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1 Graph Indices: A Systems Perspective

In this section, we argue that graph reordering is an orthogonal improvement to most graph-based
search indices. To explain why, we consider the key ingredients behind graph-based search indexing.
As will become apparent, popular graph-based indices (HNSW, PANNG, and ONNG) share the same
core components. Thus, although we focus on HNSW for our experiments, we expect our findings
to generalize to most graph-based indices used in practice. From an implementation perspective,
the core components of a graph index are diversification / pruning, search initialization, and beam
search. Although major search algorithms differ in nontrivial ways, these differences critically do not
substantially affect the node access pattern of the application. The properties of the graph that are
relevant to graph reordering are the same for the vast majority of indexing algorithms.

1.1 Constructing Near Neighbor Graphs

The degree distribution and maximum out-degree are among the most important graph properties for
reordering |Wei et al.|(2016); Balaji & Lucia (2018)). In this section, we argue that although popular
index construction algorithms differ in important ways, they produce graphs with similar degree
distributions.

We begin by briefly reviewing the methods to construct a near neighbor graph. In a near neighbor
graph index, each node corresponds to an element from the dataset. Two nodes are connected if
there is a small distance between the corresponding elements. To the best of our knowledge, all
existing theoretical models of near neighbor graphs adopt one of the following two construction
processes |Laarhoven| (2017); |Sebastian & Kimia| (2002), where we assume the existence of a metric
d 'V — V between every pair of nodes.

Definition 1. A graph is an a-near neighbor (a-NN) graph if there is an edge between all nodes v;
and vq such that d(vy, v2) < a.

Definition 2. A graph is a k-nearest neighbor (k-NN) graph if each node v is connected to its k
nearest nodes.

The two graph models differ by degree distribution, connectivity and directedness. In the k-NN
graph, each node has an out-degree equal to k, while nodes in the a-NN graph may be connected
to a variable number of neighbors. However, it should be noted that the maximum out-degree of an
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a-NN graph is bounded with high probability, and the out-degree distribution is sharply concentrated
about the mean for uniform embedding search Prokhorenkova & Shekhovtsov|(2020). Graphs may
be disconnected under either model, with nodes in sparsely populated regions of the dataset forming
separate connected components. Finally, k-NN graphs are directed, while a-NN graphs are undirected
because the distance function d is symmetric.

In practice, one cannot efficiently construct the k-NN or a-NN graphs because O(/N?) computations
are required to find the nearest neighbors of each point in the dataset. Nearly all modern algorithms
solve this chicken-and-egg problem via “bootstrapping,” where we iteratively add nodes to a partially
constructed graph. To add a node g to the graph, we query the current version of the graph to find the
(approximate) neighbors of ¢, whose edges are then updated to include g. The result is an approximate
k-NN or a-NN graph, which we may refine using the same procedure, by querying and updating
each node in the graph. Another process — referred to as NN-Descent — performs essentially the same
refinement procedure, but begins with a fully random initial k-NN graph |Dong et al.| (2011).

However, high-performing indices do not directly use the raw k-NN or a-NN graphs. The final search
index is obtained by removing unnecessary edges (or pruning) and by adding edges (or diversifying)
in order to improve the navigability of the graph. Each graph index implements slightly different
heuristics to accomplish this improved navigability, but they are all driven by the same principles.
Below, we describe three examples.

HNSW. HNSW was described in the main text, but we deferred a detailed description of the pruning
heuristic to the appendix. The pruning heuristic used by HNSW is as follows. Suppose that node B
is one of the k nearest neighbors of node A. If node B is closer to one of the other neighbors of A
than it is to A, then prune the link between A and B. This heuristic was originally proposed by |Arya
& Mount| (1993)) and has been used by many graph algorithms. It should be noted that HNSW applies
this heuristic incrementally, during the graph construction. When a node is added to the graph, the
connections of the node are immediately pruned. This permits the use of the efficient pruned graph to
locate the neighbors of future additions to the graph, which reduces construction time.

PANNG. This index is obtained by pruning a k-NN graph to remove medium-distance edges Iwasaki
(2016)). The intuition behind PANNG is that some edges in a k-NN graph are redundant because
there are likely alternative paths that connect the two nodes. We may safely remove these edges,
since graph search will simply take the other path. The PANNG algorithm first adds edges to the
k-NN graph so that the graph is fully connected and undirected. Then, the algorithm removes edges
according to the following pruning heuristic. Given two nodes A and B, if B is not one of the top &,
neighbors of A and there exists a different path between A and B of length < p, then prune the edge.
The values of k, and p are hyperparameters. When p = 2 and k,. = 0, the PANNG heuristic prunes
the same links as the HNSW heuristic, except under a corner case that is rare in practic

ONNG. This index can be seen as an extension to PANNG that applies an additional diversification
step to the k-NN graph Iwasaki & Miyazaki| (2018)). The intuition behind ONNG is that nodes with a
small in-degree are difficult to find in the graph, while nodes with a large out-degree are expensive to
visit. First, ONNG diversifies the £-NN graph by adding edges so that each node has in-degree at
least k7. Once the graph is constructed, ONNG applies the same link pruning heuristic as PANNG
using p = 2. In other words, ONNG adds edges to ensure that all nodes are reachable, then removes
the longest edge from all triangles in the graph.

Similarities Among Graph Indices. From an implementation perspective, all of these algorithms
construct pruned regular graphs with a limit on the maximum node out-degree. HNSW, ONNG and
PANNG all begin by adding “long distance” edges between nodes and then pruning edges when a
more desirable alternative path can be found. Under common hyperparameter choices, the pruning
heuristics all behave similarly. Also, most implementations use similar tricks (such as packing
the nodes of the finished index into a static, contiguous block of memory). It should come as no
surprise that the resulting graphs have approximately the same performance on real-world search
tasks |Aumiiller et al.|(2020). As previously mentioned, we expect these similarities to drive the
generalization of our results (here illustrated for HNSW) to PANNG and ONNG, as well as to other
popular graph indices that are based on the same principles.

!This occurs when the intermediary node C' on the path from A to B is not a neighbor of B. This is rare
when B and C are near neighbors of A because d(B, C) < d(A, B) + d(A, C).



1.2 Searching Near Neighbor Graphs

In this section, we argue that common near neighbor graph algorithms have a similar node access
pattern and will therefore benefit from reordering in similar ways. Graph-based near neighbor search
consists of a walk along the edges of the graph. At each node = encountered during the walk, we
record the distance d(g, ) between the query ¢ and the current node. We explore the graph until we
arrive at a node which is closer to the query than any candidate or neighbor of a candidate seen so far.

Greedy Search and Beam Search. There are two search algorithms in widespread use: greedy
search and beam search. In greedy search, we simply choose the nearest node to the query from the
neighbors of our current node. We stop the search process once none of the outgoing edges lead to
a node that is closer than the current node. Beam search is conceptually similar to greedy search,
but we maintain a dynamic list of M candidates to investigate. Beam search allows us to explore
outbound paths from any of the best M nodes seen so far. If none of the outgoing edges of the i
candidate lead to a closer node, then we consider the neighbors of candidate (i + 1). Once none of the
M nodes have edges that lead to closer neighbors, we return the best points from the list of candidates
as our search results. Note that when M = 1, beam search and greedy search are equivalent.

Graph Search Initialization. Many recent innovations in graph k-NN reduce to initialization
methods that produce a good starting position for beam search. For example, HNSW uses greedy
search over the hierarchical portion of the graph to find a seed node in the lowest layer, which is used
to initialize beam search. PANNG and ONNG traverse a space-partitioning tree to extract seed nodes.
Alternative options include initialization via locality-sensitive hashing, node centrality measures,
and even random selection. Recent experiments suggest that the type of initialization is immaterial
to performance [Lin & Zhaol|(2019alb). |Prokhorenkova & Shekhovtsov|(2020) provide theoretical
support for this idea by proving that beam search over an a-NN graph solves the approximate near
neighbor problem given a “sufficiently close” initialization that can be found by repeated random
sampling.

Initialization is also fairly inexpensive. To illustrate this, we constructed an HNSW graph on the
SIFT1M dataset with & = 8 edges per node. We used beam search with M = 500 and found that the
hierarchical part of the search process was responsible for only 2.9% (+1.9%) of the query time. We
then replaced the hierarchy with a process where we randomly select 50 nodes and use the closest
option as the initialization, to reproduce the experiments by |[Lin & Zhao| (2019a)). We found no
statistically significant difference in terms of recall or query time over 10k queries. The practical
takeaway is that under typical query conditions, initialization is an important but computationally
insignificant part of the search process. The most time consuming part of graph search is the final
stage, where we walk along the edges to locate the neighbors of a query. It is this stage that is targeted
by reordering algorithms.

1.3 Why should our results generalize?

Most graph indices rely on edge walks to locate neighbors. No matter how the search is initialized
or how the original £-NN graph may be modified, the most expensive part of the query is graph
exploration via beam search or greedy search. This process is inherently cache-unfriendly, even when
all of the nodes are placed in a contiguous block of memory |Wei et al.| (2016). Graph reordering
is a general technique to shuffle the order of nodes so that connected nodes are nearby, and thus
that graph walks are more cache efficient. Unlike traditional applications of graph reordering, nodes
in near neighbor graphs are often larger than the cache line size. However, this simply means that
performance gains are driven by prefetching rather than by co-loading nodes from the same cache
line.

2 Graph Reordering Techniques

In this section, we provide a detailed review of existing graph reordering methods. Formally, graph
reordering can be seen as constructing a labeling or indexing function P : V' — {1,..., N} that
assigns each node v € V in a graph to a unique integer index (or label) between 1 and N following
a pre-specified rule or in order to maximize some objective. Many formulations are possible, but
generally we require P to map connected nodes to similar (nearby) labels. The function P is then
used as the memory layout for the graph, with node v assigned to memory location P(v).



2.1 Techniques

There are three broad categories of reordering algorithms. The first category contains algorithms that
optimize P to maximize an objective function. The optimization problem is typically NP-hard, so we
are usually forced to accept an approximate solution for P. The second category assigns labels to
nodes based on their degree or other local graph features. Finally, graph partitioning algorithms can
be repurposed to work as reordering algorithms by assigning a contiguous memory range to each
partition. Below, we review several recent algorithms from each category. These are considered in
the experiments to assess their ability to accelerate near neighbor search.

Gorder. Gorder (graph-order) is a graph reordering algorithm that seeks to maximize the overlap
between the neighborhoods of nodes with consecutive labels|Wei et al.| (2016)). Indeed, Gorder finds
P by maximizing the number of shared edges among size-w blocks of consecutive nodes. This is a
good proxy for cache efficiency because a block that contains many overlapping nodes is likely to
avoid a cache miss, as each node’s neighbors are stored no further than w memory locations away.
Formally, the Gorder labeling function Pgo can be found through the following maximization

Pgo = arg max Z Ss(u,v) + Sp(u,v), (1)
P

u,v € Vs.t.
|[P(u)—P(v)|<w

where S, (u, v) indicates whether v and v are directly connected and S,, (u, v) counts how many com-
mon in-neighbors they have. In other words, Gorder maximizes the average neighborhood overlap
between nodes that are within w positions of each other under the labeling function. Intuitively, two
nodes will be placed together if they share a direct edge or, even if that is not the case, if they share
many common neighbors. Maximizing the objective in (I)) is NP-hard, but the Gorder algorithm
in|Wei et al.[(2016) provides a 1/(2w)-approximate solution. Algorithm shows pseudocode for the
Gorder algorithm. We also show psueodcode for the Porder algorithm, which is very similar.

Reverse Cuthill Mckee. The bandwidth of a matrix is defined as the maximum distance of a nonzero
element from the main diagonal. The Reverse Cuthill Mckee (RCM) algorithm |Cuthill & McKee
(1969)); |George| (1971) is a reordering method originally introduced to minimize the bandwidth of a
sparse symmetric matrix. If we apply this method to an adjacency matrix, then the corresponding
optimization problem has an immediate interpretation in terms of graph reordering |Auroux et al.
(2015)

Prev = argmin - max | P(u) — P(v)], (2)

P (u,v)EE

where E is the edge set of the graph of interest. From (2) it follows that the RCM objective is to
minimize the maximum label difference between connected nodes. Similar to Gorder, the problem is
difficult: the exact solution is NP-hard. The RCM algorithm is a heuristic method based on breadth-
first search to find a function P with low (but not necessarily optimal) bandwidth. Algorithm
presents pseudocode for RCM.

MLOGA and MLINA. The objective in (2) motivated extensions that focus on an aggregated mea-
sure (as opposed to the maximum) of the discrepancies between labels of connected nodes. Both
the minimum logarithmic arrangement (MLOGA) and the minimum linear arrangement (MLINA),
which originally arose in the context of social network compression, are examples of these ap-
proaches (Chierichetti et al.| (2009). More precisely, MLINA seeks to minimize the sum of label
discrepancies

Pyipn = arg min Z |P(u) — P(v)], 3)

whereas MLOGA first applies a logarithmic transformation to these discrepancies
Pyirg =argmin Y log(|P(u) — P(v)]), “)
(u,v)EE

where, again, F is the edge set of the graph of interest. As expected, both problems are NP-
hard. However, specialized heuristics have been developed to approximate the solution of both
MLOGA |Chierichetti et al.| (2009); |Safro & Temkin! (2011)) and MLINA |Wei et al.| (2016)).

Degree Sorting. Degree sorting is a lightweight reordering algorithm based on the idea that high-
degree nodes are likely to share many edges. Indeed, many practical graphs obey a power-law degree



Algorithm 1 Gorder Algorithm

Input: A graph G = (V, E)) with vertices in an original order V = {v1, ...vx } and window size
w.
Output: A permutation vector P where P[¢] contains the new location for vertex i.
() = empty priority queue.
P = array of N zeros.
fori =1to N do
Insert v; into @) with priority 0.
Increment Q[V[0]] by 1.
P[0] = Q.pop()
fori =1to N do
ve = P[i — 1] new node in window.
for Node v in out-edges of v, do
if u € @ (i.e. node is not yet assigned) then
Increment Q[u] by 1.
for Node v in in-edges of v, do
if u € @ then
Increment Q[u] by 1.
for Node v in out-edges of u do
if u € @) then
Increment Q[v] by 1.
if ¢ > w 4+ 1 (Remove tailing node) then
Vp = P[Z —w — 1]
for Node u in out-edges of v, do
if u € @ (i.e. node is not yet assigned) then
Decrement Q[u] by 1.
for Node u in in-edges of v, do
if u € () then
Decrement Q[u] by 1.
for Node v in out-edges of u do
if u € ) then
Decrement Q[v] by 1.
Pli] = Q.pop()
Increment? =1+ 1

Algorithm 2 Porder Algorithm

Input: A graph G = (V, E) with vertices in an original order V' = {v1,...ux}, a set of queries @,
and window size w.
Output: A permutation vector P where P[i] contains the new location for vertex i.
Construct a weighted graph G, = (V, E, W), identical to G with all weights = 1.
for Query ¢ in @ do
Run query ¢ through the G.
For every edge traverse by ¢, increment weight by 1.
Run Algorithm [If on G,, to get P with the following modification: Instead of increment-
ing/decrementing by 1, increment/decrement by the edge weight.

distribution, where a small number of nodes form a densely connected sub-graph. For undirected
graphs with a power law degree distribution, degree sorting will create a group of neighboring
high-degree nodes in the first contiguous memory block. To obtain P, we simply sort the nodes
in descending degree order and let P(v) be the sorted rank of node v. Since degree sorting only
requires local node information, it is orders of magnitude faster than the optimization-based methods
in (I)-@).

Hub Sorting. Hub sorting Zhang et al.[(2017) is similar to degree sorting, but with the caveat that we
only sort hubs (nodes with many connections). The algorithm first splits the nodes into two groups
(hubs and non-hubs) based on a degree threshold. The threshold is set as the average degree, so that
hubs are defined as nodes with greater-than-average degree. To find P, the hubs are sorted by degree



Algorithm 3 RCM Algorithm

Input: A graph G = (V, E)) with vertices in an original order V = {v1, ...vx } and window size
w.
Output: A permutation vector P where P[¢] contains the new location for vertex i.
V' =V sorted in ascending order of degree.
P = empty array.
fori =1to N do
v=V'[{]
if v ¢ P then
Append v to P.
Push the out-neighbors of v onto () in order of ascending degree.
while @ is non-empty. do
u = Q.pop()
if u € P then
Append u to P.
Push the out-neighbors of u onto @ in order of ascending degree.
P’ = reverse(P)
fori =1to N do
P[P'[i]] =i

and the non-hubs keep their original ordering. Experiments have show that degree and hub sorting
are not always beneficial: they may even slow down graph processing if the original ordering of the
graph had good locality properties Balaji & Lucia (2018). Selective hub sorting was introduced to
address this issue. In selective hub sorting, we only reorder a graph if the hubs are densely connected
to each other. To decide whether to sort the graph, we compute the packing factor, a computationally
inexpensive diagnostic value that predicts whether hub sorting is likely to be effective |Balaji & Lucia
(2018).

Hub Clustering. Hub clustering is the same as hub sorting, but without sorting the hubs after
separating high and low degree nodes Balaji & Lucial (2018). The primary advantage of hub
clustering is that it is an incredibly lightweight reordering algorithm that can be accomplished in a
single pass through the graph.

Degree-Based Grouping. Degree-Based Grouping (DBG) [Faldu et al.[(2019) is an extension of hub
clustering to multiple groups. Nodes are divided into w groups based on degree ranges associated
with each group. The groups are sorted in descending degree order, but the order of the nodes within
each group is not changed. The authors of |Faldu et al.[(2019)) use logarithmically spaced thresholds
to evenly distribute nodes among groups for power-law graphs. Since k-NN graphs do not have
power-law degree distributions, our implementation uses the w quantiles of the degree distribution
instead.

RADAR. RADAR is a recent graph ordering method that improves processing times by duplicating
commonly-accessed nodes Balaj1 & Lucial (2019). The duplication allows important nodes to be
physically located near more connections by providing multiple copies of the node in the data
structure representing the graph. The authors treat high-degree nodes as important, though one could
also use other measures of network centrality to identify candidates for duplication.

Unfortunately, this process is difficult to apply to near neighbor graphs for two reasons. First,
neighbor graphs do not have the power-law structure that results in a small number of central nodes.
Many nodes in a near neighbor graph would require duplication. Second, each node in a search
index contains approximately 1 kB of vector attributes. RADAR assumes a much lower amount of
meta-data (approximately 4 bytes), so the duplication would lead to GB of overhead.

RECALL. RECALL is a graph ordering method that incorporates both spatial and temporal locality
to improve the speedup obtained by graph ordering methods |[Lakhotia et al.[(2017). RECALL targets
graph algorithms that iterate through every vertex multiple times. The critical observation is that
graph processing times can improve if the iterative node processing order is scheduled to prefer
recently-seen nodes (or their spatial neighbors). Unfortunately, this does not work well in the context
of near neighbor indices. A search query visits each node in the graph at most one time, ultimately



Table 1: Comparison of objective-driven graph order methods and graph partitioning (LDG).

Query time Original
(99% recall) Order Gorder RCM LDG
SIFTIM 1.4069 ms (0%) 1.253 ms (11%) 12671 ms (10%) 13816 ms (2%)

processing a very small subset of the graph. This violates the stationarity assumption made by
methods like RECALL.

Graph Partitioning. Graph partitioning is a very well-studied area with a large number of established
methods. One can create a graph reordering algorithm from any graph partitioning method by using
the graph partitioning method to assign nodes to groups and using the same labeling scheme as in
DBG.

However, there is substantial evidence that graph partitioning methods do not work well as objective-
driven reorderings. While graph partitioning algorithms are suitable to accelerate computation by
sharding a graph among several different processors, they do not produce a sufficiently fine-grained
ordering to accelerate single-core operations via cache mechanisms. For example, |Wei et al.[(2016)
and |Lecuyer & Tabourier| (2021) both demonstrate that graph partitioning does not consistently result
in orderings that are better than random.

We reproduce this result in Table[T} where we compare objective-driven methods (Gorder and RCM)
with LDG, a leading graph partitioning method |Stanton & Kliot| (2012). We chose LDG because it
works well on directed graphs and is efficient enough to partition graphs with millions of nodes into
hundreds of thousands of partitions. It should be noted that LDG is a highly competitive baseline.
For example, Stanton & Kliot| (2012) evaluate 17 different methods and find that LDG is second only
to METIS Karypis & Kumar| (1997). [Tsourakakis et al.|(2014) demonstrate similar results, placing
LDG in the top three methods. Because methods like METIS are very expensive to run in the context
of reordering (due to the large number of partitions Wei et al.|(2016)), LDG is likely one of the best
options available from graph partitioning.

We also observe that graph partitioning is not an effective reordering method. For this reason, we
exclude it from our experimental comparison.

3 Proofs

In this section, we provide proofs for the theorems, as well as a more complete description of our
theory. This section is an independent presentation of the material, and we re-state the theorems
as needed. Recall from the main text that we consider the number of cache misses for one step of
breadth-first search, for the reasons described in the main text. That is, we consider the cost to first
access a node, and then to access each of its out-neighbors in sequence. We also consider the number
of cache hits, or the cache efficiency CE;, associated with visiting node v;.

Ci=1+ Y Tumwoy [ T e

v €E(v;) k<j
J=1...deg(vi)

CE:= > Liei(w) U, o)}
v EE(v;)
j=1...deg(v:)

Here, I(v) is the cache line containing v and E(v) is the set of outbound edges of v. The 1 represents
the cost to load v; in [(v;), and the sum represents the cost to load the lines containing neighbors of
V;.

Minimizing the cost is equivalent to maximizing the efficiency score because a cache hit occurs if
and only if there is not a cache miss.

Alternative Expression for the Efficiency Score. A critical part of our theory is to rewrite the cache
efficiency score in terms of the S(u,v) and S, (u, v) terms of the gorder objective. This will allow
us to connect the notion of cache efficiency with the quality of the graph layout.



Theorem 1. Given a graph G = (V, E), let

N i—1 [i/B]

UB:Z ( Z Ss(vi,v5) + Sn(vi,v;) — max Z Li(v, wyery — 1,0 >
i=1 *j=li/B]+1 j=li/BJ+1
Then the cache efficiency score CEpps(P) obeys the following inequalities.
N
UB — ) _ Triplets(v;) < CEpps(P) < UB
i=1

where Ss(vi, v;) and Sy (vi, v;) are as defined in Equation|[I|and Triplets(v;) is the number of triplet
combinations of v;’s out-neighbors that fall into the same cache line.

Proof. We write the cache efficiency as follows.

N
CEprs = Z Z :ﬂ-{(?)j,m)EE} + (1/2) Z ]]-{Uj<isiblings (v4,v;5) from vk}]]-{Uc/BJ#[Z/BJ}

i=1j:14/B]=1i/B] vi=Parents(v;)
J#i

The sum is over all nodes in each cache line, and the first indicator counts the number of times that
v; is a parent of v;. The second sum is over all parents of v;, and counts the number of sibling
relationships between v; and v; where the parent vy, is not in the cache line. It is necessary to exclude
situations where vy, is already in the cache line, since those cache hits are already counted by the first
term. Also, we must exclude extra counts that arise when v; has multiple siblings in the cache line,
since only the first one matters for the purposes of a cache hit. To count once if a sibling is present
(rather than once for each sibling that is present), we take the union U;.,; over siblings inside the
second indicator. Also, note that the % factor is needed to avoid double-counting a sibling cache hit,
since the sibling relationship is symmetric. Finally, observe that nodes at permutation locations ¢ and
j are in the same cache line if |i/B| = |j/B].

The next step is to change the bound on the internal sum from j # 4 : |j/B| = |i/B] to
j = [lj/B],i — 1]. For the first term, we simply need to add an indicator to count when v; is
a parent of v; in addition to the existing indicator that counts when v; is a parent of v;. For the second
term, when we change the sum from being over |j/B| = |i/B], we pick up two indicator functions:
one for when v; and v; are siblings and one for when v; and v; are siblings. For this reason, we may
remove the 1/2 term when summing over the items in the line up to item ¢ — 1.

N 1—1
CEprs = Z Z i v)eE} t1{v, v;3eE+ Z Ly, < isiblings (vi,v;) from vy, } L{|k/B|#]i/B]}
=1 j=|i/B| v =Parents(v;)

Upper Bound. First, we will prove the upper bound. We will return to this point in the analysis later,
when we prove the lower bound.

To get the upper bound, we start by applying the Bonferroni inequality (with just one expansion of
the inclusion-exclusion principle) to the union U .; over siblings in the cache line.

]l{uj<isiblings (vi,v;) from v } < Z ]]-{siblings (vi,v;) from vy }
j<i
Li/Bl=1i/B]
Using the upper bound on the indicator, we can express the second sum as the number
of shared parents of v; and v; that do not appear in the cache line, which we denote as
| (Parents(v;) N Parents(v;)) \ I(v;)| (Where {(v;) is the set of nodes in the cache line of v;).

N i—1
CEprs < Z Z (1{(1;j,1)i)eE} + 1{(v; v)eEy + | (Parents(v;) N Parents(v;)) \ l(vz)|>
i=1j=[i/B]+1



Observe that 1(,, »,)er} = Ss(vi,v;) from the GO objective. Also note that the intersection of
parents is equivalent to

|Parents(v;) N Parents(v;)| — |Parents(v;) N Parents(v;) N I(v;)]

This allows us to write the cache efficiency as follows:

N i—1 i—1
CEprs < Z Z Ss(vi,v5) + Sy (v, v5) — Z |[Parents(v;) N Parents(v;) Ni(v;)]
i=1 j=[i/B)+1 j=(i/B]

Finally, examine the sum of |Parents(v;) N Parents(v;) N I(v;)|. This sum accumulates a +1 every
time a child of a node in {(v;) is also in [(v; ), with the exception of the first child. This can be written

as
[i/B]

Y Lwwery — 1
j=i/B]
Of course, if there are no children, the cost is O rather than —1, so the term is actually
[i/B]
max > Lwwpery — 1,0
Jj=li/B]+1
which completes the expression for the upper bound.

Lower Bound. To get the lower bound, this time we will apply the Bonferroni inequality with two
expansions of the inclusion-exclusion principle.

1 {U,j<isiblings (v;,v;) from vy } > Z]]- {siblings (v;,v;) from vy }
j<i
Li/Bl=1i/B]
- Z IL{si‘blings (vi,v;5) from vy } IL{si‘blings (vi,vp) from vy }
j<i<i
Li/BI=1i/Bl=11/B]
The analysis proceeds as before, by grouping the first part of the expression with the other terms to
create Ss(v;,v;) and Sy, (v;, v;). However, now we have to deal with a second term that contributes

N
Z Z |Parents(v;) N Parents(v;) N Parents(v;) \ {(v;)]

=1 j<i<i

where nodes (v;, v;, v;) are constrained to be in the same cache line (i.e. |j/B]| = |I/B] = |i/B]).
Since we are interested in a lower bound, we may disregard the intersection \l(v;), as —|A \ B| >
—|A| for any sets A and B. Upon closer examination, the remaining terms pick up a +1 increment for
each triplet combination of children in the same cache line. This results in the following expression.

N
Z Triplets(v;)

i=1

where Triplets(v;) is defined as the number of triplet combinations of children of v; that are in the
same cache line.

O

Using the expression for CEpps that we derived in Theorem|I] one can show that the graph reordering
problem is an instance of the NP-hard maximum perfect matching problem on hypergraphs.

Lemma 1. Given a graph G = (V, E), the problem of finding the layout with an optimal DFS cache
cost is an NP-hard instance of maximum weight perfect hypergraph matching.



Proof. The maximum weight perfect hypergraph matching problem is as follows. Given a B-regular
hypergraph G = (V, E), associate a weight w, with each edge e € E. The task is to select a set of
edges S that maximize the sum ) __ g we, subject to the constraint that each vertex v appear in only
one edge e € S. This corresponds to the problem of |Parekh & Pritchard (2012) where d. = 1,0, = 1
and k = B.

The graph reordering task is to select groups of B vertices e = {v;, vj, ...v;, } with |e| = B to place
into the same cache line with the objective of maximizing the cache efficiency score CEpps. Each
possible cache line contributes a term (or weight) w, to the CEpgg sum. This is an instance of the
maximum weight perfect hypergraph matching problem, with G as the hypergraph with the edges
e being all possible combination of B nodes. The maximum weight perfect hypergraph matching
problem is NP-hard |Parekh & Pritchard|(2012), and the special case considered here does not improve
the complexity. O

Now, we will show that the gorder algorithm with window size w = B is an approximation algorithm
for the DFS cache layout problem. Note that we must add an additional O(N B) step to the end of the
algorithm to cover an edge case in the proof, but the graph ordering remains essentially unchanged.

Our proof strategy is to prove bounds on the cache efficiency score CEpgg that are in terms of the
gorder objective Fzo. We will then use these bounds, together with the fact that gorder provides
a %—approximation to F{ (the optimal value of the gorder objective), to show that the gorder
layout also provides an approximation to CEfjpg (the optimal cache efficiency). The upper bound
(Lemma[2) is straightforward.

Lemma 2. Upper bound:
CEprs(P) < Fao(P)

Proof. This follows from Theorem [I]by removing the max operation. O

The lower bound is both more complicated to show and looser than the upper bound.

Lemma 3. Lower bound: Given a permutation P with gorder objective Fgo(P), we can shift the
permutation to obtain a permutation P’ which satisfies

Clpes(P) 2 3 FaolP) ~ N(B—1) - (1175}

Proof. Recall that the cache efficiency score is

N i1
CEprs > ( Z Ss(vi, v5) + Sn(vi,v5)
i=1 Nj=|i/B]+1
[i/B]
— max Z Ly wery — 1,0 p — Triplets(vﬁ)
j=li/BJ+1

Since we require a lower bound for CEprg, we may replace the maximum operation to get the
following inequality:

i—1 [i/B]—1
CEDFS Z Z ( Z Ss(rUi,Uj)+Sn(Ui,Uj)* Z (]l{(vhvj)eE}l)Triplets(v¢)>

i=1 Nj=li/B]+1 Jj=li/B]
Remark. If B = 2 (ie. we consider only pairs of nodes) then both Triplets(v;) and
InaX{II.(,U“vj)el(vi) — 1,0} are zero. In this case, a tighter lower bound is %FGO.

We can use the same trick used by Gorder to rewrite the second sum in terms of the bounds of the
first sum. Specifically, we perform the sum over half of the terms, but include a second indicator for
the case when v; is a parent of v;.
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<Ss(Ui,Uj) + Sn(vi,vj) — ]1{(1,1.71,].)6]5} — ]l{('l)]‘.,'l)i)eE} — ’I‘riplets(vﬁ)

i—1

> (Ss(viv%‘) +  Sn(vi,v;)  — 2) —  Triplets(v;)

i=1j=|i/B|+1

Mz

If every node has a maximum of M children and there are B locations available in the cache line,
then the maximum value Triplets(v;) can take is | M/B](%).
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- i Z <Ss('0i,'l)j) + Sn('ui,vj)> — 2%% _ NLM/BJ(§>

where the final equality comes from the fact that the sum over j adds the —2 constant factor
1,2,...B — 1 times, and we repeat this process N/B times. It remains to show that

N i1 N -1
Z Z Ss(vi,vj) + Sn IU'L?”] < Z Z vlavj + Sn(vivvj) = Fgo
i=1 j=|i/B]+1 i=1 j—i—

To show this, suppose the gorder objective returns a permutation P;. Every B term of the outer sum
is identical for Fo and the efficiency score, since we have a sum from j = k(B —1)toj = kB —1
for k € Z. However, the other terms of the efficiency score are smaller. For example, the term
corresponding to the first element in a new cache line is zero because it is a sum from j = kB to
j=kB—1.

To relate the two sums, we will use the following fact. Given a set of numbers x1, z2,...xny With
mean Z, there exists an z; > . We take the mean of the terms in the cache efficiency score over the
first B shifted permutations Py, ...Pg_;.

Cache Alignment (Shifting) Algorithm: When we say shifted permutation, we mean that the order
of nodes remains the same, but the cache boundaries have been shifted. For example, suppose that
under a permutation Py, the first cache line consists of nodes [v1, v, ...v5]. The second cache line
begins at node v 1, and contains an additional B nodes. We define the shifted permutation P, as
the layout having the same node ordering, but with cache line boundaries beginning one slot to the
left. That is, the first cache line begins one space to the left of v;. Since there is no node to the left of
v1, this line contains the first B — 1 nodes [v1, vo, ...vp_1], and the second line begins at vg. It is
easy to see that there are a total of B shifted permutations (since shifting the locations by B results
in the same line boundaries). Also, note that shifting does not change the gorder score because it
maintains the order of the nodes.

Observe that, because of the shifting, the permutations together contain exactly one full copy of the
terms in Fgo. They also contain a number of other, partial terms. Let «(P) be the following quantity,
under the permutation P:

N i—1
=3 Y Se(wivy) + Su(vi,vy)

i=1j=1i/B|+1

11



Because shifting does not affect the gorder score, we have the following inequality:

B
1 1
T=— P) < =Fgo(P;
z B;x( ) < pleo(P1)
The fact presented earlier implies that at least one of the permutations satisfies
1
z(P) < EFGO(P)

It is easy to find the permutation of the gorder layout that satisfies this inequality. We can simply
evaluate the cache efficiency score for the first B shifted permutations and select the permutation
with the largest score. Given a permutation, one can compute the gorder score in O(N) time, so this
algorithm runs in time O(BN). Let P’ be the permutation found in this way. Then we have

CEpes(P)  FFoo(P) = N(5 - 1)~ N1t/ )

We are finally ready to prove Theorem [2Jusing a combination of Lemma [2]and Lemma 3]

Theorem 2. Let G = (V, E) be a graph with a maximum out-degree M, P be a layout with objective
score Fao(P), and P’ be the layout obtained by running Gorder plus a simple cache boundary
alignment procedure on P. P’ satisfies the following inequalities:

1 B
CEprs(P’) > EFGO(P) — N(B-1)— N|M/B] (3> CEprs(P’) < Fgo(P)
We use the convention (Z) =0whena <b.

Proof. The proof of this statement is straightforward. The lower bound comes directly from Lemmal[3]
Lemma [2]does not directly give the result in the theorem, instead yielding

CEprs(P') < Fao(P')

However, recall from the proof of Lemma 3|that the shifting process does not modify the gorder score.
Therefore, we have that
Feo(P') = Fco(P)

O

Finally, we use Theorem[2]to prove that any algorithm which makes a large enough improvement to
the gorder objective will also improve the cache efficiency. Theorem 3] essentially states that “better”
layouts (under the gorder objective) have higher cache efficiency scores.

Theorem 3. Given two node orderings P; and P, on a graph with maximum out-degree M,
CEprs(P2) > CEprs(P1) if Foo(P2) > BFgo(P1) + B(B—1)N + NM(?)

Proof. For convenience, let Fy = Fgo(FP2), Fi = Fgo(P1), CE; = CEpps(P) and CE; =
CEprs(P2). Suppose
Fro=F +A

We wish to find the smallest value of A that guarantees CE; > CE;. First, note that
1 B
Cy > EFQ - N(B-1)—N|M/B] 5
Since F = F} + A,
1 1
>_—_N+—=A-N(B-1
Cy > i1 + B ( )

12



Suppose we have the following value of A

A=F(B-1)+N(B-1)B+BN|M/B| (?)

Then the previous inequality becomes

. %F1+B;1F1+N(BB— 1)B _N(B_le“VLBW(?) _NLM/BJ(§>

or, simply
Cy > Fy
From Lemma[2} F; > C1, so we have that Co > C7 when

A > F(B-1)+N(B-1)B+BN|M/B] (?)

Since |M/B| < M/ B, any A satisfying the following (slightly looser) condition will also work.

A ZFl(B1)+N(Bl)B+NM<]§)

Or, in other words,

B
F, > BFy + B(B — 1)N+NM(3>

4 Supplementary Experiments

In this section, we provide more details about our experiments, as well as additional experiments on
different hardware and with various cache ablations.

4.1 Datasets

We obtained our smaller datasets and queries from the ANN-benchmarks repository. These datasets
are released under the MIT license. For the large DEEP100M and SIFT100M experiments, we used
the original DEEP1B and SIFT1B datasets. DEEPI1B is hosted by Yandex under the CC BY 4.0
license: https://research.yandex.com/datasets/biganns, SIFT1B is available in the public
domain, here: http://corpus-texmex.irisa.fr. We used the DEEP100M ground truth results
available here: https://github.com/matsuib28/deeplb_gt, which are also released under the
MIT license.

4.2 Methods

Objective-Based Reordering. Since our k-NN search benchmarks involve datasets with millions
of nodes, we avoid algorithms that are known to scale poorly to large graphs. We implemented
Gorder and RCM, but we did not implement MLOGA or MLINA because these algorithms have very
high runtime without tangible improvements over Gorder or RCM |Wei et al.| (2016)). We exclude
several other baselines that are also not well-suited to near-neighbor graphs, including RADAR,
RECALL and Graph Partitioning. RADAR requires a substantial memory overhead, while RECALL
requires a different type of graph workload to attain acceleration. Graph partitioning methods are not
fine-grained enough to produce a cache-based speedup for graphs with large node sizes.

Degree-Based Reordering. At first glance, degree-based methods seem inappropriate because near-
neighbor graphs may have a constant degree distribution. However, this is not actually the case
(Figure[d), so it is reasonable to consider lightweight reordering. We follow the suggestion of [Balaji
& Lucial (2018) to use the in-degree as a local feature for hub clustering and degree-based methods
because beam search is a so-called push applicationE] We use the average degree as the threshold for
hub clustering and sorting, and we use 8 groups given by the 8 quantiles of the degree distribution for
DBG.

2See Section 2 of [Balaji & Lucial (2018} for the definition of push/pull applications.
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Figure 1: Graph reordering experiments, reproduced on a different CPU. We observe similar query
accelerations even on a machine with substantially different cache dimensions.

4.3 Implementation Details

We wrote our code to use the same base memory layout as the nmslib implementation of HNSW. In
the lowest search level (the focus of our study), HNSW allocates node data in a contiguous block of
memory. Node data is stored alongside the edge list and metadata for each node. We use a similar
layout, where our nodes are stored in a pre-allocated contiguous block of memory. Each node is laid
out as follows: [integer array of edges][node data][node metadata (label)]. We directly use the query
algorithm from nmslib/hnswlib in our implementation. We considered both the hash-based visited
list of the NGT library and the array-based visited list of the nmslib library. We chose the array-based
list because our performance tests revealed it to be faster.

4.4 Additional Experiments

In this section, we present several ablations and additional experiments that support our conclusions.

Reproducibility Experiment. We re-ran our top performing methods for SIFT10M, DEEP10M,
GIST1M and DEEP100M on a different CPU with a different cache profile. This experiment was run
on a machine with 96 Intel Xeon Gold 5220R CPUs, each having 1.5 MB of L1 cache, 48 MB of L2
cache and a 71.5 MB shared L3 cache. We rebuilt all the indices for Gorder, Porder and RCM on
this machine to understand how our results can be expected to translate to other hardware platforms.
These results are presented in Figure [I We find that our results are reproducible and that Porder
consistently outperforms Gorder (albeit by a small margin on uniformly-distributed datasets). We
expect an even better performance difference for real-world problems because many search problems
have non-uniform, highly skewed query distributions (e.g. in product recommendation systems, some
queries are issued much more frequently than others).
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Figure 2: Prefetcher ablation, where we disable the L1 and L2 prefetcher. The average speedups
with/without prefetching for MNIST, DEEP10M and SIFT10M are as follows: (15%, 5%), (26%,
21%), (25%, 20%).
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Figure 3: Node size ablation, where we consider two equivalent versions of SIFT1M. In the 128-byte

version, we represent each dimension as an 8-bit integer. In the 512-byte version, we represent each
dimension as a 32-bit float. The speedup is larger for smaller node sizes.

Prefetcher Ablation. To isolate the effect of cache coherency from that of hardware prefetching, we
turned off the L1/L.2 hardware prefetcher. We issued 10K queries and measured the average speedup
(Figure [3). We ran the prefetch experiments on an Intel Broadwell Core i5 and we turned off the
prefetchers via the MSR registers (specifically, register Ox1A4). This disables the L1 data prefetcher
and the next-line prefetchers for the L2 data and instruction caches. It also disables the L2 streaming
prefetcher, which can prefetch into either the L2 or L3 cache. However, the BIOS settings expose an
LLC prefetch setting for the L3 cache and the TLB cache has its own prefetcher. We were unable to
completely disable these for the “No HW Prefetch” results in Figure [3| without unrestricted access to
the BIOS / UEFL

Because we see a drop in performance when hardware prefetching is turned off, L1/L2 hardware
prefetching is responsible for a fairly large amount of performance, especially for datasets with large
vector sizes (e.g. MNIST). The remaining speedup is likely due to cache coherence for auxiliary
data structures such as the list of node statuses and L3 / TLB prefetching (which we were unable to
disable).

Node Size Ablation. To understand how data vector size affects reordered performance, we con-
structed two equivalent versions of the SIFT1M dataset - one where vectors are represented as 32-bit
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Figure 4: Empirical out-degree distribution of HNSW with a maximum of M = 32 outbound edges.
Although we begin with & = 32 outbound edges per node, the pruning heuristic removes over half of
the edges from the network. The result is a graph that is far from k-regular while also not belonging
to the common class of power-law graphs.

floats (512 bytes / vector) and one where vectors are represented as 8-bit integers (128 bytes / vector).
Because the datasets are the same, we use the same graph connections for both indices and modify
only the on-disk representation of each vector. To remove speedup effects due to faster distance
functions, we compare speedups relative to the non-reordered graph. We observe that larger vectors
result in a smaller speedup (average of 11% vs 19%) (Figure[3]).
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