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Abstract

We consider the problem of reconstructing coupled networks (e.g., biological
neural networks) connecting large numbers of variables (e.g., nerve cells) for which
state evolution is governed by dissipative dynamics consisting of strong self-drive
which dominates the evolution and weak coupling-drive. The core difficulty is
sparseness of coupling effect, which emerges with significant coupling force only
momentarily and otherwise remains quiescent in time series (e.g., neuronal activity
sequence). Here we propose an attention mechanism to guide the classifier to
make inference focusing on the critical regions of time series data where coupling
effect may manifest. Specifically, attention coefficients are assigned autonomously
by artificial neural networks trained to maximise the Attentive Transfer Entropy
(ATEn), which is a novel generalization of the iconic transfer entropy metric. Our
results show that, without any prior knowledge of dynamics, ATEn explicitly
identifies areas where the strength of coupling-drive is distinctly greater than
zero. This innovation substantially improves reconstruction performance for both
synthetic and real directed coupling networks using data generated by neuronal
models widely used in neuroscience.

1 Introduction

In this work, our task is to infer coupling relationships between observed variables based on time series
data and reconstruct the coupled network connecting large numbers of these variables (see Figure 1a).
Assume the time series xit records the state evolution of variable i governed by coupled dissipative
dynamics, as represented by a general differential equation ẋit = g(xit) +

∑
Bijf(xit, xjt), where

g and f are self- and coupling functions respectively. The parent variable influences the evolution
behavior of the child variable via the coupling function f . Note that these two functions are hidden
and usually unknown for real systems. The asymmetric adjacency matrix B represents the directional
coupling relationship between variables. Hence, the goal is to infer matrix B from observed time
series xit, i = 1, 2, . . . , N where N is the number of variables in the system. If Bij = 1, the variable
j is a coupling driver (parent) of variable i, otherwise it is zero.

In neural dynamics (e.g., biological neuronal systems observed via neuronal activity sequences), the
coupling effect is usually too weak to be detected, making less applicable the classic unsupervised
techniques used across multiple research communities to infer coupling relationships [1, 2, 3, 4,
5, 6, 7, 8, 9, 10]. This difficulty manifests in three aspects. First, the dynamics contains self-
drive and coupling-drive. The strength of the coupling force f(xit, ·) is usually many orders of
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Figure 1: (a) Graphical representation of our task. With the activity sequences recording the state
evolution of the variables and a small number of known relationships between variables (top panel:
solid arrows with and without red crosses denote coupling and non-coupling respectively), our target is
to infer the remained coupling relationships (bottom panel: dotted arrows) and reconstruct the coupled
network; (b) Overall framework of our method. An input sample consists of two activity sequences
on an ordered pair of variables. Stage 1: the neural network gα assigns attention coefficients {ai}Li=1
along sequences to maximize ATEn as Eq. 6. The neural networks fθ and fϕ forming transfer entropy
estimator estimate mutual information MI1 and MI2 (first and second terms in Eq. 4). Stage 2:
Classifier hη infers the probability of coupling between variables.

magnitude smaller than self-drive g(xit), and the latter dominates the evolution of variable state.
Second, the behavior of the coupling-drive can be chaotic, unlike in linear models [11, 12]. The
resulting unpredictability and variability of system state means that coupling force can be significant
momentarily and otherwise almost vanish, as illustrated in Figure 4 (gray lines). This dilutes the
information in time series that can be useful for inferring the coupling relationship. Third, in the
heterogeneous networks common in applications, some variables are hubs coupled with many parent
variables, among which it is difficult to distinguish individual drivers.

When coupling effects are weak and sparse, we do not observe clearly the principle of Granger
Causality, whereby the parent variable can help to explain the future state change in its child
variable [13]. Rather, when we train a model [5, 8] for prediction task on the neuronal activity
sequences, the model only exploits the historical information of the child variable itself and that
from parent variables is ignored. We posit that coupling-drive makes a negligible contribution
to state evolution in the majority of samples of time series data. In other words, only in a small
fraction of samples is the information of parent variables effective in predicting the evolution of child
variables. Taking as an example the gradient algorithm to minimise the regression error over all
samples

∑
t(xit − x̂it)

2, the adjustment of model parameters from the tiny samples corresponding to
significant coupling force is negligible, but these are the only samples which could induce the model
to exploit coupling effects in reducing regression error. Similarly, for transfer entropy [2], which
measures the reduction in uncertainty which a potential parent variable provides to a potential child
variable, there is no significant difference in measured value between ordered pairs of variables with
and without coupling relation.

To overcome the difficulty, we introduce coupling attention to identify the moments when coupling
effect emerges. We design an objective function, Attentive Transfer Entropy (ATEn), comprising a
weighted generalisation of transfer entropy. In order to maximize ATEn, an artificial neural network is
trained to autonomously allocate high attention coefficients at at times t where information of parent
variables effectively reduces the future uncertainty of child variables, and ignores other positions by
setting at close to zero.

However, coupling attention also detects high transfer entropy regions produced by factors unrelated
to coupling-drive, e.g., noise in empirical samples, which leads to spurious identification of spurious
coupling effects between variables, which disturb the inference. To ameliorate this, we consider
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utilising known relationships between variables, a small number of which could be inferred, e.g., by
manual neuron tracing in connectome [14]. We leverage this limited number of known relationships
for more effective detection of connectivity which advances in technology are making increasingly
simple and cheap to observe [15]. Specifically, we add a binary classification model to perform
more sophisticated inference under the guidance of coupling attention to focus on these critical
regions and recognize different patterns between real and spurious coupling effect. We deal with
this coupling relation inference task by way of small sample supervised learning. Although training
and test data have a distribution shift in the setting of small samples, they arise through an identical
underlying generation process. Thus, if the model provides an insight into the underlying dynamics –
the coupling-drive in our task – then the understanding acquired from small samples can be effectively
utilised in the test environment [16, 17, 18, 19]. The role of coupling attention is to help the
classification model gain this insight. Our contributions are summarized as follows:

1. We draw on the coupling attention mechanism to identify the positions of time series at
which coupling effect emerges and guiding a classification model to infer coupling relation
by focusing on these critical positions. Without any prior knowledge of dynamics, this
mechanism determines the areas where the coupling force is substantially different from
zero.

2. By formulating Transfer Entropy as the difference between two types of mutual information,
and based on the dual representation of Kullback-Liebler (KL) divergence, we design a
differentiable metric, Attentive Transfer Entropy, as the objective function of the proposed
coupling attention.

3. Our method significantly improves performance on synthetic and real directed coupling
networks using the data generated by four well-known neural dynamic models, and the
number of labels required is very small compared to the size of the coupled networks.

2 Background

2.1 Definition of Transfer Entropy

The transfer entropy, an information-theoretic measure, is able to detect information flow between
time series X and Y . Transfer Entropy measures the degree of non-symmetric dependence of Y on
X , defined as [2]:

TE(X → Y ) =
∑

p
(
yt+1, y

(k)
t , x

(l)
t

)
log

p
(
yt+1 | y(k)t , x

(l)
t

)
p
(
yt+1 | y(k)t

) , (1)

where x
(l)
t = (xt, ..., xt−l+1) and y

(k)
t = (yt, ..., yt−k+1) and k, l are lengths of memory. For an

uncoupled system (X and Y independent) that can be approximated by a Markov process of order
k, the conditional probability to find Y in state yt+1 at time t + 1 satisfies p

(
yt+1 | y(k)t , x

(l)
t

)
=

p
(
yt+1 | y(k)t

)
, and so TE(X → Y ) vanishes.

2.2 Mutual Information Neural Estimation

The mutual information is equivalent to the KL divergence between the joint distribution PXY and
the product of the marginal distributions PX ⊗ PY [20, 21]. The KL divergence DKL admits the
neural dual representation [22, 23]:

MI(X,Y ) = DKL (PXY ∥PX , PY ) ≥ sup
θ∈Θ

EPXY
[fθ]− log

(
EPX⊗PY

[
efθ

])
, (2)

where the supremum is taken over parameter space Θ and fθ is the family of functions parameterized
by the neural network with parameters θ ∈ Θ. The mutual information neural estimator is strongly
consistent and can approximate the actual value with arbitrary accuracy [23].
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Figure 2: Visual interpretation of transfer entropy
and its attentive version. Transfer Entropy is de-
rived as the difference of two types of mutual in-
formation: MI (Yt+1, (Yt, Xt)) (blue area) quan-
tifies the reduction in uncertainty of future state
yt+1 from knowing current states (yt, xt), and
MI (Yt+1, Yt) (green area) is same but only yt
is known. Attention coefficients at (yellow area)
are assigned to each position of time series by cou-
pling attention mechanism to maximize Attentive
Transfer Entropy. For brevity, k = l = 1 here.

3 Method

3.1 Neural Estimator of Transfer Entropy

By the conditional Bayes formula and adding a marginal distribution of Y , we derive the transfer
entropy as the difference between two types of mutual information. An intuitive description is
provided in Figure 2, and the derivation is placed in Appendix A.

TE(X → Y )

=
∑

p
(
yt+1, y

(k)
t , x

(l)
t

)
log

p
(
yt+1, y

(k)
t , x

(l)
t

)
p (yr) p

(
y
(k)
t , x

(l)
t

) −∑
p
(
yt+1, y

(k)
t

)
log

p
(
yt+1, y

(k)
t

)
p (yr) p

(
y
(k)
t

) (3)

= MI
(
Yt+1,

(
Y

(k)
t , X

(l)
t

))
−MI

(
Yt+1, Y

(k)
t

)
. (4)

In these expressions, yr is sampled from Y randomly and independently of the time step t. The
first term MI

(
Yt+1,

(
Y

(k)
t , X

(l)
t

))
quantifies the reduction in the uncertainty of the future state

yt+1 from knowing the historical information y
(k)
t and x

(l)
t . The second term MI

(
Yt+1, Y

(k)
t

)
is

the reduction in uncertainty simply from knowing y
(k)
t . By connecting Eq. 4 and Eq. 2, we define a

differentiable estimator of transfer entropy as:

TENE(X → Y ) = sup
Θ

E
P
(
Yt+1,Y

(k)
t ,X

(l)
t

) [fθ]− log

(
E

P (Yt+1)⊗P
(
Y

(k)
t ,X

(l)
t

) [efθ])
− sup

Φ
E

P
(
Yt+1,Y

(k)
t

) [fϕ]− log
(
E

P (Yt+1)⊗P (Y
(k)
t )

[
efϕ

])
. (5)

Transfer entropy, and even mutual information, is difficult to compute [24], especially for high-
dimensional or noisy data. In Appendix B, we offer a theoretical proof for the consistency and
convergence properties of Transfer Entropy Neural Estimation, and examine its bias on a linear
dynamic system where the true values of transfer entropy can be determined analytically.

3.2 Attentive Transfer Entropy

The main difficulty in our task is that the coupling effect in certain nonlinear dynamical systems is
too weak to be recognized by classic techniques. We discuss the limitation of the iconic transfer
entropy in detail that it works well when the three true distributions, i.e., one joint distribution
and two conditional distributions in Eq. 1, can be estimated perfectly. However, sparse coupling
effects are easily masked if the estimated probability density deviates even slightly from the real
distribution. These momentary sources of evidence of coupling drive are like outliers in the total
distribution of a time series dominated by self-drive. In order to make the transfer entropy provide a
clear distinction between coupling and non-coupling pairs, we need to highlight the positions where
p
(
yt+1 | y(k)t , x

(l)
t

)
> p

(
yt+1 | y(k)t

)
and filter out other times by incorporating at into Eq. 5, all
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while avoiding the problem of distribution approximation. We do so by defining ATEn as:

ATEn(X → Y ) =
∑

at · p
(
yt+1, y

(k)
t , x

(l)
t

)
log

p
(
yt+1 | y(k)t , x

(l)
t

)
p
(
yt+1 | y(k)t

)
= MI

(
Yt+1,

(
Y

(k)
t , X

(k)
t

)
| A

)
−MI

(
Yt+1, Y

(k)
t | A

)
. (6)

In this expression, at ∈ [0, 1] is the attention coefficient at time step t and the collection A of attention
coefficients is the attention series. Comparison of Eq.1 and Eq.6 reveals that the transfer entropy
can be viewed as a simplified version of ATEn in which attention coefficients are uniformly set
to one: ∀t, at = 1. Because each position has an equal contribution to estimation, the value of
transfer entropy is dominated by the majority of positions where coupling effect is negligible, i.e.,
where p

(
yt+1 | y(k)t , x

(l)
t

)
≈ p

(
yt+1 | y(k)t

)
. Similarly to transfer entropy, ATEn is derived as the

difference of two mutual informations, but ATEn incorporates the scheme of attention assignment.
By connecting Eq. 6 and Eq. 2, we define a differentiable estimator of ATEn as:

ATEn(X → Y ) = sup
Θ

1

L

∑
at · fθ

(
yt+1, y

(k)
t , x

(l)
t

)
− log

(
1

L

∑
at · e

fθ

(
yr,y

(k)
t ,x

(l)
t

))
− sup

Φ

1

L

∑
at · fϕ

(
yt+1, y

(k)
t

)
− log

(
1

L

∑
at · e

fϕ

(
yr,y

(k)
t

))
, (7)

where T is the total number of time steps and L = T −max(k, l). The expectation on the distribution
of variables is adapted into the mean over time series.

3.3 Application of Coupling Attention

The overall framework of our model is presented in Figure 1b. In addition to two neural networks
fθ and fϕ for mutual information estimation, we employ another neural network gα for coupling
attention assignment. Rather than approximating distributions, the neural network gα learns to
maximize ATEn given by Eq. 7 via gradient descent. However, relying solely on coupling attention
mechanism would lead to erroneous identification of spurious coupling effects as high transfer entropy
regions which can also arise from non-coupling factors, e.g., noise in empirical samples. For more
sophisticated inference, we augment our method with a binary classifier hη guided by coupling
attention to focus on high transfer entropy regions and recognize different patterns between real and
spurious coupling effect. The classifier takes as training samples a small number of ordered pairs of
variables, among which labels for both coupling and non-coupling relationships are represented.

Then, the training process is divided into two independent stages: coupling attention learning and
classification learning. The objectives in the first stage are:

θ, ϕ← argmax
θ,ϕ|α

L1 + L2 α← argmax
α|θ,ϕ

L1 − L2 (8)

where L1, L2 is the expectation of the first and second sup term of Eq.7 on training set respectively.
We update (fθ, fϕ) and gα alternately. A small learning rate is required to maintain training stability,
otherwise the gα may fall into a trivial solution where attention is almost zero throughout the time
series. The objective in the second stage is:

η ← argmin
η|α

L3, (9)

where L3 is the binary cross entropy and the notation η | α indicates that coupling attention remains
fixed during the second stage of training. The downstream classifier is sensitive to the upstream
scheme of attention assignment1. Implement of our method is presented as Alg. 1 in Appendix C.

1When the ATEn reaches stability or convergence, the downstream classifier guided by it usually does not
achieve optimal generalization in our experiments. Currently, we have not established a definitive criterion for
determining the best stopping point of the first stage, at which the downstream classifier can achieve its optimal
generalization. To address this issue, after every fixed number of epochs in the first stage, we retrain a new
classifier with a few epochs. When the ATEn converges, we select one with optimal generalization on validation
set from those classifiers and further train it until convergence.
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4 Experiment

4.1 Setup

Directed coupling networks. For synthetic networks, we use Scale-Free (SF) graph model [25],
which could generate networks with controllable structure characteristics. For real networks, we
select six neurological connectivity datasets as presented in Table 1, each from a different species:
Cat, Macaque, Mouse, C. elegans, Rat and Drosophila.

Dataset Region #Nodes #Edges Mean degree

Cat Cortex 65 1139 17.5
Macaque Cortex 242 4090 16.9
Mouse Cortex 195 214 1.1

C. elegans Neural 272 4451 16.4
Rat Cinerea 503 30088 59.8

Drosophila Medulla 1781 33641 18.9

Table 1: Statistical information of
six real networks: dataset name,
type of network, number of nodes,
number of edges and mean degree
⟨k⟩. Details are provided in Ap-
pendix E.

Dynamic models. We use four dynamic models for neural activity simulation widely used in the field
of neuroscience: Hindmarsh-Rose (HR), Izhikevich (Izh), Rulkov and FitzHugh-Nagumo (FHN).
Dynamic equations are provided in Table 2, and segments of generated time series are represented in
Figure 4.

Name Equations

HR
ṗi = qi − ap

3
i + bp

2
i − n + Iext + Γ

q̇i = c − dp
2
i − qi, ṅi = r [s (pi − p0) − ni]

Γ = gc (Vsyn − pi)
∑N

j=1Bij/(1 + exp(−λ (pj − Θsyn)))

Izh v̇i = 0.04v
2
i + 5vi + 140 − ui + I + Γ

u̇i = a(bvi − ui), Γ = gc
∑N

j=1Bijuj

Rulkov
F1(ui, wi) =

β

1 + u2
i

+ wi + Γ (uj)

F2(ui, wi) = wi − νui − σ

Γ (uj) = gc
∑N

j=1Bij/ (1 + exp(λ (uj − Θs)))

FHN v̇ = a + bv + cv
2
+ dv

3 − u + Γ

u̇ = ε(ev − u), Γ = −gc
∑N

j=1 Bij (vj − vi)

Table 2: Equations of the four dy-
namical models considered. B is
the asymmetrical adjacency matrix
of the coupling network, record-
ing coupling relationships between
nodes. Bij = 1 if variable i
is the parent of variable j, other-
wise Bij = 0. In these expres-
sions, Γ describes the coupling-
drive, while other terms represent
self-drive. The detailed configura-
tion of dynamical parameters is pro-
vided in Appendix D.

Baselines. We compare our method with eight baselines. Unsupervised learning: (1) Granger
causality test (Ganger) [1]; (2) Transfer Entropy using the Kraskov-estimator (TE_Kraskov) [26], a
standard method for TE calculation; (3) Convergent cross mapping (CCM) [3]; (4) Latent convergent
cross mapping (Latent CCM) [27]; (5) PCMCI [6] and (6) PCMCI+ [28] using partial correlation to
quantify coupling strength. Unsupervised learning with validation set: (7) Transfer Entropy Neural
Estimator (TENE), as in Eq. 5. The estimator is trained on the test set unsupervised and terminates
upon achieving optimal performance on the validation set. Small sample learning: (8) Classifier with
traditional attention mechanism [29], which was initially developed for computer vision tasks.

Evaluation metrics. We quantify the performance of methods by evaluating the metrics, specifically
the area under the receiver operating characteristic curve (AUROC).

Training details. We employ a 4-layer convolutional neural network for model gα and hη, and a
5-layer fully-connected neural network for model fθ and fϕ. We use the ADAM [30] optimizer with
initial learning rate of 10−3 for the classifier hη and 10−4 for the others. The learning rate decays
exponentially by gamma = 0.999 per epoch. The batch size for stage 1 is 32 and for stage 2 is 10.
The number of training epochs is 400. We run all experiments in this work on a local machine with
two NVIDIA V100 32GB GPUs. See codes in Supplementary Materials for more details.
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(a) (b) (c)

(d) (e) (f)

Figure 3: We conduct experiments of ablation study in six control environments including the number
of samples using for supervised training, mean degree of networks (the higher mean degree results
in more parents per child variable), coupling strength related to the extent of influence that parent
variables have on child variables through the coupling drive, sampling frequency of activity sequence,
measurement noise (Gaussian noise is added with mean zero and standard deviation of a certain
proportion of the original sequence), and hidden variables (training or validation samples are randomly
selected from the remaining observable variables, and test samples are randomly selected from the
whole network). In the plots above, the default values of train samples is 20 (10/10 positive/negative
samples), mean degree 10, coupling strength 0.2, sampling period 0.1, 10% measurement noise
and 0% hidden variables, and each plot considers gradual variation of a single variable. Activity
sequences are generated by the HR model on synthetic networks with 500 variables. The size of
validation and test set is 100 and 400 respectively, with a uniform distribution of positive and negative
samples as in the training set, which are randomly selected from all possible ordered pairs within the
entire network.

4.2 Ablation study

Our method’s innovation can be decomposed into three components: Firstly, a trainable transfer
entropy calculator (TENE) is proposed; Secondly, TENE is combined with attention to detect region
of high transfer entropy; Thirdly, the classifier is guided by coupling attention to focus on regions
where the coupling effect may emerge. Here, we provide a detailed ablation study to determine which
component is the key to performance improvement, and show results in Figure 3. We observe that
Classifier alone (blue lines) exhibits the worse performances than our method (green lines) in most
environments. This indicates that the spurious features learned by Classifier, despite quickly reaching
low loss on the small training set, are less related to the properties of coupling effect and result in
poor generalization capability on test set. When the size of train set increases, the performance of
Classifier alone become comparable to that of ATEn (see Figure 3a). TENE (cyan lines) exhibits
performance marginally superior to transfer entropy estimated using the standard Kraskov method
(TE_Kraskov; purple lines). The ATEn (green lines) shows a substantial performance improvement
compared with baselines, which indicates that the classifier with the guidance of coupling attention
can extract features hidden in activity sequences that are closely related to coupling effect and result
in superior generalization. This also demonstrates the importance of identifying and focusing on these
critical regions of activity sequences. Moreover, our method is robust against changes to experimental
conditions other than mean degree and measurement noise, a limitation we discuss in Sec. 5.

4.3 Insight into the coupling-drive of underlying dynamics

In Figure 4, we demonstrate the ability of coupling attention to catch the transient emergence of
coupling effect. The gray lines in Figure 4 represent the change of coupling force from parent to
child variable over time, and are generated by the coupling term Γ in Table 2. The absolute value
of the coupling force rises (the gray lines spike) at occasional moments when the behavior of a
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(c) FitzHugh-Nagumo(b) Izhikevich(a) Hindmarsh-Rose

Emergence of
coupling effect

Remain
dormant 

Figure 4: Insight into the coupling drive of neural dynamics. Top panel in each subplot: segment of
two activity sequences on the ordered pair of variables with a coupling relationship (blue is parent
and green is child). Bottom panel in each subplot: the absolute value of coupling force (gray line),
the coefficient of traditional attention (light pink line) and coupling attention (orange line) assigned
along the sequences. (a) HR; (b) Izh; (c) FHN. Time t is index in the time series. In axis labels,
“Power” is membrane potential, while "Strength" is membrane potential (attention coefficient) for the
coupling force (attention). Results are chosen for clarity and are obtained when the training of stage 1
reaches stability.

parent variable substantially influences the evolution of its child variable, and remains almost zero at
other times. The orange lines representing the coupling attention keep in step with the gray lines,
indicating that the coupling attention mechanism recognizes the effect of coupling force in reducing
the uncertainty of the child variable and pays attention to the areas where coupling force is significant.
In contrast, the light pink lines in Figure 4 representing the traditional attention [29] remain close
to their maximum value, indicating it is insensitive to changes in coupling force. This would lead
its classifier to extract features from any part of the entire time series, rather than focusing on areas
where coupling effects may emerge.

4.4 Performance on real networks

We test our method on six empirical neurological connectivity datasets using activity sequences
data generated by four neuronal dynamic models. Compared with the baselines, our method usually
substantially improves reconstruction performance on real coupled networks, as shown in Table 3. The
performance of classical unsupervised methods, for which all positions in the time series are treated
equally, is limited by the paucity of distinct coupling effects. In conclusion, our method slightly

Table 3: Performance comparison (model neurons coupled on real connectomes). Each point contains
the mean and standard deviation of AUROC computed in ten experiments with randomly sampled
training/validation/test set (20/100/1000) in C. elegans (left) and Drosophila (right) connectomes.
Results on other three connectomes are shown in Appendix F.

HR Izh Rulkov

Granger

CCM

Latent CCM

PCMCI

Classifier

FHN

PCMCI+

ATEn

TE Kraskov

0.50±0.01   

  

  

  

  
 

 

  
 

 

  
 

  

  

TENE

0.64±0.01 0.71±0.01 0.64±0.02

0.94±0.06   0.66±0.12 0.90±0.07 0.91±0.06

  
 

 

 

0.63±0.01   0.50±0.01 0.68±0.02 0.54±0.02

  

  
 

 

 
0.65±0.06   0.43±0.03 0.65±0.08 0.47±0.06

    
 

 

 
0.75±0.06   0.65±0.05 0.72±0.06 0.65±0.07

0.79±0.02   

  
 

0.62±0.02 0.67±0.02 0.74±0.01  
 

 
0.78±0.01   0.55±0.04 0.53±0.04 0.68±0.01

0.53±0.01   

  
 

0.53±0.02 0.66±0.01 0.57±0.02  
 

 
0.53±0.01   0.56±0.01 0.69±0.02 0.63±0.02

HR Izh Rulkov FHN

0.69±0.02   

  

  

  

  

 

  

 

  

  

  

0.42±0.01 0.74±0.01 0.60±0.01

0.97±0.03   0.74±0.09 0.87±0.06 0.83±0.10

  
 

 

 

0.60±0.01   0.47±0.02 0.65±0.01 0.58±0.02

  

  

 

 
0.54±0.07   0.51±0.03 0.54±0.11 0.41±0.06

    

 
0.85±0.05   0.65±0.06 0.83±0.09 0.72±0.05

0.80±0.01   

  
0.42±0.02 0.80±0.01 0.76±0.03  

 

 
0.81±0.02   0.47±0.02 0.76±0.01 0.73±0.01

0.51±0.01   

  
0.51±0.01 0.51±0.01 0.51±0.01  

 

 
0.51±0.01   0.51±0.01 0.51±0.01 0.51±0.01

C.elegans DrosophilaDataset

Dynamics
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increases cost, due to the need for label collection, but obtains a substantial boost in performance
compared with those unsupervised methods in this class of coupling network reconstruction tasks. We
also observe that the reconstruction performances on identical dynamics across distinct connectomes
are significant different (e.g., AUROC of ATEn on Izh across C.elegans in Table 3 and Rat in
Appendix Table 5), indicating that the underlying network architecture plays an crucial role in
shaping the behavior of coupling dynamics.

5 Limitations

Our methodology has limitations (i.e., cases for which performance improvement is less): 1. Dense
networks, where a variable is coupled with many driving variables and substantial coupling forces
can emerge from distinct parents at overlapping times, making individual drivers harder to distinguish
(see green line in Figure 3b); 2. Intense noise, which makes the coupling attention mechanism falsely
identify high transfer entropy regions. The downstream classifier then extracts spurious features,
leading to the reduction of its generalization (see Figure 3e); 3. Strongly coupled systems, which
are dominated by synchronization phenomena in which the dynamic behaviors of all variables are
similar.

In addition, we assume the state evolution of variables in the coupled network is uniformly governed
by a group of dynamic equations. However, if the evolution behaviors of variables in the system obey
different underlying dynamics, it becomes critical to carefully select the small training samples, in
which the patterns of coupled driving effects are representative. Failure to do so may result in the
poor generalization of the classifier. That is our next research direction.

6 Related Work

Coupled Network Reconstruction. Several common methods of causal inference [31, 4, 6, 9]
are based on conditional independence relations, but differ in the design of condition-selection
strategies or choice of conditional independence test. Granger Causality [1] is extended to nonlinear
dynamics by using neural networks to represent nonlinear casual relationships [8, 5]. Many methods
of causal discovery assume that the coupled network is a directed acyclic graph. However, directed
cyclic graphs are common in real systems. Conventional frameworks assume separability, i.e., that
information about coupling drive are not contained in the parent variable itself. To address the
non-separability issue, Convergent-cross mapping [3] and its variations [32, 27] measure the extent
to which the historical record of child can reliably estimate states of the parent in reconstructed state
space. However, sparse causal effect in neuronal dynamics, particularly in the presence of noise, may
lead parent and child time series to appear statistically independent, so that their contribution to state
estimation is hard to recognize.

Mutual Information Estimation. Ref. [23] built on a dual representation of KL divergence [22]
to offer a parametric mutual information neural estimator (MINE) which is linearly scalable in
dimension as well as sample size, and is also trainable and strongly consistent. They also discussed
another version of MINE based on the f -divergence representation [33, 20]. Using the technique of
Noise-Contrastive Estimation (NCE) [34], based on comparing target and randomly chosen negative
samples, Van den Oord et al. [35] proposed InfoNCE loss, minimization of which maximizes a mutual
information lower bound. An important application of this contrastive learning approach has been
extracting high-level representations of different data modalities [36, 37, 38, 39]. In our work, we
extend MINE for transfer entropy estimation.

Attention Mechanisms. The attention mechanisms identify key areas in the data by learning a set of
weight distributions. Spatial-based attention [29, 40, 41] involves generating attention scores from
spatial regions of feature maps, while channel-based attention [42, 43] optimises the representation
of each channel. Self-attention [44, 45] encodes interactions among all input entities and cross-
attention [46, 47, 48] introduces the interaction of two domains further. However, it is recognised that
attention mechanisms need to be tailored to the specific problem at hand [49]. In our work, we tailor
attention mechanism for coupling relationship inference by accommodating the selection of temporal
regions that correspond to the transient emergence of coupling effect in neural activity sequences.
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7 Discussion

The problem of reconstructing coupling networks from observational data is fundamental in multiple
disciplines of science including neuroscience, since it is a prerequisite foundation for the research
about structure analysis and behavior control in coupling networks. Especially, several countries
have recently launched grand brain projects, and one important goal is to map the connectomes (i.e.,
directed links between neurons) of different species.

We draw on coupling attention to guide machine learning models to infer coupling relationships
while focusing on the specific areas where casual effect may emerge. We show that this mechanism
identifies weak coupling effects ignored by classical techniques, and helps machine learning models
gain insight into the coupling dynamics underlying time series data.
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