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Abstract

Generative models of observations under interventions have been a vibrant topic of
interest across machine learning and the sciences in recent years. For example, in
drug discovery, there is a need to model the effects of diverse interventions on cells
in order to characterize unknown biological mechanisms of action. We propose
the Sparse Additive Mechanism Shift Variational Autoencoder, SAMS-VAE, to
combine compositionality, disentanglement, and interpretability for perturbation
models. SAMS-VAE models the latent state of a perturbed sample as the sum of a
local latent variable capturing sample-specific variation and sparse global variables
of latent intervention effects. Crucially, SAMS-VAE sparsifies these global latent
variables for individual perturbations to identify disentangled, perturbation-specific
latent subspaces that are flexibly composable. We evaluate SAMS-VAE both
quantitatively and qualitatively on a range of tasks using two popular single cell
sequencing datasets. In order to measure perturbation-specific model-properties,
we also introduce a framework for evaluation of perturbation models based on
average treatment effects with links to posterior predictive checks. SAMS-VAE
outperforms comparable models in terms of generalization across in-distribution
and out-of-distribution tasks, including a combinatorial reasoning task under re-
source paucity, and yields interpretable latent structures which correlate strongly to
known biological mechanisms. Our results suggest SAMS-VAE is an interesting
addition to the modeling toolkit for machine learning-driven scientific discovery.

1 Introduction

Scientific discovery often involves observation and intervention on systems with the aim of eliciting
a mechanistic understanding. For example, in biology, large cellular perturbation screens with
high-dimensional readouts have become increasingly popular as an approach to investigate biological
mechanisms, their regulatory dependencies, and their responses to drugs. As technology enables both
richer and finer grained measurements of these systems, there is an increasing need and opportunity
for machine learning methods to help generate predictive insights of growing complexity.

Generative models such as variational auto-encoders (VAEs) [8] are commonly used to learn represen-
tations of complex datasets and their underlying distributions. A common goal in generative modeling
is disentanglement, whereby latent structures should factorize into semantic subspaces to facilitate
generalization and discovery. A desirable outcome consists of these subspaces learned by models be-
ing indicative of latent mechanisms, while sparsely varying according to the underlying latent factors
of variation in the true data distribution [10]. This goal has recently been formalized under the Sparse
Mechanism Shift framework [20, 9] which connects disentanglement to the causal inference field
through the identification of causal graphs. Concomitantly, recent models such as the Compositional
Perturbation Autoencoder [13] and SVAE+ [12] have successfully applied disentangled deep learning
to scientific problems in single-cell RNA-sequencing under perturbation.
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In this work, we propose the Sparse Additive Mechanism Shift Variational Autoencoder (SAMS-
VAE), a model which extends prior work by capturing interventions and their sparse effects as explicit
additive latent variables. Compared to previous approaches for modeling disentanglement in VAEs
applied to cellular data, our model explicitly combines sparse perturbation-specific latent effects,
perturbation-independent natural variation of cells, and additive composition of perturbation effects
in a joint model. We also introduce CPA-VAE, which ablates the sparsity mechanism we propose,
yielding a generative model with similar assumptions as the popular perturbation model CPA. To
perform approximate inference, we propose rich variational families for these models and showcase
how sophisticated inference facilitates identifying predictive factors of variation. We additionally
introduce a lens on evaluation of perturbation models for biology based on model-based average
treatment effects and differential expression, which we link to posterior predictive checks.

In our experiments we showcase SAMS-VAE in various tasks across cellular sequencing data.
We observe that SAMS-VAE achieves superior predictive capability over baselines across two
popular single-cell sequencing datasets in tasks related to in-distribution- and out-of-distribution
generalization, including combinatorial generalization when multiple perturbations are applied. We
furthermore examine the interpretability of the model’s disentangled structures and demonstrate
significantly improved ability to recover factors predictive of known molecular pathways as compared
to recently proposed models. Finally, we show that our best models also excel in the treatment effect
estimation evaluation we propose.

2 The Sparse Additive Mechanism Shift Variational Autoencoder

We consider datasets (xi,di)Ni=1 of observations xi 2 RDx and perturbation dosage vectors di 2
{0, 1}T , where di,j is 1 if sample i received perturbation j and 0 otherwise. We aim to develop
generative models of p(x|d), representing the distribution of features of a target system conditional
on perturbations. In the following sections, we will introduce the details of our proposed modeling
strategy, the Sparse Additive Mechanism Shift Variational Autoencoder (SAMS-VAE).

2.1 Generative model

We consider generative models with the following basic structure:

zi = z
b
i + z

p
i

xi ⇠ p(xi|zi;✓)

zi 2 RDz is the latent state embedding for sample i, which is modeled as the sum of a latent basal
state embedding z

b
i 2 RDz and a latent perturbation effect embedding z

p
i 2 RDz . Observations are

then sampled from a conditional likelihood p(xi|zi;✓). In this paper, we focus on likelihoods for
p(xi|zi;✓), where parameters are computed from zi using a neural network with parameters ✓.

The core modeling assumption of SAMS-VAE relates to the distribution p(zp
i |di). We propose to

model perturbations as inducing sparse latent offsets that compose additively as follows:

z
p
i =

TX

t=1

di,t(et �mt), (1)

where et 2 RDz and mt 2 {0, 1}Dz are global latent variables that determine the latent offset due to
perturbation t. mt is a binary mask that performs feature selection on the latent offset et: when mt

is sparse et �mt will result in a sparse offset. Importantly, global variables et and mt are shared
across all samples (corresponding to cells) that receive perturbation t.

We specify the prior distributions p(et) ⇠ N (0,�I) and p(mt) = Bern(↵) for perturbation effects,
where ↵ is chosen to be small to induce sparsity. While we focus on the Bernoulli prior for the mask,
we also provide a Beta-Bernoulli prior in our code for mask mt as an easy plug-in replacement. We
omit additional prior assumptions regarding the structure of perturbation effects in this work. We
specify the prior distribution p(zb

i ) ⇠ N (0, I) for latent basal states.

Using this latent structure, we define the full generative model for SAMS-VAE as in Figure 5. The
joint probability distribution over our observed and latent variables is defined as:
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Algorithm 1 SAMS-VAE generative process

Require: X 2 RN⇥Dx , D 2 {0, 1}N⇥T

for t from 1 to T do

et ⇠ N (0, I)
mt ⇠ Bern(↵)

end for

for i from 1 to N do

z
b
i ⇠ N (0, I)

z
p
i =

PT
t=1 di,t(et �mt)

zi = z
b
i + z

p
i

xi ⇠ p(xi|zi;✓)
end for

x

+ dot

zb et mt

✓

N

T

Figure 1: SAMS-VAE represented as an generative process (left) and as a graphical model (right).

p(X,Z
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#
, (2)

for observations X 2 RN⇥Dx , perturbation dosages D 2 {0, 1}N⇥Dz , latent basal states
Z

b 2 RN⇥Dz , latent perturbation embeddings E 2 RT⇥Dz , and latent perturbation masks
M 2 {0, 1}T⇥Dz .

2.2 Likelihood choice for scRNA-Seq Data

In the previous section, we used a generic form p(xi|zi;✓) for the observation model over x to
show the generality of the approach. Below, we describe the observation model we use to apply
SAMS-VAE to single cell RNA-sequencing data (scRNA-seq) in more detail.

We represent scRNA-seq observations as xi 2 NDx , where each value xi,j is the number of measured
transcripts in cell i that correspond to gene j, and follow the likelihood introduced by Lopez et al.
[11, 12] to model the elaborate noise structure of scRNA-seq data. An additional utility quantity
library size li, the total number of transcripts measured in cell i, is included as an observed variable in
the conditioning set. This is useful because the library size is largely determined by technical factors
that we are not interested in modeling. The full likelihood function is then defined as follows:

⇢i = f✓(zi)

�i ⇠ �(⇢ili, ✓d)

xi ⇠ Poisson(�i),

where ⇢i 2 [0, 1]Dx represents the expected frequency of each transcript in cell i and is parameterized
by f✓, a neural network with a softmax output. Observations are then sampled from a Gamma-Poisson
distribution (equivalently, a negative binomial distribution) with mean ⇢ili 2 RDx

+ and inverse
dispersion ✓d 2 RDx

+ . ✓d is a learned parameter that is shared across cells.

2.3 Inference

We perform inference on SAMS-VAE using stochastic variational inference [4, 8] to approximate the
marginal likelihood log p(X|D) by optimizing parameters � and ✓. We do so by maximizing the
evidence lower bound (ELBO) for SAMS-VAE, defined as follows:

ELBO(�,✓) = EZb,E,M⇠q(·|X,D;�) log
p(X,Z

b
,M ,E|D;✓)

q(Zb,M ,E|X,D;�)
. (3)
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A key question when performing variational inference is the choice of variational family to approxi-
mate the posterior distribution. As a baseline inference strategy, we consider the following amortized

mean-field inference scheme for SAMS-VAE:

q(Zb
,M ,E|X,D;�) =

"
TY

t=1

q(mt;�)q(et;�)

#"
NY

i=1

q(zb
i |xi;�)

#
. (4)

We parameterize q(mt;�) = Bern(p̂t) and q(et;�) = N (µ̂t, �̂t) with learnable parameters
p̂t, µ̂t, �̂t. We define q(zb

i |xi) = N (f̂enc(xi)), where f̂enc is a learnable neural network that
predicts mean and standard deviation parameters. During training, gradients are computed for
q(mt;�) with a Gumbel-Softmax straight-through estimator [5].

We propose two improvements to the mean-field inference scheme that aim to more faithfully invert
the SAMS-VAE generative model. First, we model possible correlations between sample latent basal
states zb

i and the global latent perturbation masks and embeddings (correlated encoder). We do so
by implementing q(zb

i |xi,di,E,M) = N (f̂enc([xi z
p
i ])) for zp

i as defined in equation 1, where
f̂enc is a neural network that takes as input both the observations and the estimated latent perturbation
effect embeddings for a given sample. Second, we model possible correlations between the latent
perturbation masks and embeddings by replacing q(et) with q(et|mt) (correlated embeddings).
We implement q(et|mt) = N (f̂emb(mt, t)) with a learnable neural network f̂emb that predicts the
embedding from a mask and a one-hot encoding of the treatment index. Applying both of these
modifications, we define the correlated variational family for SAMS-VAE as:

q(Zb
,M ,E|X,D) =

"
TY

t=1

q(mt;�)q(et|mt;�)

#"
NY

i=1

q(zb
i |xi,di,E,M ;�)

#
. (5)

This richer variational family posits a joint infinite mixture variational distribution between the
global and local variables in the model to finely capture their interdependencies and we evaluate its
components separately in our experiments. We elaborate on the objective per minibatch and other
details in our supplemental Section A.1.

2.4 CPA-VAE

To directly assess the effect of the sparsity inducing masks, we define an ablated model, CPA-VAE,
that is identical to SAMS-VAE with all mask components fixed to 1. Thus, in contrast to equation
1, we have that zp

i =
PT

t=1 di,tet. We call this model CPA-VAE because it directly incorporates
the additive latent composition assumption from CPA [13], and CPA-VAE can be thought of as an
extension of CPA to a fully specified generative model. We note that CPA-VAE inherits the benefits
of the inference improvements to the variational families we propose in this work and will assess the
contributions of better inference and sparse masking separately.

3 Quantitative Evaluation of Perturbation Models

In this section we discuss two quantitative strategies to rigorously evaluate our perturbation models.
First, we discuss how to estimate the marginal likelihood for our model on held-out data, a common
strategy employed across generative modeling to assess density estimation. Second, we define a
posterior predictive check for model predictions of average treatment effects.

3.1 Marginal Likelihood

We consider the marginal log likelihood of held out data under an inferred generative model, estimated
via the importance weighted ELBO (IWELBO) [1], as our primary evaluation metric (a similar metric
was used in Lopez et al. [12]) Specifically, we estimate logP (X|D,✓) on held out data, where
✓ denotes decoder parameters. Let H = (Zb

,M ,E) represent the set of latent variables for
SAMS-VAE. Then we can write the importance weighted ELBO with K particles as:

IWELBO(X|D,�,✓) = EH(1),...,H(K)⇠q(H|X,D,�)log
1

K

KX

k=1

p(X,Hk|D,✓)

q(Hk|X,D,�)
.
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The importance weighted ELBO can be used to holistically compare the generalization of generative
models such as SAMS-VAE, CPA-VAE, and SVAE+. We note, however, that a marginal likelihood
cannot be computed for models that are not fully specified as probabilistic models. In practice, we
estimate IWELBO as follows:

IWELBO(X|D,�,✓) = EH(1),...,H(K)⇠q(H|X,D,�)log
1

K

KX

k=1

wk, (6)

for

wk =

"
p(M (k)

,E
(k)|✓)

q(M (k),E(k)|�)

NY

i=1

p(xi|zb(k)
i ,M

(k)
,E

(k)
,di,✓)p(z

b(k)
i )

q(zb(k)
i |M (k),E(k),X,di,�)

#
. (7)

3.2 A Posterior Predictive Check for Average Treatment Effects of Perturbation Models

As a second category of metrics, we consider posterior predictive checks (PPC) [2, 19]: we query
test statistics of interest in the predictive distribution of learned models and compare these statistics
against estimates from the data. These types of assessments can be useful when critiquing models for
specific use cases, such as predicting the mean of some measurement under different perturbations.
However, these assessments only characterize narrow aspects of the predictive distribution, providing
a less complete assessment than the marginal likelihood.

As a test statistic for our PPC we choose the population average treatment effect of a perturbation
relative to a control perturbation on each measurement xi,j for sample i and gene j, given given as:

ATE = Ei2D [[xi,j |do(d⇤)]� [xi,j |do(d0)]] .

We define the average treatment effect for SAMS-VAE as ATESAMS-VAE(d⇤|Dm) for an applied
treatment d⇤ and conditioning data Dm (the training data) as the difference between the expected
predictive value of output variable xi,j given a treatment d⇤ and the expected predictive value of xi,j

given control treatment d0:

ATESAMS-VAE(d
⇤|Dm) = Ep(zb

j )p(E,M |Dm) [T1 � T2] ,

with T1 := Ep(xi,j |do(d⇤),zb
j ,M ,E) [xi,j ] and T2 := Ep(xi,j |do(d0),zb

j ,M ,E) [xi,j ].

Both of the inner expectations share global and local latent variables and only differ in the treatments,
while marginalizing over observation noise. We thus disentangle between noise differences caused by
a treatment, since observation noise is marginalized out. We also marginalize over the prior basal
state p(zb) in the outer expectation, which simulates populations of different cells varying by natural
variation. In practice we draw K samples zb

k ⇠ p(zb) and Ek,Mk ⇠ p(E,M |Dm) for the outer
expectation and evaluate the inner expectations by a small amount of S samples. In cases where
observations contain multiple features (i.e. genes j), this quantity yields a vector per feature. Using
this approach we can generate perturbed cells using the dosages d. We note that other models are
treated equivalently when feasible by handling their global and local variables analogously.

Because we cannot directly observe counterfactuals, we must identify a related observed quantity to
evaluate our model estimated average treatment effects. We reach for differential expression (DE),
a commonly chosen metric to study sequencing data collected under different conditions. A key
difference between differential expression and average treatment effects is differential expression’s
computation based on differences of population averages.

A second key difference is that the model-based ATE marginalizes out observation noise per sample,
while DE cannot distinguish noise from perturbation effects. We note that differential expression as
such takes the form of the following expression and is computed over a dataset D� over which the
expectation is computed (where D

d

� denotes the subset of the dataset D� under condition d):

DEData(d
⇤|D�) = Exi⇠D

d⇤
�
[xi,j |do(d⇤)]� E

xi⇠D
d0
�
[xi,j |do(d0)].
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To create the metric ATE-Pearson r(ATESAMS-VAE(d⇤|Dm),DEData(d⇤|D�)) we compute the Pear-
son correlation coefficient r between differential expression estimates from data DEData and our
model-based estimator ATESAMS-VAE across all features (commonly genes indexed by j).

This also reveals the relationship to a PPC p(r(ATESAMS-VAE(d⇤|Dm),DEData(d⇤|D�))|Dm,D�),
considering ATE as the diagnostic statistic which is approximated by DE in the observed sample.
The dataset Dm for conditioning or training the model and a dataset D� for estimating differential
expression may be the same or different, depending on the use case. We note that the utilization of a
separate dataset for a PPC is unconventional, but has previously been used in HPCs [14].

4 Experiments

Overview We compare SAMS-VAE with baseline models through a series of applications to
perturb-seq datasets. Perturb-seq is a type of biological experiment in which cells are individually
perturbed and subsequently profiled with single cell RNA sequencing (scRNA-seq). Single cell RNA
sequencing measures the count of messenger RNA (mRNA) transcripts (also called gene expression)
for thousands of genes in each cell, providing a rich, high-dimensional characterization of cellular
state. Common perturbation types for perturb-seq experiments include genetic knockouts, which
disable the expression of target genes through gene editing, and chemical compounds.

In our experiments, we represent perturb-seq datasets as a gene expression matrix X 2 NN⇥Dx and
a perturbation dosage matrix T 2 {0, 1}N⇥T for N cells, Dx gene transcripts, and T perturbations.
Entries Xi,j represent the number of transcripts from gene j observed in cell i and entries Ti,k

represent whether cell i received perturbation k. We compare SAMS-VAE against baseline models
based on their ability to model the distribution of perturb-seq data, generalize to new perturbations in
combinatorial settings, and disentangle known biological pathways in their latent variables.

Baselines We consider CPA-VAE, SVAE+, and conditional VAE [21] as baselines. As discussed
in Section 2.4, CPA-VAE can be thought of as an extension of CPA [13] to a fully specified generative
model and takes advantage of our proposed correlated inference strategy. We additionally consider
ablations of the correlated inference strategies for SAMS-VAE and CPA-VAE. Complete details of
model choices are provided in the appendix.

Code availability Our code, which includes implementations of all models and experiment config-
urations, is available at https://github.com/insitro/sams-vae.

4.1 Generalization under individual perturbations

Dataset To assess model generalization to held out samples under individual perturbations, we
analyze a subset of the genome-wide CRISPR interference (CRISPRi) perturb-seq dataset from
Replogle et al. [17], which we call replogle-filtered. CRISPRi is a type of genetic perturbation
that represses the expression of selected target genes. Following the preprocessing steps from Lopez
et al. [12], replogle-filtered is filtered to contain perturbations that were identified as having
strong effects and genes that were associated with these perturbations. We additionally include cells
with non-targeting CRISPR guides to use as controls for average treatment effect prediction. All
together, replogle-filtered contains 118,461 cells, 1,187 gene expression features per cell, and
722 unique CRISPR guides (perturbations). We randomly sample train, validation, and test splits.

Model Inference Test IWELBO Mask PW. Acc. ATE-Pearson
Conditional VAE amortized MF �1766.10± 0.18 - 0.765

SVAE+ amortized MF �1761.42± 0.06 0.78± 0.04 0.605
CPA-VAE amortized MF �1760.14± 0.20 - 0.523
CPA-VAE corr. zbasal �1756.57± 0.14 - 0.571

SAMS-VAE amortized MF �1757.72± 0.14 0.68± 0.09 0.302
SAMS-VAE corr. E �1758.08± 0.07 0.71± 0.04 0.319
SAMS-VAE corr. zbasal �1756.40± 0.06 0.87± 0.02 0.718
SAMS-VAE corr. zbasal and E �1756.27 ± 0.10 0.89 ± 0.03 0.765

Table 1: Quantitative evaluation of treatment effects on Replogle filtered dataset (100 latent dimen-
sions) using K = 10.000 samples. We find that inference strategies utilizing correlated variational
families lead to better quantitative results, and that ATE and Mask Recovery are correlated.
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Figure 2: Visualization of inferred latent perturbation masks and embedding means for the best
performing checkpoint of each model in replogle-filtered. We visualize the latent variables for
the 345 perturbations with pathway annotations from Replogle et al. [17] and group by pathway. The
SAMS-VAE and CPA-VAE models were trained with our proposed correlated inference strategy.

Evaluation protocol Each model is trained with a 100 dimensional latent space and MLP encoders
and decoders with a single hidden layer of dimension 400 (see Section A.4 for full training details).
Based on validation performance and sparsity, a Beta(1, 2) prior was selected for the SVAE+ mask,
and a Bern(0.001) prior was selected for SAMS-VAE. For each model type, we compute the test set
importance weighted ELBO as described in Section 3.1 and report the mean and standard deviation
across five training runs with different random seeds. We additionally estimate the model average
treatment effect with K = 10, 000 particles as defined in Section 3.2 for the best model of each type
and report the correlation between this quantity and the estimated differential expression from data.

Results Quantitative results are presented in Table 1. Comparing first between model types, we
observe that SAMS-VAE with fully correlated inference achieves the best test IWELBO and average
treatment effect correlation. Interestingly, CPA-VAE with correlated inference achieves strong test
IWELBO performance but falls behind on average treatment effect prediction, while conditional VAE
has weak IWELBO performance but achieves strong average treatment effect prediction. SVAE+
does not perform well on either metric in this setting.

In addition to comparing model types, we perform an ablation of SAMS-VAE and CPA-VAE inference
strategies. We find that the correlated zbasal strategy yields substantial improvements in performance
for both SAMS-VAE and CPA-VAE, while the correlated E strategy improvements are minor.

4.1.1 Recovery of biological mechanisms based on disentangled factors

Evaluation protocol We assess the degree to which the pattern of perturbation effects on inferred
latent factors in the SAMS-VAE and SVAE+ models from the previous section are predictive of
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Figure 3: We visualize model-estimated treatment effects (ATESAMS-VAE) and data-estimated differ-
ential expression (DEData) for intervention-gene pairs in the Replogle experiment. We observe broad
correlation (Pearson r = 0.765): for example, perturbations of ribosomal subunits influence on all
expression broadly with matching directionality, while other guides exhibit more targeted effects.

known biological pathways as annotated by Replogle et al. [17] (345 of the 722 targeted genetic
perturbations are annotated). To do so, we define an inferred binary mask of perturbation effects on
latent factors by thresholding the inferred latent mask probabilities in each model at p = 0.5. For
each model, we fit a random forest model using scikit-learn [16] to predict pathway annotations from
a subset of the perturbation latent masks and assess pathway prediction accuracy on the remaining
perturbations. This evaluation is performed on the best checkpoint for each model type with 10
random splits of perturbations (70% train, 30% test), and the mean and standard deviation of the
pathway prediction accuracy is reported.

We also provide a set of visualizations to qualitatively assess the latent structures learned by each
model. We plot the inferred masks and embeddings for SAMS-VAE, SVAE+, and CPA-VAE in
Figure 2, and visualize the SAMS-VAE estimated average treatment effects and estimated differential
expression corresponding to these perturbation effects in Figure 3. Hierarchical clustering and UMAP
projection of the inferred perturbation embeddings are presented in Figure 7 in Section A.6.

Results We observe that the latent mask inferred by SAMS-VAE is more predictive of the annotated
pathways in the replogle-filtered dataset than that inferred by SVAE+. Additionally, we find
that performing correlated inference on the perturbation embeddings improved pathway prediction
performance for SAMS-VAE. Qualitatively, we observe that both SAMS-VAE and SVAE+ infer
sparse masks with distinct patters between annotated pathways.

4.2 Modeling compositional interventions in a CRISPRa perturb-seq screen

Dataset We analyze the CRISPR activation (CRISPRa) perturb-seq screen from Norman et al. [15]
to assess how effectively SAMS-VAE and baselines model the effect of perturbation combinations.
This screen was specifically designed with perturbations that have non-additive effects in combination,
making this a challenging setting for modeling combinations. We adopt the preprocessing from [6],
which contains 105 unique targeting guides applied both on their own and in 131 combinations. In
total, the dataset contains 111,255 cells, each with 5,000 gene expression features.

Evaluation protocol We define two tasks using this data. The first, norman-ood, assesses the abil-
ity of each model to predict gene expression profiles for held-out cells that have received perturbation
combinations that are not included in the training set. Each model is trained on cells that received a
single guide, along with [0, 25, 50, 75, 100]% of combinations. Held-out cells receiving the final
25% of combinations are used to evaluate each model. We perform this analysis for 5 random splits
of the combinations. The second task, norman-data-efficiency, assesses how efficiently the
models can learn combination phenotypes when trained on cells that have received a single guide and
increasing numbers of cells sampled uniformly across all combinations. Each model is evaluated
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Figure 4: Results from norman-ood and norman-data-efficiency experiments. Within splits,
test IWELBO values are plotted relative to the test IWELBO for SAMS-VAE trained with 0 combina-
tions on that split (relative IWELBO) to enable comparison across splits. SAMS-VAE and CPA-VAE
models are trained with the correlated inference schemes described in methods.

based on the IWELBO and ATE-Pearson on the held out test set. To compare model performance
across different data splits, within each split we analyze the test IWELBO of each model relative
to the test IWELBO of SAMS-VAE trained with no combinations on that split (relative IWELBO).
Average treatment effects are predicted with 2,500 particles, and IWELBO values with 100 particles.

We train each model with latent dimension 200 and single hidden layer MLP encoders and decoders
for 30,000 training steps. Based on validation performance, SVAE+ is trained with a Beta(1, 2) prior
and SAMS-VAE is trained with a Bern(0.01) prior.

Results Quantitative results are presented in Figure 4, with additional inference strategy ablations
in Figure 10 in Section A.6. SAMS-VAE and CPA-VAE both achieve strong performance on the
norman-ood task across metrics, often within 1 standard deviation of one another. Conditional VAE
achieves similarly strong performance for average treatment effect prediction, though is weaker on the
IWELBO metric. Unsurprisingly, SVAE+, which models combinations as totally new treatments, is
unable to predict the effect of a new combination without observing it in training. We do observe that
the SVAE+ likelihood still improves a small amount as more combinations are included in training
set, which may be attributable to improvments in the encoder and decoder (which are shared across
perturbations). These results support the utility of the compositional mechanisms in SAMS-VAE and
CPA-VAE (and for encoding combinations as defined in di for conditional VAE).

In norman-data-efficiency, we observe similar trends. SAMS-VAE, CPA-VAE, and conditional
VAE, which can share information across individual and combined perturbations, all achieve better
ATE prediction for held out cells when less than 50% of the available combination cells. However,
SVAE+ achieves similar ATE prediction correlations on this dataset when presented with sufficient

9



combination samples in training. Looking at the relative IWELBO values, we observe that SAMS-
VAE and CPA-VAE again perform the best, with SVAE+. These results further support the utility of
the additive composition mechanism from SAMS-VAE and CPA-VAE in low data settings.

5 Related Work

Disentangled VAEs Disentangled variational auto-encoders have been proposed as early as in [7],
where weak supervision was utilized to learn sparse masks over different subspaces. A popular
framework for unsupervised disentanglement was proposed in [3] through a reweighting of the
regularizer in the objective, but ignores weak supervision about conditions. A more comprehensive
treatise and theoretical analysis of disentanglement was presented in [10]. Finally, the formal link to
sparse mechanism shift and explicit causal disentanglement was also established recently in [9]. Our
work shares assumptions with some of these works, in that we assume dosage is known leading to
specific shifted effects per perturbation that can be used to learn disentangled factors.

Models of Cellular Perturbation A popular generative modeling framework for cellular sequenc-
ing data utilizing VAEs has been proposed in [11], a model which inspired our use of their likelihood.
Closer to our application on perturbed datasets is the CPA [13]. Similar to this model, we adopt
the idea to disentangle cellular latent spaces into basal and perturbation latent variables. However,
we pose the resulting model as a joint generative model with a rigorous inference framework and,
crucially, a sparsity mechanism to disentangle the perturbation effects into subspaces related to
the affected mechanisms. The recent SVAE+ [12] model is an exciting variant of [9] that utilizes
disentanglement in a fashion that matches our goals. Our work differs by factorizing variation into
basal and perturbation variables, adding a mechanism to compose perturbations, and in terms of
inference strategies (SVAE+ learns perturbation representations by optimizing a prior). GEARS [18]
leverages prior information of perturbation and gene features to predict the effect of applying new
perturbations to unperturbed cells. This work instead focuses on specifying a generative model for
perturbation effects with minimal assumptions, though strategies for integrating prior information on
perturbations and features in specific use cases is an exciting future direction.

6 Conclusion

Performing unbiased scientific discovery is an aspirational goal in the field of drug discovery to detect
mechanisms of action with intervenable potential. We propose a model that attempts to use few
explicit assumptions about the nature of the observed data and relies heavily on a sparsity assumption
and decomposition into explicit treatment effects in latent space to learn models of perturbational
screening data, making it general enough for application to arbitrary data modalities and perturbation
types. In this work, we apply SAMS-VAE to genetic perturbations and single-cell sequencing
readouts and observe two key outcomes: improved predictive performance compared to omitting
the sparsity assumption, and improved ability to recover factors correlated with real mechanisms in
biological data. Our technical contributions cover both a specification of a novel sparse generative
model, SAMS-VAE, as well as a suite of inference strategies for improved model fit which also apply
to our baseline CPA-VAE. We also propose an evaluation strategy for perturbation models related
to posterior predictive checks utilizing average treatment effects and differential expression as test
statistics to perform model criticism, and observe our model performing competitively in this metric.

Such models may ultimately be useful to perform experiments in an iterative fashion, and help specify
actionable hypothesis spaces for more targeted experiments down the line. Our work falls into a
long line of literature on disentanglement and more recently the Sparse Mechanism Shift hypothesis
related to causality, and we believe that the specific setup of SAMS-VAE will be useful in practical
scenarios while being quantitatively performant across relevant tasks.

The deliberately generic assumptions we make about perturbations pose opportunities for future
inquiry into more detailed aspects of such models. In specific cases, we may have prior knowledge
about the nature of perturbations and their effects on the system we observe. An interesting future
direction is posed in studying how perturbations may interact and compose in more complex fashion,
and incorporating different forms of prior knowledge into such systems, while maintaining the ability
of the system to discover knowledge and factors of variations that can be used downstream.
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