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Abstract

Motivated by the achievements in model-based methods and the advances in deep
networks, we propose a novel enhanced latent space blind model based deep
unfolding network, namely ScaoedNet, for complex real image denoising. It is
derived by introducing latent space, noise information, and guidance constraint into
the denoising cost function. A self-correction alternative optimization algorithm is
proposed to split the novel cost function into three alternative subproblems, i.e.,
guidance representation (GR), degradation estimation (DE) and reconstruction
(RE) subproblems. Finally, we implement the optimization process by a deep
unfolding network consisting of GR, DE and RE networks. For higher performance
of the DE network, a novel parameter-free noise feature adaptive enhancement
(NFAE) layer is proposed. To synchronously and dynamically realize internal-
external feature information mining in the RE network, a novel feature multi-
modulation attention (FM2A) module is proposed. Our approach thereby leverages
the advantages of deep learning, while also benefiting from the principled denoising
provided by the classical model-based formulation. To the best of our knowledge,
our enhanced latent space blind model, optimization scheme, NFAE and FM2A
have not been reported in the previous literature. Experimental results show the
promising performance of ScaoedNet on real image denoising. Code is available at
https://github.com/chaoren88/ScaoedNet.

1 Introduction
Image denoising is important for various computer vision tasks, and numerous outstanding methods
have been developed [13, 17, 46, 18, 36, 26, 49, 54, 27, 32, 20]. The filtering-based methods are
representative, such as the classic local low-pass filtering methods: mean filtering and median filtering.
In recent decades, many non-local filtering methods [13, 14, 16, 25] have achieved a great success.
However, their results may suffer from blurring artifacts caused by their block-wise operations.

The model-based methods largely depend on image priors, e.g., graph-based [34], sparsity [3,
30, 47], local smoothing [33, 45], and low-rank [17, 44, 46, 43, 55] priors. Pang et al. [34]
interpreted neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds,
providing insights into several fundamental aspects of graph Laplacian regularization for denoising.
By introducing three weight matrices into the data and regularization terms of the sparse coding
framework, Xu et al. [47] developed a denoising method to characterise the statistics of real noise and
image priors. Gu et al. [17] proposed an image restoration method by studying the weighted nuclear
norm minimization problem. However, most of these methods focus on removing the additive white
Gaussian noise (AWGN), without taking the real noise and external guidance into consideration.

The learning-based methods are promising ways for addressing the image denoising problem. Gener-
ally, it can be divided into traditional and deep network-based methods. The deep network-based
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Figure 1: Denoising results on a real noisy image from SIDD dataset [2]. Compared with CBDNet
[19], InvDN [27], DANet [49], and DeamNet [36], our ScaoedNet achieves better results.

methods have superiority in denoising due to their excellent modeling ability. For example, the
noise map is introduced as the input for removing noise at different levels in [53]. The studies
[52, 39, 31] show that it is feasible to learn a single model for blind Gaussian denoising, but these
blind models may be over-fitted to AWGN and fail to handle real noise [19]. Different from the
previous empirically designed networks, the deep unfolding-based methods [11, 15, 24, 21] were
proposed by implementing traditional methods via deep networks. For instance, an advanced image
denoising network was developed by solving a fractional optimal control problem in [21].

The above methods generally aim at removing AWGN with regular distributions. However, real
image denoising is a more challenging task since the distribution of real noise is more complex. For
real image denoising, Guo et al. [19] adopted Poisson-Gaussian noise model and presented a blind
denoising network. A spatial-adaptive denoising network was proposed in [10] for efficient blind
noise removal. Byun et al. [7] proposed a fast noise estimation network and an efficient blind-spot
network for Poisson-Gaussian noise removal. Anwar et al. [5] incorporated feature attention into
denoising and developed a one-stage real image denoising network. Cheng et al. [12] improved the
image denoising performance by plugging the subspace attention module. Liu et al. [28] presented
an invertible denoising network for real image denoising. Based on the adaptive consistency prior,
Ren et al. [36] proposed a novel model-based denoising method to inform the design of the network
for both synthetic and real denoising. Yue et al. [49] proposed a unified framework, namely dual
adversarial network, to simultaneously deal with the real noise removal and noise generation tasks.

In this paper, motivated by the advances in deep networks and relying on the rich body of the
model-based methods, we propose a novel enhanced latent space (LS) blind model based deep
unfolding network for real image denoising. As shown in Fig. 1, the whole architecture of ScaoedNet
achieves the best promising visual performance when compared to other denoising methods. The
main contributions of our method are as follows:

• For the theoretical novelty, a novel enhanced model-based denoising cost function is proposed based
on LS, noise information, and guidance constraint (GC). Then, a self-correction (SC) based alternative
optimization algorithm is proposed to split the cost function into three alternative subproblems (i.e.,
guidance representation (GR), degradation estimation (DE) and reconstruction (RE) subproblems).

• To merge the power of the model-based framework with the recent advances in deep learning for
real image denoising, a novel interpretable network (ScaoedNet) is designed via implementing the
optimization process by a deep network, which consists of the GR, DE, and RE networks.

• An effective DE network with a novel noise feature adaptive enhancement (NFAE) layer is proposed.
NFAE does not add extra parameters to the DE network, and leads to better noise estimation results.

• To enable internal-external feature mining, a novel feature multi-modulation attention residual
block (FM2ARB) is proposed in the RE network, which is mainly based on feature self-modulation
(FSM) and degradation external-modulation (DEM). FM2ARB can dynamically fuse the encoded
degradation representation and the image feature representation, leading to higher performance.

2 Proposed Model-based Denoising Method
2.1 Enhanced Latent Space Blind Model for Denoising

Let y ∈ Rn·c be a noisy image with c channels and n pixels, x ∈ Rn·c be its clean version, and ϕ(·)
be the regularizer weighted by µ. The traditional model-based denoising method can be given by

x̂ = arg min
x
H(x,y) + µϕ(x), (1)

whereH(x,y) is the data fidelity which is usually set to ‖y−x‖22. ϕ(·) can be any image regularizers,
e.g. sparsity prior [3, 30, 47], local smoothing prior [33, 45], and low-rank prior [17, 44, 46, 43], etc.
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Figure 2: Architecture of ScaoedNet. It alternatively optimizes the guidance representation (GR),
degradation estimation (DE) and reconstruction (RE) subproblems in latent space (LS), consisting of
LS encoding module (E), LS decoding module (D), G-modules, initial DE network (uini-Net), DE
networks (u-Nets), and RE networks (z-Nets).

Analysis and Enhancement. We perform an in-depth analysis of Eq. (1) in the following:

1) H(x,y) in Eq. (1) only utilizes the squared error distance ‖y − x‖22 between y and x, which
is mainly derived from AWGN. Inspired by the latest unfolding works [36, 6], we parameterize
the metric ‖y − x‖22 by a pre-specified high-dimensional LS encoding function E :Rn·c→Rn·m

(m > c), to obtain high-dimensional image embeddings z = E(x) for better performance, instead of
limiting the objective to the squared error in low-dimensional image space. It allows us to directly
model the image formation process in LS [36, 6], and to integrate LS priors into the prediction.
2) In real image denoising, noise is complex and unknown, and thus a blind model is needed. Since
the noise information is largely ignored in Eq. (1), it is difficult to well address the real noise
removal problem. By introducing the real noise information and LS, we can learn a more general
distance measureH(z,u,y) (u is the unknown real noise map), and further replace the regularizer
by τφ(z) + ηψ(u) (regularizers for z and u weighted by τ and η respectively, where τ, η > 0).
3) Compared with the regularizer based on general image statistical characteristics, better results
can be obtained if certain specific information of the given image is exploited to guide the denoising
process. Let g be certain sophisticated guidance information. Then, we can improve φ(z) by a
specific constraint G(z,g) for further performance enhancement, and we call it the GC scheme.

Proposed Model-based Denoising Method. Before the introduction of our denoising framework,
we first introduce the real noise model. Different from AWGN, real image noise is generally complex
and signal-dependent. Let xr = p(x) ∈ Rn be the irradiance image of RAW pixels, and p be the
mapping function from RGB to RAW. According to [19], the following heteroscedastic Gaussian
is a reasonable approximation for real noise distribution: n(xr) = ns(xr) + nc ∼ N (0, u2(xr)).
Specifically, nc is a stationary noise component with variance u2c , and ns is a signal-dependent noise
component with space-variant variance xru

2
s. Then, y = q(xr + n(xr)), where q is the mapping

function from RAW to RGB. Inspired by [19], the real image noise variance can be formulated by
u2(xr) = xru

2
s + u2c , (2)

where us and uc are uniformly sampled from the ranges of [0, 0.16] and [0, 0.06]. For more details,
please refer to [19]. Then, the noise map is defined as u =

√
u2(xr) ∈ Rn, which is signal-dependent
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and space-variant with the same size of xr instead of a scalar. Next, according to the ‘Analysis and
Enhancement’ subsection, the proposed enhanced denoising method can be given as

{ẑ, û} = arg min
z,u
H(z,u,y) + τG(z,g) + ηψ(u), s.t., x̂ = D(ẑ), (3)

where D :Rn·m→Rn·c is the LS decoding function that maps the latent embeddings ẑ to x̂.

2.2 Self-Correction (SC) Alternative Optimization
According to the widely used traditional alternative optimization algorithm [8, 9, 38, 29] in image
restoration, Eq. (3) can be solved by splitting it into two alternative subproblems with respect to z
(reconstruction (RE) subproblem) and u (degradation estimation (DE) subproblem):

z(i+1) = arg min
z
H(z,u(i),y) + τG(z,g), u(i+1) = arg min

u
H(z(i+1),u,y)+ ηψ(u), (4)

where i is the iteration number. However, the last estimates of z and u are not used in Eq. (4). For
higher performance, it is better to use the last estimates for SC when estimating z and u. In addition,
since the estimated noise map is available during the iterations, it can be reasonable information to
guide the reconstruction (i.e., g can be obtained according to u(i)). Thus, instead of using Eq. (4),
we use the SC scheme (introducing u(i) and z(i)) and specify the form of g, and Eq. (3) becomes:

g(i) = G(u(i)),

z(i+1) = arg minzH(z,u(i),y) + τ G̃(z,g(i), z(i)) = Z(z(i),y,g(i),u(i)),

u(i+1) = arg minuH(z(i+1),u,y) + ηψ̃(u,u(i)) = U(z(i+1),y,u(i)),

(5)

where G(·) is the guidance information generator, G̃(·) becomes the joint constraint of GC and SC
for z, and ψ̃(·) becomes the joint constraint of noise information and SC for u. The two functions
Z(·) and U(·) are the optimization solving processes for the z and u subproblems in Eq. (5).

Finally, x can be obtained by applying the LS decoding function D to z. Note that u(0) can be
directly estimated by any reasonable DE estimator Uini (i.e., u(0) = Uini(y)), and z(0) can be simply
set to E(y). The overall algorithm is called SC alternative optimization based enhanced denoising
(SCAOED), and is described in Algorithm 1 of the ‘Supplementary Material’.

3 SCAOED Driven Denoising Network
3.1 Implicitly Implement SCAOED Algorithm via Deep Network
It is very challenging to manually design the optimal operators in SCAOED, e.g. E,D,G,Uini, U, Z.
Therefore, the deep unfolding scheme is applied to implicitly implement these operators via deep
network, leading to ScaoedNet. Specifically, we parameterize these operators by introducing learnable
parameters Θ = {ΘE ,ΘD,ΘG,ΘUini ,ΘU ,ΘZ}, which are learned in a discriminative manner. As
shown in Fig. 2, ScaoedNet is an iterative real denoising framework in LS. Overall, LS encoding
module, LS decoding module, G-module, initial DE network (uini-Net), DE network (u-Net),
and RE network (z-Net) are used to implement E, D, G, Uini, U , and Z, respectively.

Specifically, in order to reduce the computational complexity while increasing the receptive field, the
LS encoding module (the learned version of E) is implemented by a pixel-shuffle layer with factor
1/2 (PS×1/2) followed by a 3× 3 Conv layer, which can project the original low-dimensional image
space input y ∈ Rc×H×W (H ·W = n) to the high-dimensional embedding space by E(.|ΘE) ∈
Rm×H/2×W/2 (m is set to 64) as initial latent image embeddings z(0), i.e. z(0) = E(y|ΘE). In
the meanwhile, u(0) ∈ R1×H×W is estimated by uini-Net (the learned version of Uini) to implicitly
implement Uini(y). Then, GR is obtained by inputting u(0) into the G-module (the learned version of
G). Next, y, g(0), z(0), and u(0) are fed into z-Net (the learned version of Z) to get z(1). After that,
y, u(0), and z(1) are fed into the next u-Net (the learned version of U ) to obtain u(1). Then, g, u
and z are alternatively updated by the following G-modules, u-Nets, and z-Nets, whcih implicitly
implement Eq. (5). Finally, z(K) is reconstructed by the LS decoding module (the learned version
of D) to obtain the final image space estimate for x, i.e. x = D(z(K)|ΘD), where the LS decoding
module is implemented by ‘Conv-PS×2’ layers. Note that the parameters of all u-Nets, G-modules,
and z-Nets are respectively shared. For the reconstruction loss, we adopt the L1 loss between the
output and the ground-truth image. In addition, we adopt structural similarity (SSIM) loss [51] LS to
pay attention to image structures. For the noise map estimation loss, we adopt the L1 loss between
the estimated noise map and the ground-truth version. Note that the initial DE network is pre-trained
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Figure 3: Architecture of the proposed FM2A module consisting of FSM and DEM modules.

only with the noise map estimation loss. Let {xg, yg}Ng=1 be N clean-noisy training pairs, ⊗ be the
element-wise product, and η, γ be two positive constants. The total loss function can be given by

L(Θ)=
1

N

N∑
g=1

(‖D(z(K)
g )−xg‖11+γLS(D(z(K)

g ),xg))+
η

N

K−1∑
i=1

N∑
g=1

‖κi,g⊗(û(i)
g −ug)‖11, (6)

where û
(i)
g is the estimated noise map of the ith DE network for yg , and ug is the ground-truth version.

κi,g = νi ·αg . νi is the weight for the ith DE network (νi-s compose the geometric sequence with a
common ratio ι and sum 1, i.e., νi = (ι− 1)ιi−1/(ιK−1 − 1)). αg is the gth element of the indicator
vector α for the noise constraint. For a synthetic training pair with known noise map, αg = 1. For a
real training pair without known noise map, αg = 0.

3.2 Initial Degradation Estimation (DE) Network (uini-Net) and DE Network (u-Net)
Basic Architecture of uini-Net and u-Net. In uini-Net, the input y is first processed by a noise
feature enhancement module Q consisting of a PS×1/2 layer, four ‘Conv-ReLU’ layers, and an
NFAE layer, to get the enhanced noise feature map. Next, the feature map is projected to the noise
map by a Conv layer and a PS×2 layer. The procedure of uini-Net can be written as:

u(0) = Uini(y|ΘUini), (7)
where Uini(.|ΘUini) is the initial DE estimator parameterized by ΘUini .

The u-Net implicitly implements DE subproblem via a deep network similar to uini-Net. u(i) is first
downsampled by PS×1/2 followed by a Conv layer to obtain the feature map u

(i)
p . In addition, y

is input into the feature extraction module Q with shared parameters of Q in uini-Net to implicitly
enhance the non-linear fitting ability of u-Net. Then, Q(y) is processed by a Conv layer, and further
fused with u

(i)
p and z(i+1) by a Concat layer and a 1 × 1 Conv layer to obtain the fused feature

map. Next, four ‘Conv-ReLU’ layers followed by an NFAE layer are used. After that, the enhanced
feature map is projected to the noise residual map by a Conv layer and a PS×2 layer. Finally, a skip
connection from u(i) to the noise residual map is added. The procedure of u-Net can be written as:

u(i+1) = U(z(i+1),y,u(i)|ΘU ), (8)
where U(.|ΘU ) is the optimization solving process of the u subproblem parameterized by ΘU .

Noise Feature Adaptive Enhancement (NFAE) Layer. The feature of real image noise should have
the following properties: a salient voxel with strong degradation should be much different from the
voxels around it. The difference can be easily measured by the variance, and a salient voxel with a
larger variance in and between channels of E

(i+1)
in (E(i+1)

in is the input of NFAE) should have a larger
weight than a non-salient voxel. Let vthw be the variance for the hwth voxel within the tth channel of
E

(i+1)
in , Zhw be the mean of vthw-s at the location hw, and Zt be the mean of vthw-s within the tth

channel. We can calculate the weight without adding parameters to uini-Net and u-Net by
v(t, h, w) = S(10vthw/(Zhw + δ), 10vthw/(Zt + δ)), (9)

where S(·, ·) is the product of the Sigmoid results of its two inputs, i.e., S(a, b) = Sigmoid(a) ·
Sigmoid(b) = 1/[(1 + e−a) · (1 + e−b)], where e is the Euler’s number. δ (10−16) is a small positive
factor for numeral stability. Thus, the output of NFAE can be obtained by v ⊗E

(i+1)
in .

3.3 Guidance Representation Module (G-Module) and Reconstruction Network (z-Net)
Since the estimated noise map is available during the iterations, it can be reasonable information to
guide the reconstruction. Therefore, g(i) in Eq. (5) is simply implemented by the encoded degradation
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representation obtained by the G-Module in Fig. 2. The procedure of G-Module can be written as:

g(i) = G(u(i)|ΘG), (10)
where G(.|ΘG) is the guidance information generator parameterized by ΘG.

z-Net is designed to restore the latent z, which implicitly implement the z subproblem via a deep
network. As shown in Fig. 2, with the degradation representation g(i), we further propose the
FM2A module shown in Fig. 3 to adjust the feature map according to the internal and external
information. In detail, we adopt the FSM module to capture spatial and channel information of
image features themselves, and the DEM module to dynamically recalibrate the image features
according to the guidance information. By applying FM2A to a residual unit, FM2ARB is proposed
to comprehensively modulate the residual features. After that, an skip connection from the Conv
layer after z(i) to the recalibrated feature by DEM is added. Finally, the feature map is adjusted by a
Conv layer, and then added with E(y). The procedure of u-Net can be written as:

z(i+1) =Z(z(i),y,g(i),u(i)|ΘZ), (11)

where Z(.|ΘZ) is the optimization solving process of the z subproblem parameterized by ΘZ .

3.4 Feature Multiple-Modulation Attention
As shown in Fig. 3, a novel FM2A module consisting of FSM and DEM modules is proposed.

Feature Self-Modulation (FSM). Attention mechanism is very important in image restoration tasks.
Although self-attention mechanism [42] has been widely used recently, because of its high parameter
number and complexity, the spatial/channel attention mechanism is finally adopted in our work for a
balance between performance and complexity. Different from the traditional spatial attention (SA)
and channel attention (CA) mechanisms [50], we introduce complementary feature information into
the proposed FSM module to enhance the recalibration ability in and between channels of the feature
map. It consists of complementary information guided (CIG) SA (i.e., CIG-SA) and CIG-CA. For
CIG-SA, CIG spatial feature is first achieved by channel-wise modulation, and then used to calculate
the spatial weights. For CIG-CA, CIG channel feature is first achieved by space-wise modulation, and
then used to calculate the channel weights. After both the spatial and channel weights are obtained,
they are respectively used to recalibrate the input feature map, and then their results are further
fused. Note that by removing the CIG scheme in FSM, it becomes a spatial-channel attention (SCA)
based on traditional SA and CA. For more details about CIG-SA and CIG-CA, please refer to
the ‘Supplementary Material’.

Degradation External-Modulation (DEM). Because of the complexity of real degradation, it is
a great challenge to estimate the clean image directly by the usual deep network. As analyzed in
section 2, it is promising to exploit the guidance information (degradation representation) g to guide
the reconstruction. Therefore, to exploit g in the implementation of GC, the feature map processed by
the FSM module is further recalibrated by the tensor generated by the DEM weight tensor generator.

For the input feature map a, by applying both FSM and DEM, the FM2A module can synchronously
realize external GC and the internal important information mining to get the output feature map b:

b = Cfsm(a)⊗ Catt
dem(g), (12)

where Catt
dem is the DEM weight tensor generator, and Cfsm is the FSM operator.

4 Experiments
4.1 Training and Testing
To train ScaoedNet, Div2K [41] is adopted to generate the synthetic clean-noisy image pairs according
to the noise model in subsection 2.1, and the real clean-noisy image pairs from SIDD Medium Dataset
[2] and RENOIR Dataset [4] are also used for training. Random rotations of 90◦, 180◦, 270◦,
and horizontal flipping are performed for each training sample to achieve data augmentation. We
empirically set K = 5, η = 0.5, γ = 0.25, ι = 4, and T = 16. Network details (e.g., channel
number, kernel size) are provided in Figs.2-3, and the default number m is set to 64. Adam [23] is
used as the optimizer for the network model with default settings. During the training, we initially set
the patch size to 64× 64, the mini-batch size to 64, and the learning rate to 10−4. For fine-tuning,
we set the patch size to 256× 256, the mini-batch size to 4, and the learning rate to 10−5. We use
PyTorch to implement ScaoedNet and train it with an Nvidia GeForce RTX 3090 GPU. Furthermore,
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Table 1: The average PSNR(dB)/SSIM results
on DnD benchmark dataset.

Method Blind/Non-Blind PSNR↑ SSIM↑

CBM3D[14] Non-Blind 34.51 0.8507
TNRD[11] Non-Blind 33.65 0.8306

DnCNN[52] Blind 32.43 0.7900
FFDNet[53] Non-Blind 37.61 0.9415
DCDicL[57] Non-Blind 35.90 0.9150
CBDNet[19] Blind 38.06 0.9421

VDN[48] Blind 39.38 0.9518
RIDNet[5] Blind 39.25 0.9528

AINDNet[22] Blind 39.37 0.9505
InvDN[27] Blind 39.57 0.9522
DANet[49] Blind 39.47 0.9548

DeamNet[36] Blind 39.63 0.9531

ScaoedNet Blind 40.12 0.9603
ScaoedNet† Blind 40.17 0.9597

Table 2: The average PSNR(dB)/SSIM results on
SIDD benchmark and validation datasets.

Method Blind/ SIDD benchmark SIDD validation

Non-Blind PSNR↑ SSIM↑ PSNR↑ SSIM↑

CBM3D[14] Non-Blind 25.65 0.685 31.75 0.7061
TNRD[11] Non-Blind 24.73 0.643 26.99 0.7440

DnCNN[52] Blind 23.66 0.583 26.20 0.4414
FFDNet[53] Non-Blind 29.30 0.694 26.21 0.6052
DCDicL[57] Non-Blind 33.68 0.860 33.76 0.8171
CBDNet[19] Blind 33.28 0.868 30.83 0.7541

VDN[48] Blind 39.26 0.955 39.29 0.9109
RIDNet[5] Blind 37.87 0.943 38.76 0.9132

AINDNet[22] Blind 38.95 0.952 38.96 0.9123
InvDN[27] Blind 39.28 0.955 38.30 0.9064
DANet[49] Blind 39.25 0.955 39.30 0.9164

DeamNet[36] Blind 39.35 0.955 39.40 0.9169

ScaoedNet Blind 39.44 0.956 39.48 0.9186
ScaoedNet† Blind 39.48 0.957 39.52 0.9187

Figure 4: Real denoising results on DnD Benchmark dataset.

PSNR and SSIM metrics are utilized for performance evaluation on the following real noisy datasets:
DnD benchmark [35], SIDD benchmark [2], and SIDD validation dataset [2]. The near noise-free
images of DnD and SIDD benchmarks are not publicly available. However, we can submit the
denoised image to the DnD and SIDD online servers to obtain the PSNR/SSIM results. Due to the
limited space, please refer to the ‘Supplementary Material’ for more experimental results.

4.2 Real-World Denoising on DnD
DnD consists of 50 pairs of real clean-noisy scenes, where 20 smaller images of size 512 × 512
are extracted from each scene. However, the corresponding ground-truth images are not available
for users. In this subsection, we evaluate the performance of ScaoedNet on the DnD benchmark.
Specifically, 12 competing methods are tested, including CBM3D [14], TNRD [11], DnCNN [52],
FFDNet [53], DCDicL [57], CBDNet [19], VDN [48], RIDNet [5], AINDNet [22], InvDN [27],
DANet [49], and DeamNet [36]. Note that AINDNet(TF) is tested in the experiment since it can
get the best overall performance on both DnD and SIDD among all AINDNet models according
to [22, 36]. DCDicL [57] gets lower results because it is designed for AWGN. To better show the
denoising performance of ScaoedNet, the results of the self-ensemble [40] version denoted by the
super script † are also reported. Table 1 and Fig. 4 show the objective and visual results. Due to
the limited space, please enlarge the figures on the screen for better comparison. According to
the results, ScaoedNet significantly outperforms these competing methods in PSNR/SSIM results.
In addition, these methods prone to generate either over-smooth results or distorted results with
remaining noise. On the contrary, ScaoedNet can provide a clean output image with robust noise
removal, effective artifacts suppression, and excellent image edges preservation.

4.3 Real-World Denoising on SIDD
We further evaluate the generalization and performance of ScaoedNet on SIDD captured by five
representative smartphones. Only 320 clean-noisy image pairs (SIDD Medium Dataset) are provided
for training. For testing, SIDD benchmark only with the noisy images is provided. In addition, SIDD
validation consists of 1280 clean-noisy image pairs can also be used. In this subsection, extensive
experiments are carried out on SIDD validation and SIDD benchmark to evaluate the superiority of
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Figure 5: Real denoising results on SIDD validation dataset.

Table 3: Results on SIDD validation for K-s.
K 1 2 3 4 5 6

PSNR 39.24 39.32 39.40 39.45 39.48 39.48
SSIM 0.9170 0.9177 0.9182 0.9184 0.9186 0.9187

Table 4: Results on SIDD validation for T -s.
T 4 8 12 16 20

PSNR 39.10 39.26 39.40 39.48 39.49
SSIM 0.9158 0.9169 0.9179 0.9186 0.9187

ScaoedNet. Table 2 and Fig. 5 illustrate the quantitative and visual comparisons between the previous
methods and ScaoedNet. We can notice that ScaoedNet achieves the best results compared to other
competing methods in terms of both the objective evaluation and the visual performance.

4.4 Influence of Parameters K and T
Since the iteration stage numberK and the FM2ARB number T are crucial for denoising performance,
the PSNR/SSIM evolutions versus K and T are analyzed. Specifically, we train six ScaoedNet
variants by setting K = 1, 2, 3, 4, 5, 6 and five ScaoedNet variants by setting T = 4, 8, 12, 16, 20.
The PSNR/SSIM results on SIDD validation dataset are provided in Tables 3 and 4. According
to the results, when K = 1, ScaoedNet can already achieve promising denoising performance
with 39.24dB/0.9170. When K reaches 5, PSNR/SSIM further converge to 39.48dB/0.9186, which
indicates that G-Module, u-Net, and z-Net have learned to cooperate with each other in this case. For
T , we can see that T = 16 is significantly better than T = 4, 8, 12, and there is little PSNR/SSIM
improvements when T is larger than 16. These suggest that K = 5 and T = 16 are good choices.

4.5 Ablation Study
Ablation on LS. By removing the LS encoding and decoding modules from ScaoedNet, we can
obtain the image space denoising network. Because the Shuffle operator with factor 1/2 is used,
the output of each RE network in the image space version have only 12 channels for color images
and 4 channels for gray images. We can see from Fig. 6 that the PSNR/SSIM results of the version
without LS on SIDD validation dataset are only 39.19dB/0.9163, and the performance reaches to
39.48dB/0.9186 by adding LS. Therefore, the LS scheme is essential for the denoising performance.

These reasons make the LS scheme essential for the performance. In Sec. 4.5 ‘Ablation Study’,
‘w/o LS’ corresponds to the network implementation without LS, and the performance decreases
significantly in this case, which verifies our analyses. In addition, by visualizing the features after E,
we find it can well separate the image signal related features and noise related components, which
also makes it easier to denoise complex real noise.

Ablation on SC. In our method, the SC scheme is proposed for enhancing the optimization results.
The ablation study on SC is conducted and the performance comparisons are shown in Fig. 6. Note
that the version without SC means u(i) and z(i) are respectively removed when estimating u(i+1) and
z(i+1). We can see that the PSNR/SSIM results decrease from 39.48dB/0.9186 to 39.22dB/0.9170
without SC. This observation indicates that the SC scheme is an effective scheme in ScaoedNet.

Ablation on GC. For further performance enhancement, the GC scheme is proposed. Note that the
version without GC means the branches related to g(i)-s are removed. In other words, G-Module
and DEMs are removed. We can conclude from Fig. 6 that the PSNR/SSIM results decrease
0.13dB/0.0015 without GC. This observation indicates the superiority of GC in ScaoedNet.

Ablation on Attention. The proposed attention module can synchronously realize external-internal
important information mining. Fig. 6 shows that, by removing FM2A, the PSNR/SSIM will decrease
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Method L1 distance↓ PSNR↑

with NFAE 5.80 33.16
without NFAE 5.97 32.53
CBDNet[19] 6.11 32.30

AINDNet [22] 6.11 32.92
PRIDNet [56] 6.19 33.01

Table 5: The effectiveness of the
NFAE layer. Figure 6: PSNR/SSIM scores of different ScaoedNet variants.

from 39.48dB/0.9186 to 39.28dB/0.9164. Consequently, the effectiveness of FM2A is verified. More
details of FSM and DEM are provided in ‘Supplementary Material’.

Ablation on SSIM Loss. To verify the influence of the SSIM loss in our method, we remove it from
the loss function in Eq. 6. We can see from Fig. 6 that PSNR/SSIM of the one without SSIM loss will
decrease slightly to 39.46dB/0.9179. We should note that, even without the SSIM loss, our method
can also achieve higher performance than other comparisons baselines.

4.6 Study on NFAE layer
The proposed parameter-free NFAE layer is an important component in ScaoedNet. To show the
effectiveness of NFAE, we use BSD68 [37] and Kodak24 [1] to synthesize the noisy images according
to the noise model in subsection 2.1. Then, we build ‘noisy image and noise map’ pairs as the testing
dataset. uini-Net with NFAE, uini-Net without NFAE, and the noise estimation networks from
CBDNet [19], AINDNet [22], and PRIDNet [56] are used for comparisons. The PSNR result and
the L1 distance

∑V
g=1 ‖ûg − ug‖11/(HgWgV ) (V is the number of the test images, and Hg,Wg are

the image height and width of the gth test image) between the estimated ûg and the ground-truth
noise map ug are reported in Table 5. Note that during the calculations of the L1 distance and PSNR,
u is scaled to lie in the range of [0 255]. The results show that the NFAE layer is essential for the
estimation performance, and the network with NFAE can obtain more accurate estimates than the
noise estimation networks from CBDNet [19], AINDNet [22], and PRIDNet [56].

4.7 Parameter Number
In this subsection, we report the network parameter numbers vs. the average PSNRs/SSIMs of the
competing methods in Fig. 7. We can see that ScaoedNet has a moderate parameter number, which
is significantly lower than CBDNet [14], VDN [48], AINDNet [22], and DANet [49]. Furthermore,
although other methods have smaller parameter numbers than ScaoedNet, their objective performances
are much lower. In summary, our ScaoedNet is effective with a moderate network parameter number.

Figure 7: The numbers of parameter vs. average PSNR/SSIM values of different models on DnD.

5 Conclusion
In this paper, we propose a new denoising network for real noise images. Although many denoising
networks have been proposed, most of them are limited to AWGN and ignore the valuable achieve-
ments of the classic denoising methods. In contrast, we first propose a novel model-based denoising
cost function, and then solve it by the proposed SC alternative optimization algorithm. After that, a
deep unfolding denoising network is proposed according to the optimization process. Our denois-
ing network combines some valuable achievements of the classical denoising methods. Extensive
experiments verify that our method achieves excellent performance on real image denoising.
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Broader Impact
As an important computer vision task, image denoising has largely benefited the society in various
areas and has no negative impact yet. The proposed method could further improve the performance
especially in the challenging real-world cases where the noise information is unknown. This work
has no negative impact on the ethical and societal aspects.
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