Peer Prediction for Learning Agents

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Shi Feng, Fang-Yi Yu, Yiling Chen

Abstract

Peer prediction refers to a collection of mechanisms for eliciting information from human agents when direct verification of the obtained information is unavailable. They are designed to have a game-theoretic equilibrium where everyone reveals their private information truthfully. This result holds under the assumption that agents are Bayesian and they each adopt a fixed strategy across all tasks. Human agents however are observed in many domains to exhibit learning behavior in sequential settings. In this paper, we explore the dynamics of sequential peer prediction mechanisms when participants are learning agents. We first show that the notion of no regret alone for the agents’ learning algorithms cannot guarantee convergence to the truthful strategy. We then focus on a family of learning algorithms where strategy updates only depend on agents’ cumulative rewards and prove that agents' strategies in the popular Correlated Agreement (CA) mechanism converge to truthful reporting when they use algorithms from this family. This family of algorithms is not necessarily no-regret, but includes several familiar no-regret learning algorithms (e.g multiplicative weight update and Follow the Perturbed Leader) as special cases. Simulation of several algorithms in this family as well as the $\epsilon$-greedy algorithm, which is outside of this family, shows convergence to the truthful strategy in the CA mechanism.