang et al. [2018] and others. The closest for our purposes is the ASL
CDI 2.0 Caselli et al. [2020] which was constructed by three expert signers updating the CDI for
concepts used with Deaf infants. For selecting the 250 one-handed signs in our subset of the CDI,
DPAN created reference videos based on the English version of all 563 concepts in the CDI as used
in Xu’s research on ASL games Xu [2013], which was taken from Anderson and Reilly [2002]. Five
DPAN members, who have signed since childhood, agreed on how to sign each concept one-handed
as if they were on a video conference and holding a smartphone with one hand. These five signers
come from diverse regions and schools. Example videos were made for each agreed-upon sign. From
these 563 videos, 250 signs were chosen in an attempt to avoid ones that are too similar (with limited
success, see below). The PopSign game uses these reference videos to teach players how to sign.

3.2 ASLRecorder App

The ASLRecorder app was designed to terminate after 200 signs to encourage regular breaks
throughout the task. Participants could restart the app to continue. Each signer provided approximately
5000 examples (20 examples of 250 individual signs). Participants were encouraged to sign in varying
lighting conditions and with varying backdrops. Participants were discouraged from including others
in their videos. The example video of each sign from DPAN could be accessed by the participants by
clicking on the icon at the top of the recording screen.

ASLRecorder attempts to capture participants’ signing in a manner similar to how the PopSign game
is played. PopSign uses a hold-to-aim mechanism where the player signs the name of the intended
bubble before releasing the screen; therefore, ASLRecoder implements a hold-to-record mechanism.
Because phones cannot immediately begin and stop recording, we decided to record continuously.
Saving the press and release events as timestamps allows us to easily adjust the start and end point of
each clip later. We stored timestamps in the image description (EXIF) metadata of a thumbnail for
each video. In order to manage the file size of a continuous recording, we imposed a fifteen-minute
limit on the recording, after which the video stops automatically. Videos are recorded using the selfie
camera of the phone at 1944x2592 resolution at 30 frames per second. To improve the reliability of
ASLRecorder and reduce infrastructure overhead, we used Google Photos’s automatic cloud backup
service to store the recordings. Each signer has a separate Google account associated with their phone
that provides a backup folder and silos each volunteer’s data from that of the other participants. The
phone automatically connects to the signer’s Wi-Fi network and uploads the videos whenever the
phone is powered externally. This feature allows DPAN staff to observe a participant’s progress and
monitor for any difficulties remotely.

ASLRecorder has 10 randomly-selected signs per session that are presented in a sliding user interface,
allowing users to freely go back and forth between the selected signs. The interface automatically
moves to the next sign after the user releases the Record button, but users can swipe back to the
previous sign if they wish to make a better recording. Because we only ask them to make one
recording for each sign in a session, we assume that only the last recording for each sign is valid
(within that session). At the end of each session, signers have the opportunity to review their videos
and manually mark them as invalid if they felt they had performed the sign improperly. We kept
timestamps for invalid clips, but they were not included in the training data.

Since the individual sign videos were recorded as continuous sessions, we decoded the videos and
split them into individual videos for each recording using a custom-made script 3. Decoding strategies
generally followed the assumption that, by instruction, users held the record button for the duration
of their sign. We added a buffer of 0.5 seconds by default on either side of the recording as users
tend to press too late and release to early. Of 47 initial signers recruited, 31 signers could be decoded
with this approach, splitting the 200 sign videos (plus redos) into individual videos for review. The
recordings of 10 signers had to be split after making some manual adjustments to the buffer size. The
remaining six signers tapped the button to start signing, rather than holding the button. Generally,
these participants completed each sign in two seconds, allowing segmentation with a modified script.

3.3 Review Procedure

We designed a custom annotation engine to review the sign videos, given in Figure 2. We classify our
data into three categories:

3https://github.com/matthew-so/Mobile-Data-Processing-Pipeline/decode.py
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Figure 2: Review process.

• the sign to be taught in the PopSign game
• incorrect signs or unintended variants of the game version of the sign
• unrecognizable videos

A video is marked unrecognizable if the video is unplayable, empty, or does not include the hands
or fingers for most of the video. Videos with an identifiable person (i.e., the face was recognizable)
besides the participant were also rejected. We mark videos with signs that do not match the DPAN
reference sign as a variant. These include signs that are distinct but have the same meaning as the
original sign, as well as signs for the same gloss word, but with different meanings. Repetitive
motions within signs were accepted as they are common in ASL and understood by a viewer. An
example is SHOWER, with the fingers transitioning from closed to spread once, twice or three times.

Since the DPAN reference signs will be used for teaching vocabulary in the PopSign game, we use
these videos for judging whether an example should be accepted. Reviewers include 13 undergraduate
and graduate students from Georgia Tech, a volunteer, and a professor. The team is supervised by a
Deaf researcher who advises on linguistic variants of the signs. Three signers on the team split the
vocabulary into 130 signs that were expected to have a low number of variants and 120 that were
expected to have a high number of variants. Reviewers with familiarity of ASL were assigned to
the signs with greater number of variants. Review was performed one sign at a time using a custom
annotation engine 4. Along with classification, reviewers made notes in a coordination spreadsheet as
to the types of variants they observed. Reviewers also provided status reports, bugs, feedback and
feature requests to improve the annotation software.

4 Dataset Composition

217,865 videos were reviewed. Of these, 3,539 videos were rejected, and 175,022 were considered to
be the desired sign, making an average of 700 correct examples per sign. 39,304 videos were judged
to be variants of the intended sign or a different sign. As the variants can be informative for creating
sign recognition systems for other purposes, we include them in the dataset 5, resulting in a total
of 214,326 total videos. PEN has 907 total examples, making it the most represented in the dataset.
CAR is the least represented with 467 total examples. Counting the number of examples to be used
for training the game, SCISSORS, with 888 examples, is most represented, while SHOWER, with
96, is the least represented. More information can be found in the supplementary material. Of the
47 signers in the dataset, 16 identify as male and 31 as female, and 13 are left-handed and 34 are
right-handed. The dataset represents a mix of skin tones and ages. Some participants would switch
their signing hand during collection.

There were some homophones and some near-homophones in the dataset. FINGER/WAIT
and MOUTH/LIPS are only differentiated by mouth movements in the reference videos.
TOOTH/GLASSWINDOW and CHIN/LIPS have minor position differences relative to the lips.
WAKE/AWAKE differ by an initial F-hand shape versus A-hand shape. THAT/STAY differ by a wrist
rotation. The requirement to sign with one hand resulted in some pairs of signs that normally would
be distinct to become very similar. For example, PERSON is performed with two flattened hands,

4https://github.com/Benler123/hotkey_annotate
5http://signdata.cc.gatech.edu
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moving in parallel high-to-low on the body. When performed one-handed, the sign can become
similar to BESIDE.

The high number of unintended variants in the dataset (roughly 20%) was influenced by using an
English gloss for prompting the participants during data collection. Signers may assume they know
the sign desired based on the gloss and not refer to the reference example provided. Alternatively,
while providing 5000 examples, it is easy to forget which sign was desired, and we observed situations
where participants would alternate between two signs. To further complicate matters, some of the
English prompts have two meanings which caused some signers at times to provide the sign with the
unintended meaning. Examples include CLOSE (“close the doors” versus “close to me”) and DUCK
(“swimming duck” versus “be sure to duck the overhead pipe”). For future data collection, a smaller
sized reference video for each sign playing on the collection screen itself may improve consistency.
However, even then, common variations which have small distinctions may be overlooked. For
example, we requested THERE to be made with an upward facing palm pointing gesture, though it
is commonplace to use an index finger pointing gesture similar to how HE/SHE/IT is formed. The
distinction could easily be overlooked in the reference video.

On the other hand, prompting with the English gloss has the benefit of collecting more variations of
each sign, which could be valuable in making a more general-purpose sign recognition system (though
labeling all of these unintended signs is future work). In this dataset, we observed five classes with
significant variants: Compound signs such as BEDROOM, BACKYARD, and REFRIGERATOR
may vary from the reference example by the ordering of the parts or the formation of one or both of
the constituent parts. Lexicalization results in the parsing of the first letter of a sign’s closest gloss
and using the manual alphabet as the handshape of the sign. For example, a signer might use a R-hand
shape for RED. Regional and cultural variations are commonplace. The sign for GARBAGE in
this dataset would be understood as CABBAGE in many areas of the United States. PIZZA has a
surprising number of regional variations. Iconic signs in the vocabulary often had variations. For
example, TOOTHBRUSH may be formed by using the index finger as the toothbrush to mimic
the back and forth motion. Alternatively, TOOTHBRUSH may be signed by mimicking holding a
toothbrush in the palm. VACUUM may be formed by imitating the motion made while vacuuming or
by using the hand to mimic the internal fan of the device. Contextual understanding of the English
gloss also caused variations. BEFORE in time is signed differently than when something comes
sequentially BEFORE something else. Other examples include PRETEND, SAME, and CLOSE.

We assign 31 signers to the training set, eight to the validation set, and eight to the test set. The
eight chosen for the validation set capture the broadest possible demographic and linguistic range in
order to make validation results as representative of real-world performance as possible. Of the eight
users, four were noted for exhibiting high variance (differed from DPAN’s example sign), while one
was noted for exhibiting middle levels of variance. In addition to variability, we classified signers
according to the Fitzpatrick scale, a numerical classification of human skin color. Of the validation
signers, five had skin phenotype I, two had skin phenotype II, and two had skin phenotype V (a
lower-numbered phenotype represents fairer skin). Finally, the gender of the validation users is evenly
split between male and female. The test set has demographics proportional to the training set.

5 Experiments on PopSign ASL v1.0

Georgia Tech’s PACE computing cluster [PACE, 2017] was used to extract features with MediaPipe
Hands with a detection confidence of 0.5 and a tracking confidence of 0.1. MediaPipe Hands extracts
21 key points, each containing an x, y and z coordinate [Lugaresi et al., 2019]. Preprocessing includes
removing NaNs for each key point. All videos where a left hand was used to sign were flipped along
the vertical axis to convert them into right-handed signs. The PopSign game recognizes when a player
is signing with the left hand and also flips the axis. Since there are much fewer left hand dominant
signers, this technique can improve recognition rates for playing with either hand. All videos with
zero frames of tracking were removed. To deal with variable sequence length, videos with less than
60 frames were padded with a row with values set to -1 at the end of the sample. For videos with
more than 60 frames, the middle 60 frames were kept while the rest were discarded. Each of the
labels was converted into a one-hot encoding.
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Confused Pair % Times Confused
(% of Dataset) Confused Pair % Times confused

(% of Dataset)

WAKE, AWAKE 47.0 (2.7) PRETEND, HELLO 15.4 (0.8)
GLASSWINDOW, TOOTH 25.1 (1.2) NAPKIN, FLOWER 26.0 (0.8)

EYE, TOOTH 19.8 (1.0) INTO, ELEPHANT 11.6 (0.6)
CHIN, SAY 19.9 (1.0) FINGER, WAIT 11.4 (0.6)

BESIDE, PERSON 18.8 (0.8) THAT, STAY 10.8 (0.4)

Table 2: Most confused signs

Using Keras 6, the model is built using two bidirectional LSTM layers followed by a dropout layer
and the output layer of 250 units with a softmax activation. The first bidirectional LSTM layer has
128 units and has return sequences set to True to allow timestep information to be preserved and
passed to the second bidirectional LSTM layer. Default Keras LSTM parameter values are used. The
input shape is manually set to (60, 63). The second bidirectional LSTM has 128 units and the default
parameter values required for the LSTM layer in Keras remain. The third layer is a dropout layer
with rate set to 0.5. The last layer is the 250 unit softmax output layer. During model training, a
batch size of 32 is used along with the Adam optimizer and Categorical Cross Entropy Loss. The
model is set to train for 40 epochs, and the validation data is used for early callback stopping if the
validation loss converges. The weights that results in the lowest validation loss are restored. The
model is trained in 30 minutes on one PACE GPU node (4x NVIDIA RTX 6000).

The recognition system achieved 82.1% accuracy (81.9% F1 score) on the verification set and 84.2%
accuracy (83.9% F1 score) on the test set for all files that had at least one frame of MediaPipe tracking.
When including the files where tracking failed completely (109/29,949 validation; 171/33,667 test),
accuracy decreases to 81.9% validation and 83.8% test set, respectively. Upon inspection, the test set
has some signers who are highly consistent with their signing, which explains the surprising increase
in accuracy between verification and test. The top most confused pair of signs can be seen in Table 2.
Many are near homophones mentioned earlier. For example, the video for AWAKE is often labeled
WAKE, and vice versa. EYE versus TOOTH confusion is the result of Mediapipe Hands’s features
not being measured relative to the face. Adding Mediapipe Pose or switching to Mediapipe Holistic,
if we can make it run efficiently enough with Unity for PopSign, would significantly improve results.

6 Discussion and Future work

With 200,686 total videos, PopSign ASL v1.0 is the largest isolated sign language dataset publicly
available. Besides residing at signdata.cc.gatech.edu, we expect to host the 1.1TB PopSign ASL v1.0
dataset at RIT/NTID, UIUC, and DPAN. Unlike previous datasets, PopSign focuses on one-handed
signing captured from smartphone selfie cameras. The face and signing hand represent a significant
amount of the area of the image. Each video is reviewed manually, with a large majority being labeled
as the expected sign. The videos show a large variety of lighting conditions and backgrounds.

The PopSign game only considers five signs at a time. Thus, sets of signs can be chosen to minimize
potential confusion by the recognition system. Seven sets of signs were chosen to create PopSignAI
Preview, an initial version of the PopSign game with embedded sign recognition that can be found
on the Android Play and Apple App stores7. For this proof-of-concept a 2D-CNN was trained
for each set of five signs and limited to approximately 1MB in size in order to run efficiently on
older smartphones such as the Pixel 4A. In informal testing, this limited task increased recognition
accuracy to approximately 95% when played by an experienced signer. Gameplay is quite compelling,
suggesting that the PopSign ASL v1.0 dataset is suitable for creating sign language recognition based
games. Of course, a 250-sign recognition system will allow many more levels of the PopSign game
to be created. As the recognition system matures, it will be integrated as a plug-in for game creation
engines such as Unity to enable more programmers to create games based on sign language.

6https://github.com/keras-team/keras
7The app is available at https://play.google.com/store/apps/details?id=edu.gatech.popsignai
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The lexicon was chosen with a particular application in mind: teaching hearing parents of deaf infants
basic sign vocabulary. However, there are approximately 313 concepts in the MacArthur-Bates CDI
not covered in the current dataset. A similar collection effort is underway to address these signs,
which should expand the usefulness of the data. In speech recognition, small vocabulary isolated
recognizers are used for voice dialing (“call” “father”), interactive phone menus (“press one or say
‘balance’ to get account balances”), multimodal control of windowing systems (“close” while pointing
to a window), searching voice mail by voice, and controlling wearable computers (“ok Glass” “show”
“compass”). We hope this dataset can support similarly creative use cases for ASL.

Since collection is performed remotely by mailing smartphones to participants, researchers can use
our tools and procedures to purposely sample different variants of signing. For example, one can ask
participants to intentionally provide different versions of the sign based on their background. Signers
who were raised with Black ASL [Valli and Lucas, 2000] or with a local sign language like Hawaiian
Sign [Shroyer and Shroyer, 1984] may have used a different set of signs at home than at university.
Such a collection allows sign linguists to gain a better understanding of regional signs and enables a
general purpose sign recognizer to be more inclusive.

7 Ethics and Safety Discussion

“Nothing about us without us” is an often-heard phrase when discussing accessibility with those in the
community. Without guidance, such as can be found in the FATE paper Bragg et al. [2021], the many
subtleties of sign collection can be confusing. Unfortunately, most machine learning researchers do
not know about the existence of the Deaf culture, the fact that ASL has a different grammar than
English, or even that there are many distinct sign languages. Here we follow the convention that
“deaf” refers to the medical condition, whereas “Deaf” refers to the community, which focuses on
sign language. Without Deaf members on the team, researchers can stray into creating technologies
that are not useful or are even considered harmful by the community [Erard, 2017, Hill, 2020]. Deaf
team members and the Deaf community have informed PopSign at every step. The idea that an
educational game might be the first useful application of sign language recognition was posited in
2000 by Dr. Harley Hamilton, a sign linguist and a technology coordinator at the Atlanta Area School
for the Deaf. After several iterations of desktop games tested at Deaf schools in Georgia, a student
researcher suggested changing the focus to smartphones and introduced the team to the idea that ASL
is evolving due to smartphone technology [Morris, 2022a]. PopSign provides the ML community
with a clear need and a viable dataset for a goal that can be achieved by sign recognition in the near
term. Signers for the dataset were recruited by Deaf researchers and informed before beginning
participation about the intent to create a public video database. DPAN’s consent procedures were
informed by those used by Georgia Tech’s IRB. The risks of the dataset videos are similar to any
identifiable video made available on the Internet. While names are not affiliated with any of the
videos, it was clear in the consent process that participants’ faces would be identifiable. Participants
were paid $300 for providing 5000 signs, a process that would take approximately six hours. Signers
could stop participation without penalty; compensation is prorated. PopSign ASL v1.0 is provided
under a Creative Commons CC-BY 4.0 license, specifically so both academics and industry may
use it. Software created as part of the collection and review process is covered by the standard MIT
license. The dataset is not meant to be representative of ASL, though there is a risk users might use it
that way. The next section warns about the dataset’s limitations.

8 Limitations

While ASL is the most common sign language used in the United States, there are many sign
languages both in the United States (e.g., Plains Indian Sign Language and Hawaiian Sign Language)
and in the world at large (e.g., British Sign Language, French Sign Language, German Sign Language,
Hindi Sign Language, etc.). In addition, there are many regional and cultural accents associated
with sign in the United States, including Black American Sign Language. The PopSign dataset is
designed for teaching one variant of a signed concept, focusing on one-handed smartphone signing,
but it does not capture a representative sample of all the sign variations that would be commonly
understood in conversation. ASL has a grammar that is very different from English, and isolated
signs do not reflect its richness. A larger number of signers is necessary to better represent skin tones,
hand features, ages and different levels of signing fluency. PopSign assumes one-handed sign from
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the smartphone viewpoint and field of view, whereas a more general recognition system would also
require two-handed signs and a greater variety of viewpoints and camera parameters. As collection
required the use of a smartphone, communication via email, and a viable shipping address, it biases
the dataset towards younger, more affluent signers with facility in English.

9 Conclusion

The Popsign ASL v1.0 dataset provides a large, reviewed dataset of signs with many examples per
sign that demonstrate the concepts first taught to infants. It focuses on signing captured by the
selfie camera on a smartphone, and the data has already proven viable in creating a sign language
recognition based educational game for helping hearing parents of deaf children learn ASL.
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