PDF: Point Diffusion Implicit Function for Large-scale Scene Neural Representation

Appendix

1 In this appendix, we provide experimental results on more benchmarks to further explore the effec-

2 tiveness of our point diffusion implicit function for large-scale scenes (Sec. A and B) and conduct

3 more ablation experiments (Sec. C).

4 A Experiments on the BlendMVS Dateset

Dataset and Baseline. The BlendedMVS [7] dataset is a large-scale synthetic dataset for multi-view 5 stereo containing 113 scenes, which can be further divided into large-scale outdoor scenes part and 6 small-scale objects part according to the scene scale. Since current large-scene NeRF methods are 7 one model per scene, to save computational resources and time, we select the first five scenes of the 8 large-scale outdoor scenes part and compare with Mip-NeRF 360 [2], which is the optimal baseline 9 on the representative subset of OMMO dataset [3] as shown in our manuscript, see Tab. 4 and Fig. 6. 10 It can be seen that our method has a significant improvement over Mip-NeRF 360 [2] in relation to 11 PSNR, SSIM and LPIPS, and synthesizes more realistic novel view images. 12

Mip-NeRF 360 Ours GT GT COURS CO

Figure 6: Qualitative results of our PDF method with the baseline Mip-NeRF 360 on the first five large-scale outdoor scenes of the BlendedMVS dataset (zoom-in for the best view).

Scene	Mip	-NeRF 30	50 [2]	Ours						
	PSNR↑ [¯]	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓				
1	15.43	0.27	0.318	19.74	0.67	0.246				
2	13.65	0.16	0.252	21.42	0.68	0.152				
3	19.59	0.43	0.344	20.93	0.65	0.213				
4	18.84	0.38	0.349	19.80	0.68	0.267				
5	17.05	0.30	0.207	19.18	0.62	0.271				
Mean	16.91	0.31	0.294	20.21	0.66	0.230				

Table 4: Quantitative results of our PDF method with the baseline Mip-NeRF 360 on the first five large-scale outdoor scenes of the BlendedMVS dataset. \uparrow means the higher, the better.

B Experiments on the Full OMMO Dateset

In the manuscript, we have reported performance on the representative subset of the OMMO dataset [3]. A more comprehensive evaluation on all scenes from the OMMO dataset is shown in Tab. 5 and Fig. 7. Our method still outperforms other state-of-the-art methods on average and most scenes, and synthesizes photo-realistic images, consistent with results on the representative subset.

Scana ID		NeRF[4	-]	N	eRF++[8]	Mi	ip-NeRF	[1]	Mip-	NeRF 3	60[2]	Me	ga-NeR	F[5]	Re	f-NeRF	[6]		Ours	
Scene ID	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS
1	16.93	0.37	0.744	16.86	0.36	0.780	16.84	0.37	0.793	13.91	0.31	0.771	16.12	0.34	0.782	15.10	0.34	0.755	14.80	0.32	0.755
2	15.31	0.44	0.694	14.89	0.47	0.653	15.16	0.40	0.731	15.06	0.44	0.646	15.64	0.47	0.679	15.90	0.49	0.632	19.63	0.62	0.374
3	14.38	0.28	0.556	14.64	0.29	0.547	14.56	0.29	0.533	14.25	0.31	0.526	15.21	0.33	0.517	15.44	0.37	0.526	14.74	0.34	0.515
4	25.39	0.86	0.431	27.47	0.90	0.380	21.78	0.76	0.469	27.68	0.94	0.292	23.36	0.86	0.419	27.86	0.91	0.404	31.74	0.94	0.202
5	22.26	0.67	0.531	24.32	0.73	0.450	14.98	0.54	0.633	25.76	0.80	0.317	25.78	0.76	0.436	23.54	0.71	0.491	27.58	0.90	0.162
6	24.09	0.68	0.504	25.59	0.75	0.396	23.18	0.66	0.529	28.86	0.90	0.211	24.92	0.77	0.393	26.07	0.72	0.459	23.69	0.87	0.212
7	5.36	0.17	0.747	21.93	0.71	0.542	15.57	0.64	0.624	23.05	0.73	0.523	22.33	0.69	0.552	25.79	0.73	0.511	21.46	0.81	0.193
8	21.14	0.50	0.594	22.91	0.57	0.509	19.82	0.46	0.638	25.07	0.71	0.354	16.65	0.48	0.431	21.21	0.49	0.606	27.62	0.92	0.101
9	14.92	0.34	0.744	14.57	0.34	0.732	14.58	0.34	0.746	15.40	0.30	0.706	17.32	0.49	0.673	20.34	0.43	0.649	15.77	0.49	0.381
10	22.26	0.55	0.626	24.37	0.60	0.578	19.80	0.53	0.643	26.68	0.72	0.420	21.78	0.62	0.558	24.23	0.58	0.597	25.74	0.83	0.136
11	22.36	0.82	0.420	24.61	0.85	0.342	22.81	0.82	0.423	27.06	0.93	0.217	24.37	0.84	0.392	23.81	0.84	0.355	30.29	0.95	0.188
12	22.41	0.59	0.533	24.29	0.68	0.447	22.13	0.60	0.526	28.12	0.83	0.274	21.60	0.62	0.493	23.06	0.60	0.524	27.92	0.86	0.063
13	22.27	0.59	0.608	23.52	0.62	0.581	18.90	0.54	0.673	26.63	0.77	0.403	25.50	0.72	0.517	23.29	0.61	0.594	25.94	0.74	0.205
14	19.85	0.55	0.569	23.89	0.74	0.417	17.06	0.48	0.655	28.06	0.89	0.224	24.42	0.75	0.411	21.76	0.63	0.508	28.11	0.94	0.127
15	20.35	0.53	0.552	21.71	0.61	0.490	19.44	0.49	0.594	28.63	0.89	0.179	22.69	0.67	0.445	20.33	0.50	0.576	27.22	0.89	0.136
16	17.86	0.40	0.631	18.75	0.41	0.597	18.49	0.40	0.610	10.01	0.34	0.850	20.26	0.53	0.509	19.64	0.43	0.572	18.70	0.47	0.392
17	22.02	0.57	0.610	24.20	0.67	0.461	17.01	0.53	0.696	29.53	0.83	0.247	17.23	0.57	0.529	23.17	0.59	0.529	26.59	0.88	0.111
18	26.06	0.75	0.428	25.57	0.73	0.461	24.61	0.73	0.469	28.55	0.86	0.265	24.76	0.73	0.448	22.79	0.67	0.569	28.07	0.91	0.152
19	14.20	0.40	0.726	13.86	0.37	0.703	13.84	0.39	0.738	14.72	0.37	0.676	23.81	0.68	0.465	14.34	0.39	0.691	27.55	0.84	0.170
20	22.84	0.61	0.499	23.28	0.64	0.475	22.41	0.60	0.519	28.33	0.86	0.228	21.11	0.63	0.490	21.54	0.55	0.574	26.88	0.81	0.197
21	22.59	0.51	0.532	21.84	0.47	0.593	22.31	0.51	0.537	25.64	0.75	0.344	21.92	0.51	0.578	21.07	0.44	0.672	28.62	0.94	0.141
22	16.53	0.47	0.733	20.66	0.56	0.575	13.37	0.42	0.776	24.79	0.77	0.362	20.84	0.60	0.527	20.31	0.53	0.615	26.33	0.85	0.074
23	18.99	0.41	0.669	19.51	0.42	0.597	18.09	0.39	0.671	21.25	0.51	0.539	20.13	0.44	0.585	19.94	0.41	0.622	21.64	0.65	0.206
24	19.32	0.39	0.696	23.14	0.52	0.535	16.89	0.37	0.715	25.86	0.71	0.373	23.87	0.56	0.518	22.17	0.45	0.616	30.90	0.87	0.097
25	24.72	0.55	0.528	22.42	0.51	0.613	24.24	0.54	0.542	28.91	0.79	0.306	25.98	0.63	0.457	23.62	0.50	0.598	30.85	0.94	0.083
26	8.56	0.24	0.564	19.94	0.59	0.513	13.43	0.35	0.688	14.59	0.46	0.626	19.23	0.67	0.467	21.00	0.62	0.489	23.88	0.83	0.311
27	4.54	0.01	0.705	21.25	0.55	0.546	14.82	0.45	0.674	21.26	0.60	0.235	20.59	0.61	0.543	20.82	0.52	0.590	21.77	0.66	0.164
28	24.48	0.66	0.479	23.28	0.64	0.475	24.76	0.66	0.406	29.62	0.87	0.240	25.87	0.72	0.442	22.17	0.45	0.616	29.22	0.91	0.153
29	22.98	0.61	0.540	23.17	0.62	0.529	23.01	0.61	0.539	25.51	0.74	0.400	21.57	0.61	0.557	21.11	0.54	0.631	25.86	0.84	0.174
30	20.23	0.52	0.605	23.27	0.64	0.476	18.63	0.46	0.675	26.54	0.84	0.296	24.04	0.69	0.459	21.62	0.54	0.586	26.10	0.93	0.096
31	18.97	0.37	0.645	19.05	0.37	0.643	18.91	0.36	0.659	13.08	0.23	0.708	20.93	0.60	0.545	19.18	0.37	0.645	26.68	0.90	0.208
32	17.99	0.58	0.621	18.99	0.61	0.540	11.28	0.42	0.687	17.16	0.57	0.601	21.29	0.70	0.475	18.98	0.60	0.565	23.43	0.69	0.142
33	5.79	0.01	0.745	20.19	0.50	0.597	14.31	0.42	0.755	22.76	0.63	0.457	22.89	0.64	0.478	21.23	0.52	0.578	22.91	0.75	0.134
Mean	18.72	0.48	0.600	21.45	0.58	0.538	18.39	0.50	0.623	23.10	0.67	0.419	21.63	0.62	0.508	21.28	0.55	0.574	25.10	0.79	0.205

Table 5: Quantitative results of our PDF method with the baselines on the full OMMO dataset. \uparrow means the higher, the better.

NeRF

Part 1/2

Figure 7: More qualitative visualization results for novel view synthesis (zoom-in for the best view) on the full OMMO dataset.

Figure 7. More qualitative visualization results for novel view synthesis (zoom-in for the best view) on the full OMMO dataset.

Figure 8: Qualitative ablation performance for more scenes on the OMMO dataset. From left to right: removing the diffusion-based point cloud up-sampling module, removing the background fusion module, our PDF method, and the groundtruth.

18 C Ablation Study

In order to further demonstrate the effectiveness of each module, we provide ablation experiment results of more scenes on whether to use the point cloud up-sampling diffusion module and whether to use the background fusion module(cf. Fig. 8 and Tab. 6). It can be seen that both the diffusion-based point cloud up-sampling module and the background fusion module play an important role in our method. The former generates dense point cloud surfaces from sparse surface priors and reduces the

sampling space; the latter complements background features that point clouds cannot provide.

Table 6: Quantitative ablation performance for more scenes (scene id 05, 17, and 25) on the OMMO dataset, including removing the diffusion-based point cloud up-sampling module, removing the background fusion module, our PDF method.

Method	PSNR↑	SSIM↑	LPIPS↓
w/o diffusion w/o background	9.48 24.77	0.47 0.81	0.325 0.187
Ours	28.34	0.91	0.119

25 **References**

- [1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P
 Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 5855–5864, 2021.
- [2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
 Unbounded anti-aliased neural radiance fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5470–5479, 2022.
- [3] Chongshan Lu, Fukun Yin, Xin Chen, Tao Chen, Gang Yu, and Jiayuan Fan. A large-scale outdoor multi modal dataset and benchmark for novel view synthesis and implicit scene reconstruction. *arXiv preprint arXiv:2301.06782*, 2023.
- [4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
 Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*,
 65(1):99–106, 2021.
- [5] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construction of
 large-scale nerfs for virtual fly-throughs, 2022.

- [6] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srinivasan.
 Ref-nerf: Structured view-dependent appearance for neural radiance fields. In 2022 IEEE/CVF Conference
- 42 on Computer Vision and Pattern Recognition (CVPR), pages 5481–5490. IEEE, 2022.
- [7] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan.
 Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1790–1799, 2020.
- [8] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving neural
 radiance fields. *arXiv preprint arXiv:2010.07492*, 2020.