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Abstract

We present a new algorithm, Cross-Episodic Curriculum (CEC), to boost the learn-
ing efficiency and generalization of Transformer agents. Central to CEC is the
placement of cross-episodic experiences into a Transformer’s context, which forms
the basis of a curriculum. By sequentially structuring online learning trials and
mixed-quality demonstrations, CEC constructs curricula that encapsulate learning
progression and proficiency increase across episodes. Such synergy combined
with the potent pattern recognition capabilities of Transformer models delivers
a powerful cross-episodic attention mechanism. The effectiveness of CEC is
demonstrated under two representative scenarios: one involving multi-task rein-
forcement learning with discrete control, such as in DeepMind Lab, where the
curriculum captures the learning progression in both individual and progressively
complex settings, and the other involving imitation learning with mixed-quality
data for continuous control, as seen in RoboMimic, where the curriculum captures
the improvement in demonstrators’ expertise. In all instances, policies resulting
from CEC exhibit superior performance and strong generalization. Code is open-
sourced on the project website cec-agent.github.io to facilitate research on
Transformer agent learning.

1 Introduction

The paradigm shift driven by foundation models [8] is revolutionizing the communities who study
sequential decision-making problems [80], with innovations focusing on control [2, 45, 38, 9],
planning [76, 32, 33, 78, 17], pre-trained visual representation [57, 50, 67, 51, 82], among others.
Despite the progress, the data-hungry nature makes the application of Transformer [75] agents
extremely challenging in data-scarce domains like robotics [52, 53, 19, 38, 9]. This leads us to
the question: Can we maximize the utilization of limited data, regardless of their optimality and
construction, to foster more efficient learning?

To this end, this paper introduces a novel algorithm named Cross-Episodic Curriculum (CEC), a
method that explicitly harnesses the shifting distributions of multiple experiences when organized
into a curriculum. The key insight is that sequential cross-episodic data manifest useful learning
signals that do not easily appear in any separated training episodes.1 As illustrated in Figure 1,
CEC realizes this through two stages: 1) formulating curricular sequences to capture (a) the policy
improvement on single environments, (b) the learning progress on a series of progressively harder
environments, or (c) the increase of demonstrators’ proficiency; and 2) causally distilling policy
improvements into the model weights of Transformer agents through cross-episodic attention. When
a policy is trained to predict actions at current time steps, it can trace back beyond ongoing trials
and internalize improved behaviors encoded in curricular data, thereby achieving efficient learning

1Following the canonical definition in Sutton and Barto [73], we refer to the sequences of agent-environment
interaction with clearly identified initial and terminal states as “episodes”. We interchangeably use “episode”,
“trial”, and “trajectory” in this work.
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Figure 1: Cross-episodic curriculum for Transformer agents. CEC involves two major steps:
1) Preparation of curricular data. We order multiple experiences such that they explicitly capture
curricular patterns. For instance, they can be policy improvement in single environments, learning
progress in a series of progressively harder environments, or the increase of the demonstrator’s
expertise. 2) Model training with cross-episodic attention. When training the model to predict actions,
it can trace back beyond the current episode and internalize the policy refinement for more efficient
learning. Here each τ represents an episode (trajectory). â refers to actions predicted by the model.
Colored triangles denote causal Transformer models.

and robust deployment when probed with visual or dynamics perturbations. Contrary to prior works
like Algorithm Distillation (AD, Laskin et al. [42]) which, at test time, samples and retains a single
task configuration across episodes for in-context refinement, our method, CEC, prioritizes zero-shot
generalization across a distribution of test configurations. With CEC, agents are evaluated on a new
task configuration in each episode, emphasizing adaptability to diverse tasks.

We investigate the effectiveness of CEC in enhancing sample efficiency and generalization with two
representative case studies. They are: 1) Reinforcement Learning (RL) on DeepMind Lab (DM-
Lab) [5], a 3D simulation encompassing visually diverse worlds, complicated environment dynamics,
ego-centric pixel inputs, and joystick control; and 2) Imitation Learning (IL) from mixed-quality
human demonstrations on RoboMimic [53], a framework designed to study robotic manipulation
with proprioceptive and external camera observations and continuous control. Despite RL episodes
being characterized by state-action-reward tuples and IL trajectories by state-action pairs, our method
exclusively employs state-action pairs in its approach.

In challenging embodied navigation tasks, despite significant generalization gaps (Table 1), our
method surpasses concurrent and competitive method Agentic Transformer (AT, Liu and Abbeel
[47]). It also significantly outperforms popular offline RL methods such as Decision Transformer
(DT, Chen et al. [13]) and baselines trained on expert data, with the same amount of parameters,
architecture, and data size. It even exceeds RL oracles directly trained on test task distributions
by 50% in a zero-shot manner. CEC also yields robust embodied policies that are up to 1.6×
better than RL oracles when zero-shot probed with unseen environment dynamics. When learning
continuous robotic control, CEC successfully solves two simulated manipulation tasks, matching
and outperforming previous well-established baselines [53, 25, 41]. Further ablation reveals that
CEC with cross-episodic attention is a generally effective recipe for learning Transformer agents,
especially in applications where sequential data exhibit moderate and smooth progression.
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2 Cross-Episodic Curriculum: Formalism and Implementations

In this section, we establish the foundation for our cross-episodic curriculum method by first reviewing
the preliminaries underlying our case studies, which encompass two representative scenarios in
sequential decision-making. Subsequently, we formally introduce the assembly of curricular data
and the specifics of model optimization utilizing cross-episodic attention. Lastly, we delve into the
practical implementation of CEC in the context of these two scenarios.

2.1 Preliminaries

Reinforcement learning. We consider the setting where source agents learn through trial and
error in partially observable environments. Denoting states s ∈ S and actions a ∈ A, an
agent interacts in a Partially Observable Markov Decision Process (POMDP) with the transition
function p(st+1|st, at) : S × A → S. It observes o ∈ O emitted from observation function
Ω(ot|st, at−1) : S × A → O and receives scalar reward r from R(s, a) : S × A → R. Under the
episodic task setting, RL seeks to learn a parameterized policy πθ(·|s) that maximizes the return over
a fixed length T of interaction steps: πθ = argmaxθ∈Θ

∑T−1
t=0 γtrt, where γ ∈ [0, 1) is a discount

factor. Here we follow the canonical definition of an episode τ as a series of environment-agent
interactions with length T , τ := (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ), where initial states s0 are
sampled from initial state distribution s0 ∼ ρ0(s) and terminal states sT are reached once the elapsed
timestep exceeds T . Additionally, we view all RL tasks considered in this work as goal-reaching prob-
lems [39, 26] and constrain all episodes to terminate upon task completion. It is worth noting that sim-
ilar to previous work [42], training data are collected by source RL agents during their online learning.
Nevertheless, once the dataset is obtained, our method is trained offline in a purely supervised manner.

Imitation learning. We consider IL settings with existing trajectories composed only of state-action
pairs. Furthermore, we relax the assumption on demonstration optimality and allow them to
be crowdsourced [10, 12, 11]. Data collected by operators with varying expertise are therefore
unavoidable. Formally, we assume the access to a dataset DN := {τ1, . . . , τN} consisting of
N demonstrations, with each demonstrated trajectory τi := (s0, a0, . . . , sT−1, aT−1) naturally
identified as an episode. The goal of IL, specifically of behavior cloning (BC), is to learn a policy
πθ that accurately models the distribution of behaviors. When viewed as goal-reaching problems,
BC policies can be evaluated by measuring the success ratio in completing tasks [26].

2.2 Curricular Data Assembly and Model Optimization

Meaningful learning signals emerge when multiple trajectories are organized and examined cross-
episodically along a curriculum axis. This valuable information, which is not easily discernible in
individual training episodes, may encompass aspects such as the improvement of an RL agent’s
navigation policy or the generally effective manipulation skills exhibited by operators with diverse
proficiency levels. With a powerful model architecture such as Transformer [75, 16], such emergent
and valuable learning signals can be baked into policy weights, thereby boosting performance in
embodied tasks.

For a given embodied task M, we define its curriculum CM as a collection of trajectories τ consisting
of state-action pairs. A series of ordered levels [L1, . . . ,LL] partitions this collection such that⋃

l∈{1,...,L} Ll = CM and
⋂

∀i,j∈{1,...,L},i̸=j L{i,j} = ∅. More importantly, these ordered levels
characterize a curriculum by encoding, for example, learning progress in single environments, learning
progress in a series of progressively harder environments, or the increase of the demonstrator’s
expertise.

With a curriculum CM := {τi}Ni=1 and its characteristics [L1, . . . ,LL], we construct a curricular
sequence T that spans multiple episodes and captures the essence of gradual improvement in the
following way:

T :=
⊕

l∈{1,...,L}

[
τ (1), . . . , τ (C)

]
, where C ∼ U (J|Ll|K) and τ (c) ∼ Ll. (1)

The symbol ⊕ denotes the concatenation operation. U (JKK) denotes a uniform distribution over the
discrete set {k ∈ N, k ≤ K}. In practice, we use values smaller than |Ll| considering the memory
consumption.
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(a) Goal Maze (b) Watermaze (c) Irreversible Path (d) Lift (e) Can

Figure 2: We evaluate our method on five tasks that cover challenges such as exploration and planning
over long horizons in RL settings, as well as object manipulation and continuous control in IL settings.
Figures are from Beattie et al. [5] and Mandlekar et al. [53].

We subsequently learn a causal policy that only depends on cross-episodic historical observations
πθ(·|o(≤n)

≤t ). Note that this modeling strategy differs from previous work that views sequential
decision-making as a big sequence-modeling problem [13, 37, 42, 38]. It instead resembles the
causal policy in Baker et al. [4]. Nevertheless, we still follow the best practice [36, 60, 22] to provide
previous action as an extra modality of observations in POMDP RL tasks.

We leverage the powerful attention mechanism of Transformer [75] to enable cross-episodic atten-
tion. Given observation series O(n)

t := {o(1)0 , . . . , o
(≤n)
≤t } (shorthanded as O hereafter for brevity),

Transformer projects it into query Q = fQ(O), key K = fK(O), and value V = fV (O) matrices,
with each row being a D-dim vector. Attention operation is performed to aggregate information:

Attention(Q,K, V ) = softmax(
QK⊺

√
D

)V. (2)

Depending on whether the input arguments for fQ and f{K,V } are the same, attention operation can
be further divided into self-attention and cross-attention. Since tasks considered in this work do
not require additional conditioning for task specification, we follow previous work [4, 83] to utilize
self-attention to process observation series. Nevertheless, ours can be naturally extended to handle,
for example, natural language or multi-modal task prompts, following the cross-attention introduced
in Jiang et al. [38].

Finally, this Transformer policy is trained by simply minimizing the negative log-likelihood objective
JNLL of labeled actions, conditioned on cross-episodic context:

JNLL = − log πθ(·|T ) =
1

|T | × T

|T |∑
n=1

T∑
t=1

− log πθ

(
a
(n)
t |o(≤n)

≤t

)
. (3)

Regarding the specific memory architecture, we follow Baker et al. [4], Adaptive Agent Team et al.
[1] to use Transformer-XL [16] as our model backbone. Thus, during deployment, we keep its hidden
states propagating across test episodes to mimic the training settings.

2.3 Practical Implementations

We now discuss concrete instantiations of CEC for 1) RL with DMLab and 2) IL with RoboMimic.
Detailed introductions to the benchmark and task selection are deferred to Sec. 3. We investigate the
following three curricula, where the initial two pertain to RL, while the final one applies to IL:

Learning-progress-based curriculum. In the first instantiation, inspired by the literature on
learning progress [54, 27, 65, 40], we view the progression of learning agents as a curriculum.
Concretely, we train multi-task PPO agents [70, 63] on tasks drawn from test distributions. We
record their online interactions during training, which faithfully reflect the learning progress. Finally,
we form the learning-progress-based curriculum by sequentially concatenating episodes collected
at different learning stages. Note that this procedure is different from Laskin et al. [42], where for
each environment, the learning dynamics of multiple single-task RL agents has to be logged. In
contrast, we only track a single multi-task agent per environment.

Task-difficulty-based curriculum. In the second instantiation, instead of taking snapshots of
RL agents directly trained on test configurations, we collect learning progress on a series of easier
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Table 1: Generalization gaps between training and testing for DMLab levels. Note that agents
resulting from task-difficulty-based curricula are not trained on test configurations. Therefore, their
performance should be considered as zero-shot.

Level
Name

Difficulty
Parameter

Test
Difficulty

Training Difficulty
Ours

(Learning Progress)
Ours

(Task Difficulty)
BC

w/ Expert Data
RL

(Oracle)
Curriculum RL

(Oracle)

Goal Maze Room Numbers 20 20 5→10→15 20 20 5→10→15→20
Watermaze Spawn Radius 580 580 150→300→450 580 580 150→300→450→580

Irreversible Path Built-In Difficulty .9 .9 .1→.3→.5→.7 .9 .9 .1→.3→.5→.7→.9

but progressively harder tasks. For instance, in an embodied navigation task, the test configuration
includes 20 rooms. Rather than logging source agents’ learning progression in the 20-room maze,
we record in a series of mazes with 5, 10, and 15 rooms. We then structure stored episodes first
following learning progress and then the increase of layout complexity. This practice naturally
creates a task-difficulty-based curriculum, which resembles curriculum RL that is based on task
difficulty [54, 58]. We find it especially helpful for hard-exploration problems where the source
RL agent does not make meaningful progress.

Expertise-based curriculum. For the setting of IL from mixed-quality demonstrations, we
instantiate a curriculum based on demonstrators’ expertise. This design choice is motivated by
literature on learning from heterogeneous demonstrators [6, 81], with the intuition that there is little
to learn from novices but a lot from experts. To realize this idea, we leverage the Multi-Human
dataset from RoboMimic [53]. Since it contains demonstrations collected by human demonstrators
with varying proficiency, we organize offline demonstration trajectories following the increase of
expertise to construct the expertise-based curriculum.

3 Experimental Setup

In this section, we elaborate on the experimental setup of our case studies. Our investigation spans two
representative and distinct settings: 1) online reinforcement learning with 3D maze environments of
DMLab [5], and 2) imitation learning from mixed-quality human demonstrations of RoboMimic [53].
For each of them, we discuss task selection, baselines, and training and evaluation protocols. Teasers
of these tasks are shown in Figure 2.

3.1 Task Settings and Environments

DeepMind Lab [5] is a 3D learning environment with diverse tasks. Agents spawn in visually
complex worlds, receive ego-centric (thus partially observable) RGB pixel inputs, and execute
joystick actions. We consider three levels from this benchmark: Goal Maze, Watermaze [56], and
Sky Maze with Irreversible Path. They challenge agents to explore, memorize, and plan over a long
horizon. Their goals are similar — to navigate in complicated mazes and find a randomly spawned
goal, upon which sparse rewards will be released. Episodes start with randomly spawned agents and
goals and terminate once goals are reached or elapsed steps have exceeded pre-defined horizons.

RoboMimic [53] is a framework designed for studying robot manipulation and learning from
demonstrations. Agents control robot arms with fixed bases, receive proprioceptive measurements
and image observations from mounted cameras, and operate with continuous control. We evaluate
two simulated tasks: “Lift” and “Can”. In the “Lift” task, robots are tasked with picking up a small
cube. In the “Can” task, robots are required to pick up a soda can from a large bin and place it into a
smaller target bin. Episodes start with randomly initialized object configuration and terminate upon
successfully completing the task or exceeding pre-defined horizons.

3.2 Baselines

The primary goal of these case studies is to assess the effectiveness of our proposed cross-episodic
curriculum in increasing the sample efficiency and boosting the generalization capability of Trans-
former agents. Therefore, in online RL settings, we compare against source RL agents which generate
training data for our method and refer to them as oracles. These include a) PPO agents directly
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Figure 3: Evaluation results on DMLab. Our CEC agents perform comparable to RL oracles and
on average outperform other baseline methods. On the hardest task Irreversible Path where the RL
oracle and BC baseline completely fail, our agents outperform the curriculum RL oracle by 50% even
in a zero-shot manner. For our methods, DT, AT, and the BC w/ expert data baselines, we conduct 20
independent evaluation runs, each consisting of 100 episodes for Goal Maze and Watermaze and 50
episodes for Irreversible Path due to longer episode length. We test RL oracles for 100 episodes. The
error bars represent the standard deviations over 20 runs.

trained on test task distributions, denoted as “RL (Oracle)” hereafter, and b) curriculum PPO agents
that are gradually adapted from easier tasks to the test difficulty, which is referred to as “Curriculum
RL (Oracle)”. Furthermore, we compare against one concurrent and competitive method Agen-
tic Transformer [47], denoted as “AT”. It is closely related to our method, training Transformers
on sequences of trajectory ascending sorted according to their rewards. We also compare against
popular offline RL method Decision Transformer [13], denoted as “DT”. Additionally, we include
another behavior cloning agent that has the same model architecture as ours but is trained on opti-
mal data without cross-episodic attention. This baseline is denoted as “BC w/ Expert Data”. For
the case study on IL from mixed-quality demonstrations, we adopt the most competing approach,
BC-RNN, from Mandlekar et al. [53] as the main baseline. We also include comparisons against
other offline RL methods [44] such as Batch-Constrained Q-learning (BCQ) [25] and Conservative
Q-Learning (CQL) [41].

3.3 Training and Evaluation

We follow the best practice to train Transformer agents, including adopting AdamW optimizer [49],
learning rate warm-up and cosine annealing [48], etc. Training is performed on NVIDIA V100 GPUs.
During evaluation, for agents resulting from our method, each run involves several test rollouts to
fill the context. We keep hidden states of Transformer-XL [16] propagating across episodes. We run
other baselines and oracles for 100 episodes to estimate their performances. For our methods on
RL settings, we compute the maximum success rate averaged across a sliding window over all test
episodes to account for in-context improvement. The size of the sliding window equals one-quarter
of the total test episodes. These values are averaged over 20 runs to constitute the final reporting
metric. For our methods on the IL setting, since all training data are successful trajectories, we
follow Mandlekar et al. [53] to report the maximum success rate achieved over the course of training,
directly averaged over test episodes.

4 Experiments

We aim to answer the following four research questions through comprehensive experiments.

1. To what extent can our cross-episodic curriculum increase the sample efficiency of Trans-
former agents and boost their generalization capability?

2. Is CEC consistently effective and generally applicable across distinct learning settings?
3. What are the major components that contribute to the effectiveness of our method?
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Figure 4: Generalization results on DMLab. Top row: Evaluation results on Goal Maze with
unseen maze mechanism and Irreversible Path with out-of-distribution difficulty levels. Bottom row:
Evaluation results on three levels with environment dynamics differing from training ones. CEC
agents display robustness and generalization across various dimensions, outperforming curriculum
RL oracles by up to 1.6×. We follow the same evaluation protocol as in Figure 3. The error bars
represent the standard deviations over 20 runs.

4.1 Main Evaluations

We answer the first two questions above by comparing learned agents from our method against 1)
Reinforcement Learning (RL) oracles in online RL settings and 2) well-established baselines on
learning from mixed-quality demonstrations in the Imitation Learning (IL) setting.

We first examine agents learned from learning-progress-based and task-difficulty-based curricula in
challenging 3D maze environments. The first type of agent is denoted as “Ours (Learning Progress)”.
For the second type, to ensure that the evaluation also contains a series of tasks with increasing
difficulty, we adopt two mechanisms that control the task sequencing [58]: 1) fixed sequencing where
agents try each level of difficulty for a fixed amount of times regardless of their performance and
2) dynamic sequencing where agents are automatically promoted to the next difficulty level if they
consecutively succeed in the previous level for three times. We denote these two variants as “Ours
(Task Difficulty), Fixed” and “Ours (Task Difficulty), Auto”, respectively. Note that because the
task-difficulty-based curriculum does not contain any training data on test configurations, these two
settings are zero-shot evaluated on test task distributions. We summarize these differences in Table 1.
We denote AT and DT trained on data consisting of a mixture of task difficulties as “AT (Mixed
Difficulty)” and “DT (Mixed Difficulty)”. Note that these data are the same used to train “Ours
(Task Difficulty)”. Similarly, we denote AT and DT directly trained on test difficulty as “AT (Single
Difficulty)” and “DT (Single Difficulty)”. These data are the same used to train “Ours (Learning
Progress)”.

Cross-episodic curriculum results in sample-efficient agents. As shown in Figure 3, on two
out of three examined DMLab levels, CEC agents perform comparable to RL oracles and outperform
the BC baselines trained on expert data by at most 2.8×. On the hardest level Irreversible Path
where agents have to plan the route ahead and cannot backtrack, both the BC baseline and RL oracle
fail. However, our agents succeed in proposing correct paths that lead to goals and significantly
outperform the curriculum RL oracle by 50% even in a zero-shot manner. Because CEC only
requires environment interactions generated during the course of training of online source agents
(the task-difficulty-based curriculum even contains fewer samples compared to the curriculum RL,
as illustrated in Table 1), the comparable and even better performance demonstrates that our method
yields highly sample-efficient embodied policies. On average, our method with task-difficulty-based
curriculum performs the best during evaluation (Table A.5), confirming the benefit over the

7



Table 2: Evaluation results on RoboMimic. Visuomotor policies trained with our expertise-based
curriculum outperform the most competing history-dependent behavior cloning baseline, as well
as other offline RL algorithms. For our method on the Lift task, we conduct 5 independent runs
each with 10 rollout episodes. On the Can task, we conduct 10 independent runs each with 5 rollout
episodes due to the longer horizon required to complete the task. Standard deviations are included.

Task Ours BC-RNN [53] BCQ [25] CQL [41]

Lift 100.0± 0.0 100.0± 0.0 93.3± 0.9 11.3± 9.3
Can 100.0± 0.0 96.0± 1.6 77.3± 6.8 0.0± 0.0

Table 3: Ablation on the importance of cross-episodic attention. Transformer agents trained with
the same curricular data but without cross-episodic attention degrade significantly during evaluation,
suggesting its indispensable role in learning highly performant policies.

DMLab RoboMimic
Goal Maze Watermaze Irreversible Path Lift Can

Ours 65.2± 6.7 50.9± 6.6 38.2± 7.0 100.0± 0.0 100.0± 0.0
Ours w/o Cross-Episodic Attention 35.0± 7.1 20.0± 2.5 3.8± 4.9 75.9± 12.3 99.3± 0.9

concurrent AT approach that leverages chain-of-hindsight experiences. When compared to DT, it
outperforms by a significant margin, which suggests that our cross-episodic curriculum helps to
squeeze learning signals that are useful for downstream decision-making.

Cross-episodic curriculum boosts the generalization capability. To further investigate whether
CEC can improve generalization at test time, we construct settings with unseen maze mechanisms
(randomly open/closed doors), out-of-distribution difficulty, and different environment dynamics. See
the Appendix, Sec. C.2 for the exact setups. As demonstrated in Figure 4, CEC generally improves
Transformer agents in learning robust policies that can generalize to perturbations across various
axes. On three settings where the BC w/ Expert Data baseline still manages to make progress, CEC
agents are up to 2× better. Compared to oracle curriculum RL agents, our policies significantly
outperform them under three out of five examined scenarios. It is notable that on Irreversible Path
with out-of-distribution difficulty, CEC agent is 1.6× better than the curriculum RL oracle trained
on the same data. These results highlight the benefit of learning with curricular contexts. On average,
our method surpasses the concurrent AT baseline and achieves significantly better performance than
other baselines (Table A.6). This empirically suggests that CEC helps to learn policies that are robust
to environmental perturbations and can quickly generalize to new changes.

Cross-episodic curriculum is effective across a wide variety of learning scenarios. We
now move beyond RL settings and study the effectiveness of the expertise-based curriculum
in the IL setting with mixed-quality demonstrations. This is a common scenario, especially in
robotics, where demonstrations are collected by human operators with varying proficiency [52]. As
presented in Table 2, visuomotor policies trained with the expertise-based curriculum are able to
match and outperform the well-established baseline [53] on two simulated robotic manipulation
tasks and achieve significantly better performance than agents learned from prevalent offline RL
algorithms [25, 41]. These results suggest that our cross-episodic curriculum is effective and broadly
applicable across various problem settings. More importantly, it provides a promising approach to
utilizing limited but sub-optimal data in data-scarce regimes such as robot learning.

4.2 Ablation Studies

In this section, we seek to answer the third research question to identify the components critical to the
effectiveness of our approach. We focus on three parts: the importance of cross-episodic attention,
the influence of curriculum granularity, and the effect of varying context length. Finally, we delve
into the fourth question, identifying scenarios where CEC is expected to be helpful.

Importance of cross-episodic attention. The underlying hypothesis behind our method is
that cross-episodic attention enables Transformer agents to distill policy improvement when
mixed-optimality trajectories are viewed collectively. To test this, on DMLab levels and RoboMimic
tasks, we train the same Transformer agents with the same curricular data and training epochs but
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without cross-episodic attention. We denote such agents as “Ours w/o Cross-Episodic Attention” in
Table 3. Results demonstrate that the ablated variants experience dramatic performance degradation
on four out of five examined tasks, which suggests that naively behaviorally cloning sub-optimal
data can be problematic and detrimental. Cross-episodic attention views curricular data collectively,
facilitating the extraction of knowledge and patterns crucial for refining decision-making, thereby
optimizing the use of sub-optimal data.
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Figure 5: We compare the performance
relative to agents trained with the fine-
grained curricula. Performance mono-
tonically degrades as task-difficulty-
based curricula become coarser.

Curriculum granularity. We perform this ablation
with the task-difficulty-based curriculum on DMLab
levels, due to the ease of adjusting granularity. We treat
the curricula listed in the column “Ours (Task Difficulty)”
in Table 1 as “Fine”, and gradually make them coarser
to study the impact. Note that we ensure the same amount
of training data. See the Appendix, Sec. C.4 for how we
define granularity levels “Medium” and “Coarse”. We
visualize the performance relative to the most fine-grained
in Figure 5. The monotonic degradation of policy perfor-
mance with respect to curriculum coarseness suggests that
fine-grained curricula are critical for Transformer agents
to mostly benefit from cross-episodic training.

Varying context length. Lastly, we study the effect
of varying context length on DMLab and visualize it in
Figure 6. We normalize all performance values relative
to those of “Ours (Task Difficulty), Auto” reported in Figure 3. It turns out that both too short
and unnecessarily long context windows are harmful. On two out of three levels, using a shorter
context decreases the performance even more. This finding coincides with Laskin et al. [42] that a
sufficiently long Transformer context is necessary to retain cross-episodic information. Furthermore,
we also discover that an unnecessarily long context is also harmful. We hypothesize that this is due
to the consequent training and optimization instability.
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Figure 6: Both short and unnecessarily
long context windows decrease the per-
formance. Numbers in the legend de-
note context lengths. Performance val-
ues are relative to those of “Ours (Task
Difficulty), Auto” reported in Figure 3.
“Irrevers. Path” stands for the task “Irre-
versible Path”.

Curriculum selection based on task complexities and
data sources. For RL tasks, we recommend starting with
the learning-progress-based curriculum. However, if the
task itself is too challenging, such that source algorithms
barely make progress, we recommend the task-difficulty-
based curriculum. In IL settings, we further investigate the
performance of the learning-progress-based curriculum on
RoboMimic tasks considered in this work. Detailed setup
and results are included in Appendix, Sec C.5. To summa-
rize, if human demonstrations are available, even if they
are generated to be heterogeneous in quality, we recom-
mend using the expertise-based curriculum. However, in
the absence of human demonstrations and only with access
to machine-generated data (e.g., generated by RL agents),
our learning-progress-based curriculum is recommended
because it achieves non-trivial performance and signifi-
cantly outperforms offline RL methods such as CQL [41].

5 Related Work

Sequential decision-making with Transformer agents. There are many ongoing efforts to repli-
cate the strong emergent properties demonstrated by Transformer models for sequential decision-
making problems [80]. Decision Transformer [13] and Trajectory Transformer [37] pioneered this
thread by casting offline RL [44] as sequence modeling problems. Gato [68] learns a massively multi-
task agent that can be prompted to complete embodied tasks. MineDojo [22] and VPT [4] utilize
numerous YouTube videos for large-scale pre-training in the video game Minecraft. VIMA [38]
and RT-1 [9] build Transformer agents trained at scale for robotic manipulation tasks. BeT [71] and
C-BeT [14] design novel techniques to learn from demonstrations with multiple modes with Trans-
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formers. Our causal policy most resembles to VPT [4]. But we focus on designing learning techniques
that are generally effective across a wide spectrum of learning scenarios and application domains.

Cross-episodic learning. Cross-episodic learning is a less-explored terrain despite that it has
been discussed together with meta-RL [77] for a long time. RL2 [18] uses recurrent neural networks
for online meta-RL by optimizing multi-episodic value functions. Meta-Q-learning [21] instead
learns multi-episodic value functions in an offline manner. Algorithm Distillation (AD) [42] and
Adaptive Agent (AdA) [1] are two recent, inspiring methods in cross-episodic learning. Though
at first glance our learning-progress-based curriculum appears similar to AD, significant differences
emerge. Unlike AD, which focuses on in-context improvements at test time and requires numerous
single-task source agents for data generation, our approach improves data efficiency for Transformer
agents by structuring data in curricula, requiring only a single multi-task agent and allowing for
diverse task instances during evaluations. Meanwhile, AdA, although using cross-episodic attention
with a Transformer backbone, is rooted in online RL within a proprietary environment. In contrast,
we focus on offline behavior cloning in accessible, open-source environments, also extending to
IL scenarios unexplored by other meta-learning techniques. Complementary to this, another recent
study [43] provides theoretical insight into cross-episodic learning.

Curriculum learning. Curriculum learning represents training strategies that organize learning
samples in meaningful orders to facilitate learning [7]. It has been proven effective in numerous works
that adaptively select simpler task [58, 74, 69, 62, 15, 55, 59, 46] or auxiliary rewards[35, 72]. Tasks
are also parameterized to form curricula by manipulating goals [24, 30, 66], environment layouts[79,
3, 64], and reward functions [28, 34]. Inspired by this paradigm, our work harnesses the improving
nature of sequential experiences to boost learning efficiency and generalization for embodied tasks.

6 Conclusion

In this work, we introduce a new learning algorithm named Cross-Episodic Curriculum to enhance
the sample efficiency of policy learning and generalization capability of Transformer agents. It
leverages the shifting distributions of past learning experiences or human demonstrations when they
are viewed as curricula. Combined with cross-episodic attention, CEC yields embodied policies
that attain high performance and robust generalization across distinct and representative RL and IL
settings. CEC represents a solid step toward sample-efficient policy learning and is promising for
data-scarce problems and real-world domains.

Limitations and future work. The CEC algorithm relies on the accurate formulation of curricular
sequences that capture the improving nature of multiple experiences. However, defining these
sequences accurately can be challenging, especially when dealing with complex environments
or tasks. Incorrect or suboptimal formulations of these sequences could negatively impact the
algorithm’s effectiveness and the overall learning efficiency of the agents. A thorough exploration
regarding the attainability of curricular data is elaborated upon in Appendix, Sec D.

In subsequent research, the applicability of CEC to real-world tasks, especially where task difficulty
remains ambiguous, merits investigation. A deeper assessment of a demonstrator’s proficiency
trajectory — from initial unfamiliarity to the establishment of muscle memory — could offer a
valuable learning signal. Moreover, integrating real-time human feedback to dynamically adjust the
curriculum poses an intriguing challenge, potentially enabling CEC to efficiently operate in extended
contexts, multi-agent environments, and tangible real-world tasks.
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A Model Architecture

In this section, we provide comprehensive details about the Transformer model architectures con-
sidered in this work. We implement all models in PyTorch [61] and adapt the implementation of
Transformer-XL from VPT [4].

A.1 Observation Encoding

Experiments conducted on both DMLab and RoboMimic include RGB image observations. For
models trained on DMLab, we use a ConvNet [29] similar to the one used in Espeholt et al. [20]. For
models trained on RoboMimic, we follow Mandlekar et al. [53] to use a ResNet-18 network [29]
followed by a spatial-softmax layer [23]. We use independent and separate encoders for images taken
from the wrist camera and frontal camera. Detailed model parameters are listed in Table A.1.

Table A.1: Model hyperparameters for vision encoders.

Hyperparameter Value
DMLab

Image Size 72 × 96
Number of ConvNet Blocks 1
Channels per Block [16, 32, 32]
Output Size 256

RoboMimic

Image Size 84 × 84
Random Crop Height 76
Random Crop Width 76
Number of Randomly Cropped Patches 1
ConvNet Backbone ResNet-18 [29]
Output Size 64
Spatial-Softmax Number of Keypoints 32
Spatial-Softmax Temperature 1.0
Output Size 64

Since DMLab is highly partially observable, we follow previous work [20, 22, 4] to supply the model
with previous action input. We learn 16-dim embedding vectors for all discrete actions.

To encode proprioceptive measurement in RoboMimic, we follow Mandlekar et al. [53] to not apply
any learned encoding. Instead, these types of observation are concatenated with image features and
passed altogether to the following layers. Note that we do not provide previous action inputs in
RoboMimic, since we find doing so would incur significant overfitting.

A.2 Transformer Backbone

We use Transformer-XL [16] as our model backbone, adapted from Baker et al. [4]. Transformer-XL
splits long sequences into shorter sub-sequences that reduce the computational cost of attention while
allowing the hidden states to be carried across the entire input by attending to previous keys and
values. This feature is critical for the long sequence inputs necessary for cross-episodic attention.
Detailed model parameters are listed in Table A.2.

A.3 Action Decoding

To decode joystick actions in DMLab tasks, we learn a 3-layer MLP whose output directly parameter-
izes a categorical distribution. This action head has a hidden dimension of 128 with ReLU activations.
The “Goal Maze” and “Irreversible Path” tasks have an action dimension of 7, while “Watermaze” has
15 actions. To decode continuous actions in RoboMimic, we learn a 2-layer MLP that parameterizes
a Gaussian Mixture Model (GMM) with 5 modes that generates a 7-dimensional action. This network
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Table A.2: Model hyperparameters for Transformer-XL.

Hyperparameter Value (DMLab) Value (RoboMimic)
Hidden Size 256 400
Number of Layers 4 2
Number of Heads 8 8
Pointwise Ratio 4 4

has a hidden dimension of 400 with ReLU activations. During deployment, we employ the “low-noise
evaluation” trick [31].

B Training Details and Hyperparameters

All experiments are conducted on cluster nodes with NVIDIA V100 GPUs. We utilize DDP (dis-
tributed data parallel) to accelerate the training if necessary. Training hyperparameters are listed in
Table A.3.

Table A.3: Hyperparameters used during training.

Hyperparameter Value (DMLab) Value (RoboMimic)
Learning Rate 0.0005 0.0001
Warmup Steps 1000 0
LR Cosine Annealing Steps 100000 N/A
Weight Decay 0.0 0.0

C Experiment Details

C.1 DMLab Main Experiment

Our DMLab main experiment is conducted on three levels with task IDs

• explore goal locations large,

• rooms watermaze,

• and skymaze irreversible path hard.

We use no action repeats during training and evaluation. For experiments with varying task difficulty,
we select difficulty parameters “room numbers”, “spawn radius”, and “built-in difficulty” for these
three levels, respectively. We adopt environment wrappers and helper functions from Petrenko et al.
[63] to flexibly and precisely maneuver task difficulties.

Due to different task horizons, we tune the context length of Transformer-XL models and vary
curricular trajectories accordingly. These differences are summarized in Table A.4.

RL oracles serve as source agents used to generate training data for our methods and the “BC w/
Expert Data” baseline. They are trained with the PPO [70] implementation from Petrenko et al. [63].
The “BC w/ Expert Data” baselines have the same model architecture, training hyperparameters, and
amount of training data as our method, but are trained solely on trajectories generated by the best
performing RL oracles without cross-episodic attention.

C.2 DMLab Generalization

This series of experiments probe the zero-shot generalization capabilities of embodied agents
in unseen maze configurations, out-of-distribution difficulty levels, and varying environment
dynamics. For the task “Goal Maze w/ Unseen Mechanism”, we use the level with task ID
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Table A.4: Experiment details on DMLab tasks. Columns “Epoch” denote the exact training epochs
with best validation performance. We select these checkpoints for evaluation. For task-difficulty-
based curriculum, the column “Training Trajectories” with n×m entries means n trajectories per
difficulty level (m levels in total). The column “Sampled Episodes” with [i, j] entries means we first
determine the number of episodes per difficulty level by uniformly sampling an integer from [i, j]
(inclusively).

Level
Name

Context
Length

Task-Difficulty-Based Curriculum Learning-Progress-Based Curriculum
Epoch Training Trajectories Sampled Episodes Epoch Training Trajectories Sampled Episodes

Goal Maze 500 84 100 x 3 [1, 5] 88 300 9
Watermaze 400 89 100 x 3 [1, 5] 80 300 9

Irreversible Path 1600 90 100 x 4 [1, 3] 97 400 8

Table A.5: Evaluation results on DMLab, averaged over three tasks (Figure 3).

Ours (Task
Difficulty), Auto

Ours (Task
Difficulty), Fixed

Ours (Learning
Progress)

DT (Mixed
Difficulty)

DT (Single
Difficulty)

AT (Mixed
Difficulty)

AT (Single
Difficulty)

BC w/ Expert
Data

RL
(Oracle)

Curriculum RL
(Oracle)

51.4 54.4 32.4 35.3 11.7 42.7 33.4 14.2 40.6 50.6

Table A.6: Generalization results on DMLab, averaged over five settings (Figure 4).

Ours (Task
Difficulty)

Ours (Learning
Progress)

DT (Mixed
Difficulty)

DT (Single
Difficulty)

AT (Mixed
Difficulty)

AT (Single
Difficulty)

BC w/ Expert
Data

RL
(Oracle)

Curriculum RL
(Oracle)

39.6 27.8 31.8 13.6 39.4 29.2 18.1 30.0 37.6

explore obstructed goals large, which adds randomly opened and closed doors into the maze
while ensuring a valid path to the goal always exists. An example of an agent’s ego-centric observation
is visualized in Figure A.1.

The task “Irreversible Path (OOD. Difficulty)” corresponds to configurations with the built-in difficulty
of 1 (agents are only trained on difficulty up to 0.9, as noted in Table 1). For tasks with varying
environment dynamics, we directly test agents with an action repeat of 2. This is different from the
training setting with no action repeat.

C.3 RoboMimic Main Experiment

We leverage the Multi-Human (MH) dataset from Mandlekar et al. [53]. It consists of demonstrations
collected by operators with varying proficiency. We construct the expertise-based curriculum by
following the order of “worse operators, okay operators, then better operators”. We use a context
length of 200 for both tasks. There are 90 trajectories per expertise level. To determine the number of
trajectories per expertise level when constructing curricular data, we uniformly sample an integer
from [1, 5] (inclusively). The “Lift” and “Can” tasks are solved after training for 33 epochs and 179
epochs, respectively. We control for the same number of training epochs in subsequent ablation
studies.

C.4 Ablation Study on Curriculum Granularity

We perform this ablation with the task-difficulty-based curriculum on DMLab levels due to the ease of
adjusting granularity. The definition of varying levels of curriculum coarseness is listed in Table A.7.

Table A.7: Definitions of varying levels of curriculum coarseness.

Level Name Difficulty Parameter Test Difficulty Fine Medium Coarse
Goal Maze Room Numbers 20 5→10→15 5→10 5→15
Watermaze Spawn Radius 580 150→300→450 150→300 150→450

Irreversible Path Built-In Difficulty 0.9 .1→.3→.5→.7 .1→.5→.7 .1→.3→.5
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Figure A.1: A visualization of the task “Goal Maze (Unseen Mechanism)”. It includes doors that
are randomly opened or closed.

Table A.8: Results show the performance of different curricula on two robotic manipulation tasks:
Lift and Can. Standard deviations are included.

Task Expertise-Based Curriculum Learning-Progress-Based Curriculum CQL [41]

Lift 100.0± 0.0 32.0± 17.0 2.7± 0.9
Can 100.0± 0.0 30.0± 2.8 0.0± 0.0
Average 100.0 31.0 1.4

C.5 Comparison of Curricula in RoboMimic

In IL settings, we further explored the efficacy of various curricula. For the RoboMimic tasks
examined, we employed a learning-progress-based curriculum, ensuring the total training trajectories
matched those of the expertise-based curriculum (i.e., 270 trajectories per task). All other parameters
remained consistent, with the training data derived from RoboMimic’s machine-generated dataset.

Table A.8 indicates that when heterogeneous-quality human demonstrations are accessible, the
expertise-based curriculum is preferable due to its superior performance over the learning-progress-
based approach. Conversely, without expert demonstrations and relying solely on machine-generated
data, the learning-progress-based curriculum is still commendable. It offers noteworthy results and
surpasses offline RL methods like CQL [41], even though CQL is trained on the full RoboMimic
dataset, encompassing 1500 trajectories for the Lift task and 3900 for the Can task.

D Feasibility of Obtaining Curricular Data

The challenge of accurately orchestrating a curriculum is non-trivial and hinges on various factors.
In the present work, three curriculum designs are introduced and validated, each with its practical
considerations and underlying assumptions, discussed herein.

Learning-Progress-Based Curriculum. RL agents typically exhibit monotonic improvement
over training epochs, thereby naturally producing incrementally better data. The curriculum
here is devised through a series of checkpoints throughout the training duration, necessitating no
supplementary assumptions for its formulation.

Task-Difficulty-Based Curriculum. In contexts where environmental difficulty is parameterizable,
curricula can be structured through a schedule, determined by the relevant difficulty parameter, as
demonstrated within this work. In scenarios lacking parameterized difficulty, alternatives such as
methods proposed by Kanitscheider et al. [40] may be employed. The application of our method to
tasks where difficulty is not explicitly characterized presents an intriguing avenue for future research.

Expertise-Based Curriculum. A notable limitation resides in the requisite to estimate demon-
strators’ proficiency. While some IL benchmarks, e.g., RoboMimic [53], come pre-equipped
with proficiency labels, a broader application of our method necessitates an approximation of
proficiency. One plausible approach entails ranking trajectories via completion time. Furthermore,
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a demonstrator’s proficiency is likely to organically improve—from initial unfamiliarity with
teleoperation systems or tasks, to a stage of executing data collection with muscle memory [52].
This progression potentially provides a rich learning signal conducive for CEC application.

E Broader Impact

Our Cross-Episodic Curriculum can significantly enhance Transformer agent learning but carries
potential societal impacts. The efficiency of our method depends on the curriculum’s design. If
the curriculum unintentionally reflects biases, it could lead to the amplification of these biases in
learned policies, potentially perpetuating unfair or discriminatory outcomes in AI-driven decisions.
Furthermore, the computational intensity of our approach at evaluation could contribute to increased
energy usage, which has implications for the environmental footprint of AI applications.
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