A Appendix

A.1 Proof for Theorem 2.1

Proof. Let w(a¢|so, ag, - -, St, 2) = Prp (at]S0, a0, .., 8¢, I(7) = z) and

let pry (S¢|50, a0, - .. ai—1) = Prp (S¢]S0, G0, - - ., ag—1, I(T) = 2). Then,

Erp,. (rls0) DL (7), 2)]
= > pe(rlse)D(I(),2)

= > J[peslarlso,ao, .. 50, 1(7) = 2)prp (sils0, a0, - . ar-1,I(r) = 2)D(I(7),)

ag,81,..-,ST,aT 1t

— Z Prp (T80, 1(T) = 2)D(I(7), 2)

aQ,81,---,8T,QT
=Erprp (rls0,1(r)=2) [DU(T), 2)]
-0

O

The first equality follows from the definition of expectation. The second equality follows by the
definition of a trajectory (the joint probability over the sequence of states and actions) and by the
chain rule. The third equality follows due to our assumptions. Finally, the last two equalities use the
definition of a trajectory and expectation.

To show the other direction, assume ETprz (7]50) [D(I(7),2)] =0.

Then, pr_(7|so) > 0 implies D(I(7), z) = 0 since distance D(-, -) is non-negative, which implies
that when a trajectory has a non-zero probability, then I(7) = z.

Therefore, pr_ (T]S0) = px. (7|50, I(7) = z), which finally implies that p,,, (s¢|so, ag, ..., a1—1) =
Drp (8t]50, G0, - - -y at—1, [(T) = 2).

A.1.1 Regarding History Conditioning

We thank the authors of Yang et al. [35], who pointed out an error in the theory in a previous draft
of this paper via a counter-example in Appendix C. Our previous proof incorrectly assumed that
independence from past states and actions, via our choice of Markov policies and via the Markov
assumptions in MDPs, held when conditioning on (7). This is not in general correct, and we have
updated our theory to reflect that theoretical guarantees under our framework require a memory-based
policy and for the conditioning trajectory statistics to be independent of the future state given the
entire history of the trajectory, not just the most recent state and action.

We note that in practice, Markov policies work well with ESPER, as does optimizing trajectory
statistics for independence given only the most recent state.

A.2 ESPER Generalizes Return-Conditioning

While ESPER is designed to fix the problem with RvS in stochastic environments, it still performs well
in deterministic environments. In a deterministic environment when the dynamics model can already
predict the next state perfectly with just the current state and action, only the policy reconstruction
loss will be active. Therefore, the optimal clustering will have each trajectory in its own cluster and
labeled with their original return, and ESPER reduces to return-conditioned RvS. In Figure 7 we
show empirically that the performance of ESPER matches return-conditioned Decision Transformer
in the deterministic D4RL Mujoco tasks [13].

15

Dataset Environment Target ESPER (ours) DT CQL

Medium-Expert hopper 3600 89.95+13.91 79.64+34.45 110.0
Medium-Expert ~ walker 5000 106.87+1.26 107.96+£0.63 98.7
Medium-Expert half-cheetah 6000 66.95+11.13 42.89+035 624
Medium hopper 3600 50.57+£3.43 59.46+t4.74 58.0
Medium walker 5000 69.78+1.91 69.7+7.12 79.2
Medium half-cheetah 6000 42.31+£0.08 42324039 444
Medium-Replay hopper 3600 50.20+£16.09 61.94+16.99 48.6
Medium-Replay = walker 5000 65.48+8.05 63.77+2.82 26.7
Medium-Replay half-cheetah 6000 35.85+1.97 36.88+0.36 46.2

Figure 7: Results on D4RL Mujoco Tasks

Task Return-Conditioned RvS (MLP) CQL ESPER (MLP) (Ours)
Gambling -0.05 (0.27) 1.0 (0.0) 1.0 (0.0)

Connect Four 0.24 (0.15) 0.61 (0.05) 0.99 (0.01)

2048 0.56 (0.03) 0.7 (0.09) 0.81 (0.05)

Figure 8: ESPER performs similarly on benchmark tasks when using a simple MLP rather than a
transformer for the policy.

A.3 ESPER with MLPs

As reported in Emmons et al. [2], a transformer is not necessary to get strong performance with RvS
on many environments. We also find that we get similar results when training using a simple MLP
with three hidden layers, as shown in Figure 8.

A4 Benchmark Task Details
A.4.1 An Illustrative Gambling Environment

To clearly illustrate the issue with prior approaches when conditioning on outcome variables that are
correlated with environment stochasticity, we run our approach on a simple gambling environment.
This environment, illustrated in Figure 1, has three actions: one which will result in the agent gaining
one reward, and two gambling actions where the agent could receive either positive or negative
reward.

A4.2 Multi-Agent Game: Connect Four

Connect Four is a popular two-player board game where players alternate in placing tiles in the hope
to be the first to get four in a row. In this task, we consider a single agent version of Connect Four
where the opponent is fixed to be a stochastic agent. This is a realistic setting, since in the real world,
the single greatest source of stochasticity will likely be other agents that the agent is interacting with.
An ideal agent will need to take this into account to make optimal decisions.

Since Connect Four can be optimally solved with search techniques, we set the opposing agent to be
optimal®, with a small chance that it won’t place a piece in the rightmost column when it is optimal
to do so. This creates an MDP with two ways to win: first, the agent can play optimally to the end
of the game to guarantee a win (the first player always can win); second, to win quickly, the agent
can place four pieces on the rightmost column with the hope that the opponent will not block (which
happens with a low probability).

The offline dataset for this task is generated by using an epsilon-optimal agent with 50% probability
and an exploiter agent that only places pieces on the right with 50% probability.

We use the solver from https://github.com/PascalPons/connect4.

16

https://github.com/PascalPons/connect4

A.4.3 Stochastic Planning in 2048

2048 [23] is a single player puzzle game where identical tiles are combined in order to build up tiles
representing different powers of two. With each move, a new tile randomly appears on the board, and
the game ends when no moves are available. A strong 2048 agent will consider the different possible
places new tiles will appear in order to maximize the potential for combining tiles in the future.

Since the vanilla version of 2048 can require billions of steps to solve with reinforcement learning
[36], we modified the game? by terminating the episode when a 128 tile is created. The agent gets
one reward for successfully combining tiles in order to reach 128 and zero reward otherwise.

The offline dataset for this task is generated using a mixture of trajectories from an agent trained with
PPO [24] using the implementation in Stable Baselines 3 [37] and a random policy.

A.5 Training Details
A.5.1 Hyperparameters

The most important hyperparameters to tune for our method are the tradeoff between reconstructing
actions and removing dynamics information from the clusters, controlled by S,., and the number
of clusters, controlled by rep_size and rep_groups. The trajectory representation (i.e. cluster
assignment) is formed by sampling from rep_groups categorical variables of dimension rep_size
/ rep_groups. These values were tuned per environment using a simple grid search. Specific
hyperparameter values for each environment can be found at Table 1.

Decision Transformer
batch_size 64
learning_rate Se-4
policy_architecture Transformer
embed_dim 128
n_layer 3
n_head 1
activation_fn ReLU
dropout 0.1
n_head 1
weight_decay le-4
warmup_steps 10000
discount v 1
eval_samples 100
ESPER
learning_rate le-4
batch_size 100
hidden_size 512
policy.hidden_layers 3
clustering_model.hidden_layers 2
clustering_model.lstm_hidden_size 512
clustering_model.lstm_layers 1
action_predictor.hidden_layers 2
return_predictor.hidden_layers 2
transition_predictor.hidden_layers 2
activation_fn ReLU
optimizer AdamW [38]
normalization batch norm [39]

Table 1: ESPER hyperparameters

*We used the implementation of 2048 found at https://github.com/activatedgeek/gym-2048.

17

https://github.com/activatedgeek/gym-2048

Gambling
rep_size 8
rep_groups 1
Bact 0.01
B adv 1
cluster_epochs 5
label_epochs 1
policy_steps 50000
Connect Four
rep_size 128
rep_groups 4
Bact 0.05
6 adv 1
cluster_epochs 5
label_epochs 5
policy_steps 50000
2048
rep_size 128
rep_groups 4
Bact 0.02
B adv 1
cluster_epochs 4
label_epochs 1
policy_steps 50000
Mujoco
rep_size 256
rep_groups 4
Bact 0.03
ﬁadv 1
cluster_epochs 5
label_epochs 5
policy_steps 100000

Table 2: Environment hyperparameters

A.5.2 Computation

Our experiments were run on T4 GPUs and running our algorithm took only around 1 hour per seed.
We used PyTorch [40] and experiments were tracked using Weights and Biases [41].

A.6 Baselines

We used the codebase provided by the authors of Decision Transformer [1] to implement our
experiments. Other than hyperparameters specific to ESPER, Decision Transformer and ESPER use
the same hyperparameters found in Table 1.For Conservative Q-Learning (CQL) [4], we used the
default implementation from d3rlpy, an offline deep RL library [42].

A.7 ESPER Pseudocode

We provide pseudocode for ESPER in algorithm 1 and detailed pseudocode (roughly following the
syntax used in PyTorch [40]) for the clustering step of ESPER in algorithm 2.

18

Algorithm 1: ESPER

Data: Dataset D consisting of trajectories of states, actions, and rewards

for cluster iteration k = 1,2, ... do

s, a <— sample batch of trajectories from D;

assignments < ClusterAssignments(s, a);

a < ActionPredictor(s, assignments);

$t41 + TransitionPredictor(s, a, assignments);

Update cluster assignments by training a to predict a and 5,1 to not predict s¢41 by
minimizing Equation 2.2;

Train the TransitionPredictor to predict next states by minimizing Equation 2.3;

Fit a model f,,(I(7)) to predict the average trajectory return R in each cluster;
Create dataset D’ of states, actions, and average returns;
for policy iteration k = 1,2, ... do
s, a, R < sample batch of states, actions, and average returns from D’;
Train the policy 7 (a|s, R) by minimizing Equation 2.5;

19

Algorithm 2: ESPER - Adversarial Clustering

s, a, seq_len: states, actions, sequence lengths (in case of early termination)
Models:

encoder_mlp - MLP

temporal _encoder - LSTM

rep_mlp - MLP

act_mlp - MLP

dynamics_mlp - MLP

HFHEFHFEHH

def ClusterAssignments(s, a):

bsz, t = s.shape[:2]

x = torch.cat((s, a), dim=-1).view(bsz, t, -1)
= torch.flip(x, dims=[1])
= torch.encoder_mlp(x)
x, hidden = temporal_encoder(x, init_hidden())
x = torch.flip(x, dims=[1])
x = rep_mlp(x)
cluster_assignments = F.gumbel_softmax(x)
return cluster_assignments

Mo
|

def ActionPredictor(s, cluster_assignments):

cluster_assignments.shape = [bsz, t, -1]
For a timestep t, we sample a cluster assignment for a timestep
from O, ..., t randomly

past_assignments = sample_past_assignments(cluster_assignments)
x = torch.cat((s, past_assignments), dim=-1)

pred_next_action = act_mlp(x)

return pred_next_action

def TransitionPredictor(s, a, cluster_assignments):
cluster_assignments.shape = [bsz, t, -1]
For a timestep t, we sample a cluster assignment for a timestep
from O, ..., t randomly
past_assignments = sample_past_assignments(cluster_assignments)
x = torch.cat((s, a, past_assignments), dim=-1)
pred_next_s = dynamics_mlp(x)
return pred_next_s

training loop
for (s, a) in dataloader:
get cluster assignments for the trajectories
cluster_assignments = ClusterAssignments(s, a)
predict actions based on clusters
pred_next_action = ActionPredictor(s, cluster_assignments)
predict state transitions based on clusters
pred_next_s = TransitionPredictor(s, a, cluster_assignments)
optimize the clusters for action prediction and to hurt next state prediction
cluster_loss = act_loss(pred_next_action, a) - state_loss(pred_next_s, s)
cluster_loss.zero_grad(); cluster_loss.backward(); cluster_optimizer.step();
optimize the transition predictor
dyn_loss = state_loss(pred_next_s, s)
dyn_loss.zero_grad(); dyn_loss.backward(); dyn_optimizer.step();

20

	Introduction
	Approach
	Problem Setup
	Stochasticity Independent Representations
	Learning Stochasticity-Independent Representations
	Implementation

	Experiments
	Stochastic Benchmark Tasks
	Baselines
	Performance in Stochastic Environments
	Learned Representations and Behaviors

	Related Work
	Conclusion
	Appendix
	Proof for Theorem 2.1
	Regarding History Conditioning

	ESPER Generalizes Return-Conditioning
	ESPER with MLPs
	Benchmark Task Details
	An Illustrative Gambling Environment
	Multi-Agent Game: Connect Four
	Stochastic Planning in 2048

	Training Details
	Hyperparameters
	Computation

	Baselines
	ESPER Pseudocode

