
Appendices
A Proofs for theorems in Section 4.1

A.1 Proof for Theorem 4.1

In the following proof, we use pdata to refer to the real data distribution, instead of pD as in Section 4.1,
to avoid confusion with the discriminator distribution.

We recall Theorem 4.1:

Theorem 4.1 The optimal generator of Eq. 4 induces a distribution p∗g(x) = pD(x)
e−f(x)−ν

2− e−f(x)−ν
,

where ν > 0 is the Lagrange multiplier that ensures that p∗g(x) is normalized to 1.

The optimization problem in Eq. 4 is:

min
G

max
D

V (G,D) = Ex∼pdata [log(D(x))] + Ez∼p(z)[log(1−D(G(z)))] + Ez∼p(z)[f(G(z))]

The proof proceeds as follows: We first simplify the objective function into two terms. The first term
is the Jensen–Shannon divergence between the data distribution and the distribution induced by the
generator [16]. The second term is the expected value of the secondary objective function f . We then
show that the problem is convex, where strong duality holds. We then use the KKT conditions to find
the functional form of the optimal solution, which gives us Theorem 4.1.

We only prove the statement for discrete sample space, and we let n be the size of the sample space –
the random variable x can take on n different values.

Proof. Since the third term in the objective function is not a function of the discriminator D, for G

fixed, the optimal discriminator of Eq. 4 is D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
where pg is the distribution

induced by the generator G. (similar to Prop 1 in [16] ).

Similarly to how [16] shows that the GAN objective in Eq. 1 minimizes the JS divergence between
the data distribution and the distribution induced by the generator, we can now rewrite the objective
in Eq. 4 as:

V (G,D∗
G) (14)

= Ex∼pdata [log(D
∗
G(x))] + Ez∼p(z)[log(1−D∗

G(G(z)))] + Ez∼p(z)[f(G(z))] (15)

= 2JSD(pdata||pg) + Ex∼pg [f(x)]− log 4 (16)

For conciseness, let g(i) = pg(xi) be the probability that pg assigns to xi and g = [g(1), . . . , g(n)]T

be a column vector containing the probabilities that pg assigns to each possible values of x, from x1
to xn.

Similarly, let f (i) = f(xi) be the value that the secondary objective f assigns to xi. We also overload
the notation to let f = [f (1), . . . , f (n)]T be a column vector containing the values that the secondary
objective f assigns to each possible value of the random variable x, from x1 to xn.

Also let p(i)data = pdata(xi) be the probability that the data distribution assigns to xi.

We can then rewrite the problem in Eq. 4 in a standard form [4] as:

min
g

2JSD(pdata||pg) + gT f (17)

s.t. − g(i) ≤ 0 (18)

1T g − 1 = 0 (19)

where 1 is a column vector of 1, which has the same number of entries as the vector g. The constraint
18 ensures that the probability that pg assigns to any x is non-negative and the constraint 19 ensures
the probabilities sum up to 1.

14



The problem is convex because the objective function is a nonnegative weighted sum of two convex
functions (JSD is convex because JSD is itself a nonnegative weighted sum of KL, which is a convex
function).

Strong duality also holds because Slater’s condition holds. A strictly feasible point for Slater’s

condition to hold is the uniform distribution, i.e. g(i) =
1

n
,∀i.

The Lagrangian is:

L = 2JSD(pdata||pg) + gT f −
∑
i

λ(i)g(i) + ν(1T g − 1) (20)

where λ(i) and ν are the Lagrangian multipliers.

For any i ∈ [1, n], the partial derivative of the Lagrangian with respect to g(i) is:

∂L

∂g(i)
= log

(
2g(i)

p
(i)
data + g(i)

)
+ f (i) − λ(i) + ν (21)

Let g∗ and (λ∗, ν∗) be the primal and dual optimal solutions of the optimization problem. As the
strong duality holds, the variables g∗ and (λ∗, ν∗) must satisfy the KKT conditions. For any i ∈ [1, n],
the following holds:

−g(i)∗ ≤ 0 (22)

1T g∗ − 1 = 0 (23)

λ
(i)
∗ ≥ 0 (24)

λ
(i)
∗ g

(i)
∗ = 0 (25)

∂L

∂g(i)
= log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) − λ(i)∗ + ν∗ = 0 (26)

From Equation 26, we have λ(i)∗ = log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) + ν∗, and substitute into Equation 25:

[
log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) + ν∗

]
g∗i = 0 (27)

We consider what happens when g∗i > 0, due to complementary slackness, we have:

log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) + ν∗ = 0 (28)

=⇒ g
(i)
∗ =

p
(i)
datae

−f(i)−ν∗

(2− e−f(i)−ν∗)
(29)

p∗g(xi) = pdata(xi)
e−f(xi)−ν∗

2− e−f(xi)−ν∗
(30)

We can then pick an appropriate value for the Lagrange multiplier ν such that the probabilities p∗g(xi)
normalize to 1. QED.

A.2 Proof for Theorem 4.2

In the following proof, we use pdata to refer to the real data distribution, instead of pD as in Section 4.1,
to avoid confusion with the discriminator distribution.
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Recall that we define pmix as pmix =
pg + paux

2
. Theorem 4.2 is stated in reference to the

optimization problem in Eq. 5, which we restate here:

min
G,Gaux

max
D

V (G,Gaux, D) = Ex∼pdata [log(D(x))] + Ex∼pmix
[log(1−D(x))] + Ex∼pg [f(x)]

(31)

where the first two terms in the objective function are the GAN objective and the last term is the
secondary objective function.

Similar to the proof for Theorem 4.1, we can rewrite the objective function in Eq. 31 as [16]:

V (G,Gaux, D
∗) (32)

= 2JSD(pdata||
pg + paux

2
) + Ex∼pg [f(x)]− log 4 (33)

We are only interested in optimizing for the secondary objective function f in the space of optimal

GAN solutions. We therefore enforce that pmix =
pg + paux

2
= pdata, which makes the JSD term

vanish in Eq. 33 and allows us to solve the following optimization problem.

min
G

Ex∼pg [f(x)] (34)

s.t. pg ≤ 2pdata (35)
paux = 2pdata − pg (36)

We claim that the solution to the optimization problem above is as follows. We define x0 to be the
element inside the support of the data distribution pdata that minimizes f , i.e. x0 = argmin

x∈Supp(pdata)

f(x).

The optimal primary generator p∗g assigns the following probability to x0:

p∗g(x0) =

{
2pdata(x0) if 2pdata(x0) < 1

1 otherwise
(37)

If the global maximum x0 is not taking the full probability mass, the rest of the probability mass is
redistributed to the next best in-support maxima, which we can define recursively:

For xi ∈ argmin
x∈Supp(pdata)\{xj}i−1

j=0

f(x), p∗g(xi) =


2pdata(xi) if

∑i
j=0 p

∗
g(xj) < 1

1−
∑i−1
j=0 p

∗
g(xj) if

∑i
j=0 p

∗
g(xj) > 1

0 if
∑i−1
j=0 p

∗
g(xj) = 1

(38)

Proof.

We show the proof by contradiction. That is, assume that there exists another distribution pag with the
following properties:

• There exists x where pag(x) ̸= p∗g(x)

• pag satisfies the constraint (35)-(36)
• The value of the objective function achieved by pag is better than the value achieved by p∗g.

That is, Ex∼pag [f(x)] < Ex∼p∗g [f(x)].

We will show that the existence of such a distribution pag will lead to contradiction,

We separate the analyses into three different cases, depending on the property of p∗g:

• Case 1: p∗g assigns all probability mass to x0
• Case 2: If p∗g assigns non-zero probability to x, then p∗g = 2pdata(x)
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• Case 3: There exists an x where 2pdata(x) > p∗g(x) > 0

We will walk through the three cases independently and show the contradiction in each case.

Case 1: p∗g assigns the full probability mass to x0, that is p∗g(x0) = 1, and assigns zero probability to
every x not equal to x0. Without loss of generality, we consider pg that assigns non-zero probability
to a xk ̸= x0, assigns the remaining probability mass to x0, and assigns zero probability to all x that
is not equal to either x0 or xk. That is, assume there exists pag such that:

0 > pag(x0) > 1 (39)

pag(xk) = 1− pag(x0) > 0 for some xk ∈ Supp(pdata) (40)

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] > 0 (41)

where xk ∈ Supp(pdata) follows from constraint 35 (pg ≤ 2pdata, and thus pag can only assign non-zero
probability to x within the support of pdata). We can then show that:

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] (42)

=f(x0)− pag(x0)f(x0)− pag(xk)f(xk) (43)

=(1− pag(x0))f(x0)− pag(xk)f(xk) (44)

=pag(xk)f(x0)− pag(xk)f(xk) (45)

=pag(xk)[f(x0)− f(xk)] ≤ 0 (contradiction with Eq.41) (46)

where the last inequity follows from these two facts:

x0 = argmin
x∈Supp(pdata)

f(x) (47)

xk ∈ Supp(pdata) (48)

Case 2:

p∗g(x) =

{
2pdata(x) if p∗g(x) > 0

0 otherwise
(49)

Let {x0, . . . , xi} be the set of x where p∗g(x) > 0, then we also require that
∑i
j=0 p

∗
g(x) = 1.

Without loss of generality, we assume a distribution pag exists with the following properties. There
exists xm, xn such that:

p∗g(xm) = 2pdata(xm) > 0 and pag(xm) < 2pdata(xm) (50)

p∗g(xn) = 0 and pag(xn) = 2pdata(xm)− pag(xm) > 0 (51)

p∗g(x) = pag(x) otherwise (that is, for all x /∈ {xm, xn}) (52)

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] > 0 (53)

We note that f(xm) ≤ f(xn) since p∗g assigns non-zero probability to xm and assigns zero probability
to xn.

We can show that:

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] (54)

=p∗g(xm)f(xm)− pag(xm)f(xm)− pag(xn)f(xn) (55)

=p∗g(xm)f(xm)− pag(xm)f(xm)− pag(xn)f(xn) (56)

=p∗g(xm)f(xm)− pag(xm)f(xm)− (2pdata(xm)− pag(xm))f(xn) (57)

=p∗g(xm)f(xm)− pag(xm)f(xm)− 2pdata(xm)f(xn) + pag(xm)f(xn) (58)

=p∗g(xm)f(xm)− pag(xm)f(xm)− p∗g(xm)f(xn) + pag(xm)f(xn) (59)

=p∗g(xm)[f(xm)− f(xn)]− pag(xm)[f(xm)− f(xn)] (60)

=[f(xm)− f(xn)][p∗g(xm)− pag(xm)] ≤ 0 (contradiction with Eq.53) (61)
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where the last inequality is true because f(xm) ≤ f(xn) as we noted above, and p∗g(xm) =
2pdata(xm) > pag(xm).

Case 3:

There exists xi such that 2pdata(xi) > p∗g(xi) > 0. For all x ̸= xi:

p∗g(x) =

{
2pdata(x) if p∗g(x) > 0

0 otherwise
(62)

Let {x0, . . . , xi} be the set of x where p∗g(x) > 0, we also require
∑i
j=0 p

∗
g(x) = 1.

Without loss of generality, there are three cases we need to consider for the distribution pag , each
yielding a contradiction:

• pag(xi) = p∗g(xi), but there exists x such that pag(x) ̸= p∗g(x).

• pag(xi) > p∗g(xi).

• pag(xi) < p∗g(xi).

In each case, the proof by contradiction is similar to the proof in Case 2 above, where we pick a pair
of xm, xn and shows that pag can not achieve a lower value of the objective function than p∗g . We thus
do not repeat the argument here. QED
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B Benefits of dual generator technique on 1D discrete example

Figure 2: Left: We use a single generator. Right: We use dual generator technique. The optimal
generator (green bar) refers to the optimal primary generator, and not the auxiliary generator. Thanks
to the dual generator technique, the optimal primary generator in the right figure assigns probability
1.0 to the global maxima a0 of the secondary objective function f . The optimal primary generator in
the right figure is therefore better at maximizing the function f than the optimal generator in the left
figure. Note that in this example, the generator aims to maximize the function f (instead of minimize)
for more intuitive interpretation.

In this section, we provide a simple one-dimensional numerical example with discrete action space to
illustrate the benefit of the dual generator technique. In this example, the action space only consists
two actions a0, a1. The probability of action a0 under the data distribution is 0.5. The probability
of action a1 under the data distribution is 0.5. We would like to maximize a secondary objective
function f . The function f assigns value 1.3 to a0 and value 0.7 to a1.

We will next show in a self-contained Jupyter notebook that when using only a single generator, the
expected value of the secondary objective function f under the optimal generator is 1.15. We also
show that when using the dual generator technique, the expected value of the secondary objective
function f under the optimal primary generator is 1.3. Since 1.3 is higher than 1.15, we can see that
using the dual generator technique allows us to better maximize the objective function f .

Fig 2 visually illustrates the benefits of the dual generator technique over using only a single generator
in this example. We can also observe from Fig 2 (Left) that the optimal generator is clearly different
from the data distribution when only using a single generator. As such, in the GAN framework, the
discriminator has an advantage in learning how to distinguish between samples from the real data
distribution and samples from the generator. In contrast, when using the dual generator technique,
the optimal primary generator assigns probability 1 to action a0 and the optimal auxiliary generator
assigns probability 1 to action a1 (not shown in Fig 2). Their mixed distribution therefore assigns
probability 0.5 to either actions, matching the data distribution.

The Jupyter notebook in the next page illustrates the computations necessary to obtain the optimal
solution for the generator.
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In this toy example, the action space consists of two actions, denoted by  and . The probability of
action  under the data distribution is . The probability of action  under the data distribution is .
The data distribution is represented by the variable  in the code cell below.

The secondary objective function that we would like to maximize is represented by , where 
and .

When using only a single generator and not employing the dual generator technique, we can write the
closed form solution of the optimal generator as a function of the data distribution , the secondary
objective , and a Lagrange variable  as follows. The optimal solution of the generator is represented by
the variable  in the code cell below:

Since the distribution induced by the optimal generator must be a valid distribution, we solve for the
Lagrange variable  such that the probabilities that the optimal generator assigns to the two actions 
sum to .

nu_star is [1.11566684] 

In [1]: import numpy as np 
from scipy.optimize import fsolve 

a0 a1

a0 0.5 a1 0.5

pdata

In [2]: p_data = np.array([ 
    0.5, 0.5 
]) 

f f(a0) = 1.3

f(a1) = 0.7

In [3]: f = np.array([ 
    1.3, 0.7 
]) 

pdata

f nu

p_g_star

In [4]: def get_p_star_single_generator(p_data, f, nu): 
 
    # We use f instead of -f because 
    # we are maximizing f in this example. 
    exp = np.exp( f - nu ) 
 
    p_g_star = p_data * ( exp / ( 2 - exp ) ) 
 
    return p_g_star 

nu a0, a1

1

In [5]: def func(nu): 
 
    # p_g_star is a array consisting of two elements. 
    # The first element is the density that the optimal 
    # generator assigns to the action a_0. 
    # The second element is the density that the optimal 
    # generator assigns to the action a_1. 
    p_g_star = get_p_star_single_generator(p_data, f, nu) 
 
    sum_p_g_star = p_g_star.sum() 
 
    return 1.0 - sum_p_g_star 
 
# nu_star is the value of nu that makes the distribution  
# induced by the optimal generator a valid distribution. 
nu_star = fsolve( 
    func, 1. 
) 
print('nu_star is', nu_star) 



The probabilities that the optimal generator assigns to the two actions are: 
[0.75378698 0.24621302] 
Sum of probabilities 1.0 

Expected value of f under the optimal generator when using a single generator is: 
1.15 

We next derive the optimal solution of the generator when using the dual generator technique and show that
using the dual generator technique allows us to better maximize the secondary objective function . When
using the dual generator technique, we maintain two generators, a primary generator denoted by  and an

auxiliary generator denoted by .

The in-support global maxima of  is , since . As such, the optimal solution
of the primary generator, denoted by , would like to assign as much probability to  as possible. Since

we have the constraint , we have that . That is, the optimal

primary generator assigns probability  to action . Since there are only two actions, the optimal primary
generator assigns probability  to the remaining action .

The optimal primary generator is represented by the variable  in the code cell below:

Expected value of f under the optimal generator when using dual generator is: 
1.3 

Since we want to maximize the secondary objective function , and  is higher than , we can see
that using the dual generator technique allows us to better maximize the secondary objective function .

In [6]: # Confirm that the probabilities sum to 1 
p_g_star = get_p_star_single_generator(p_data, f, nu_star) 
 
print('The probabilities that the optimal generator assigns to the two actions are:') 
print(p_g_star) 
 
print('Sum of probabilities', p_g_star.sum().round(2)) 

In [7]: E_f = (p_g_star * f).sum() 
print( 
    'Expected value of f under the optimal generator when using a single generator is:' 
) 
print(E_f.round(2)) 

f

pg

paux

f a0 f(a0) = 1.3 > f(a1) = 0.7

p∗
g a0

p∗
g(a0) ≤ 2pdata(a0) = 1.0 p∗

g(a0) = 1.0

1.0 a0

0.0 a1

dual_p_g_star

In [8]: dual_p_g_star = np.array([ 
    1.0, 0.0 
]) 
 
 
dual_E_f = (dual_p_g_star * f).sum() 
print( 
    'Expected value of f under the optimal generator when using dual generator is:') 
print(dual_E_f.round(2)) 

f 1.3 1.15

f



C Description of the offline dataset generation procedure for the noisy and
biased AntMaze datasets

In the experiments section, we introduce the bias and noisy datasets for the AntMaze tasks. In this
section, we provide more details on how the datasets were generated in the form of Python syntax in
Code Listing 1. We plan to open-source both the datasets and the code to generate the datasets upon
acceptance.

Code Listing 1: Illustration of the dataset generation procedure for the bias and noisy datasets.
Given an action computed by the behavior_policy, we add noise and bias to the action. The
magnitudes of the noise and bias depend on the x-values of the position of the Ant in the 2D maze.
NOISES = [0.1, 0.0, 0.2, 0.05 , 0.3, 0.1, 0.4, 0.2]
BIASES = [0.1, -0.1, 0.2, 0.0, 0.2, -0.3, 0.2, 0.0]
POSITION = [-20.0, 0.0, 4.0, 8.0, 12.0, 16.0, 20.0, 24.0]

action = behavior_policy.get_action(obs)

x_position = get_x_position(obs)

pos = [idx for idx in range(len(POSITION)) if POSITION[idx] <=
x_position]

pos = max(pos)

noise = NOISES[pos]
bias = BIASES[pos]

action = action + np.random.normal(size=action.shape) * noise - bias *
np.ones_like(action)

action = np.clip(action , -1.0, 1.0)

D Additional experimental details

For all tasks, we average mean returns overs 20 evaluation trajectories. Similar to the pre-processing
steps in previous works [25], we standardize MuJoCo locomotion task rewards by dividing by the
difference of returns of the best and worst trajectories in each dataset. For the AntMaze datasets,
we subtract 1 from rewards for all transitions. We use Adam optimizer [24] with a learning rate
of 0.0003. For the value functions, we use an MLP with 3 hidden layers of size 256. For both the
GAN discriminator and auxiliary generator, we use an MLP with 1 hidden layer of size 750. The
auxiliary generator takes a state as an input, and a noise vector and output actions deterministically as
a function of the input state and noise vector. For the policy, which is also the primary generator, we
use an MLP with 4 hidden layers of size 256. The policy takes a state as an input and outputs the
parameters of a diagonal Gaussian, from which we sample an action. We update the target network
with soft updates with parameter 0.005.

For the discriminator loss function, we use the mean-squared error loss, inspired by LSGAN [36].
For the auxiliary generator, we use the standard vanilla GAN loss. The loss functions and how they
are used are further illustrated in Section F. We also use instance noise [45] where we sample the
instance noise from a Gaussian distribution for each action dimension independently. The Gaussian
is zero-center and has an initial standard deviation of 0.3 at the beginning of training. We anneal the
magnitude of the noise over time and also clamp the instance noise to have a maximum magnitude
of 0.3. We also train the discriminator for more steps than the generators in each algorithm step (5
training steps for the discriminator for every step of the generator).

In the policy objective (Eq. 11), we also use a hyper-parameter w to weight the contribution of the
value function and the discriminator probability to the policy update. That is, we use Eq. 63 to update
the policy. We fix the value of w throughout training. For the AntMaze tasks, we set w = 0.025. For
the Mujoco locomotation task, we set w = 1.0.

πk+1 ← argmax
π

Es,aD∼D,a∼πk(a|s)

[
1

w

Dk(s, a)

Dk(s, aD(s))
Qk+1(s, a) + logDk(s, a)

]
, (63)
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In terms of total amount of compute and type of resources used, we use an internal cluster that allows
for access up to 64 preemptive Nvidia RTX 2080 Ti GPUs. For each experiment of learning from an
offline dataset, we use half a GPU and 3 CPU cores. Each experiment generally takes half a day to
finish. We implemented our algorithms in Pytorch [40].

E Additional details on baselines

IQL To obtain the result of IQL when learning from the noisy and biased AntMaze datasets
presented in Table 1, we tune the expectile hyper-parameter τ in IQL. Table 7 illustrates the different
values of τ we ran IQL for and the performance of each value.

Table 7: Performance on IQL when learning from the noisy and biased AntMaze datasets for
different expectile value tau. tau=0.9 performs the best in the large maze, whereas tau=0.95 perform
the best in the medium size maze. We therefore present the result using tau=0.9 in Table 1. For lower
tau values such as 0.8, 0.7, the performance is worse. This is expected and also mentioned in Section
5.2 of the IQL paper.

Dataset tau=1.0 tau=0.95 tau=0.9 tau=0.8 tau=0.7
antmaze-large-bias 0.0 (0.0) 22.0 (0.8) 41.0 (7.9) 20.0 (3.6) 4.0 (1.4)
antmaze-large-noisy 0.0 (0.0) 37.7 (5.2) 39.0 (6.4) 14.0 (5.9) 3.3 (2.1)
antmaze-medium-bias 0.0 (0.0) 62.3 (9.8) 48.0 (5.9) 43.0 (7.1) 21.0 (2.9)
antmaze-medium-noisy 0.0 (0.0) 53.7 (9.0) 44.3 (1.7) 41.7 (6.1) 19.3 (2.5)

CQL We also tune the Lagrange threshold in CQL when learning from the noisy and biased
AntMaze datasets. We refer to this hyper-parameter also as tau (but this is different from the hyper-
parameter tau in IQL). The results for different values of the Lagrange threshold tau for CQL are
illustrated in Table 8.

Table 8: Performance of CQL when learning from the noisy and biased AntMaze datasets for
different Lagrange threshold value tau. tau=2.0 performs the best overall and is the result we used in
Table 1 for CQL.

Dataset tau=1.0 tau=2.0 tau=0.5
antmaze-large-bias 50.0 (5.3) 61.7 (3.5) 5.7 (3.1)
antmaze-large-noisy 41.7 (4.6) 50.3 (2.3) 5.0 (5.0)
antmaze-medium-bias 72.7 (7.0) 66.7 (2.9) 31.7 (13.0)
antmaze-medium-noisy 55.0 (5.3) 55.7 (4.7) 17 (3.6)

EDAC To obtain the results for EDAC presented in Table 1, we performed a sweep over the number
of value function used in the ensemble and the weight η (used in step 5 in Algorithm 1 in EDAC
paper to weight the gradient penalty term ES). For the number of value function, we ran the sweep
over 20, 50, 100. For the weight τ , we ran the sweep over the values 1, 5, 10, 50, 100, 1000. In other
words, we ran 3× 6 = 18 different combinations of hyper-parameter values for EDAC. We use the
implementation of EDAC released by the original authors. Since we discovered that EDAC does not
perform well in the medium size maze, we did not obtain the results of EDAC for the large maze.

BEAR For BEAR, we used the laplacian kernel and performed a sweep over the hyper-parameter
mmd_sigma using the values 1, 10, 20, 50. We use the implementation available publicly at https:
//github.com/rail-berkeley/d4rl_evaluations. Similarly to EDAC, because BEAR does
not perform well when learning from the medium size maze datasets, we did not obtain the results of
BEAR for the large maze.

F Detailed algorithm description

Algorithm 1 provides a summary of the training step given a batch of transitions from the offline
dataset. In this section, we provide the description of how the different networks in our algorithms
are trained using Python syntax. We include four Code Listings below, each illustrating the details of
an update step in Algorithm 1.
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Code Listing 2: Value networks training step given a batch of data, corresponding to step 4 in
Algorithm 1
rewards = batch[’rewards ’]
terminals = batch[’terminals ’]
obs = batch[’observations ’]
actions = batch[’actions ’]
next_obs = batch[’next_observations ’]

# Computing target Q values
next_obs_target_actions = policy(next_obs)

target_Q1 = target_qf1(next_obs , next_obs_target_actions)
target_Q2 = target_qf2(next_obs , next_obs_target_actions)
target_Q = torch.min(target_Q1 , target_Q2)
target_Q = rewards + (1 - terminals) * discount * target_Q

# Obtain loss function
current_Q1 , current_Q2 = qf1(obs , actions), qf2(obs , actions)

qf1_loss = F.mse_loss(current_Q1 , target_Q)
qf2_loss = F.mse_loss(current_Q2 , target_Q)

# Update parameters of value functions
qf1_optimizer.zero_grad ()
qf1_loss.backward ()
qf1_optimizer.step()

qf2_optimizer.zero_grad ()
qf2_loss.backward ()
qf2_optimizer.step()

# Update Target Networks
soft_update_from_to(qf1 , target_qf1 , tau)
soft_update_from_to(qf2 , target_qf2 , tau)
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Code Listing 3: Policy network training step given a batch of data, corresponding to step 5 in
Algorithm 1
obs = batch[’observations ’]
real_actions = batch[’actions ’]

actor_actions = policy(obs)

# Compute value estimate
Q_pi_actions = qf1(obs , actor_actions)

# Compute log probability under discrimator
D_actor_actions_logit = discriminator(

obs ,
actor_actions ,
return_logit=True

)

log_D_actor_actions = F.logsigmoid(D_actor_actions_logit)

# Compute probability ratio
probs = discriminator(obs , actor_actions)
real_actions_probs = discriminator(obs , real_actions)

probs = torch.min(real_actions_probs , probs)

# min (D(s, a), D(s, a_dataset)) / D(s, a_dataset)
probs = probs / real_actions_probs

probs = probs.detach ()

# Compute loss and update policy
policy_loss = - (

probs * Q_pi_actions / w + log_D_actor_actions
).mean()

policy_optimizer.zero_grad ()
policy_loss.backward ()
policy_optimizer.step()
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Code Listing 4: Auxiliary generator training step given a batch of data, corresponding to step 6 in
Algorithm 1
obs = batch[’observations ’]

# Calculate loss
b_size = obs.size(0)
real_label = torch.full(

(b_size ,),
1)

actions_fake = auxiliary_generator(obs)

logits = discriminator(
obs ,
actions_fake ,
return_logit=True)

err = F.binary_cross_entropy_with_logits(
logits ,
real_label)

# Update auxiliary generator
auxiliary_generator_optimizer.zero_grad ()
err.backward ()
auxiliary_generator_optimizer.step()
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Code Listing 5: Discriminator training step given a batch of data, corresponding to step 7 in Algorithm
1
obs = batch[’observations ’]
actions = batch[’actions ’]

b_size = obs.size(0)

# Calculate loss on real action
D_real_logits = discriminator(

obs ,
actions + get_instance_noise(actions),
return_logit=True

)

real_label = torch.full(
(b_size ,),
1)

errD_real = F.mse_loss(
F.sigmoid(D_real_logits),
real_label

) / 2.

# Calculate loss on fake action
def loss_fake_action(fake_action):

fake_label = torch.full(
(b_size ,),
0,

)

D_fake_logits = discriminator(
obs ,
fake_action.detach () + get_instance_noise(fake_action),
return_logit=True

)

errD_fake = F.mse_loss(
F.sigmoid(D_fake_logits),
fake_label

) / 2.

return errD_fake

fake_action_aux = auxiliary_generator(obs)
fake_action_policy = policy(obs)

err_D_fake = loss_fake_action(fake_action_aux) \
+ loss_fake_action(fake_action_policy)

# Compute gradient and update the discriminator
discriminator_optimizer.zero_grad ()
(errD_real + err_D_fake).backward ()
discriminator_optimizer.update ()
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