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A Appendix

A.1 Qualitative Study

A.1.1 Analysis on Failure Cases

In this section, we will further elaborate on the failure cases in VGGSS and MUSIC-Solo datasets.
We first divide these cases into three categories for clarification and discuss them one by one as
follows.

Case 1: Inability to understand or identify the target object. Although the vast amount of
training data covers lots of categories, objects and the corresponding sounds (such as Lathe and
Robot Vacuum shown in Figure 1) that are rarely or not present in the training procedure may still
appear during the testing phase. Our model may fail to figure out the target region without any extra
information or knowledge about the characteristics or properties of these objects.

Case 2: Inability to distinguish between multiple candidates of the same category. In some
particular scenarios (such as the cases in Figure 2), multiple candidate objects of the same category
might exist simultaneously, and it will be difficult to distinguish between them by some tiny impercep-
tible differences. It might be essential to consider more context information for accurate identification
and discrimination when dealing with such cases.

Case 3 & 4: Irreconcilable annotation gaps. As shown in Figure 3 and 4, it is straightforward
to notice that our model tends to put the whole person into the predicted regions when faced with
targets that are part of or related to people. This phenomenon may stem from the annotation bias
that the bounding boxes related to people in image grounding datasets tend to contain the whole area
of people, which makes the predicted results incorrectly larger in sounding object localization.

A.1.2 Analysis on Domain-Exclusivity

To illustrate the discriminant ability of the auxiliary classifier to domain-exclusivity, we sort all the
data in each dataset according to the sampling weights and select the most and least domain-exclusive
m = 10 ones. These items can be found in the cases folder of supplementary material. Looking
into these samples, we can find that the auxiliary domain classifier generally achieves the expected
function. Most of the data pairs with lower domain-exclusivity (i.e., higher sampling weight)
describe visual entities that emit specific sounds, which can facilitate the process of knowledge
transfer. And the items with higher domain-exclusivity (i.e., lower sampling weight) describe some
silent objects, ambient sound or noise, which are actually redundant or obfuscating information to
the other domain.
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(a) Lathe (b) Robot Vacuum

Figure 1: Failure Case 1 – Inability to understand or identify the target object.

(a) Cars (b) Cats

Figure 2: Failure Case 2 – Inability to distinguish between multiple candidates of the same category.

(a) Head / Person (b) Lip / Head

Figure 3: Failure Case 3 (VGGSS) – Inconsistency of scale / Irreconcilable annotation gaps.

A.2 Implementation Details

A.2.1 Inputs

Data of different modalities will be preprocessed as follows, regardless of their data domains.

• Image: The input size of image data is set as H×W = 384×384. In the training phase, we
conduct the same data augmentation strategies as [10, 11, 3] where random scale, random
crop and random translate are taken into practice. In the inference phase, the shortest edge
will be stretched to 384, and the entire image will be accordingly scaled.

• Audio: The audio waveforms will be converted into log-mel spectrograms with the sample
rate of 22050 following [12] with a frame size of 2048 and hop size 1024, resulting in
Lm = 216 and c = 128. For audio retrieval data used in training phase, time masking and
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(a) Flute (w/ & w/o instructor) (b) Saxophone (w/ & w/o instructor)

Figure 4: Failure Case 4 (MUSIC-Solo) – Inconsistency of scale / Irreconcilable annotation gaps.

frequency masking of SpecAug [6] are applied to the corresponding log-mel spectrograms
with the time masking length and stride as 64 and frequency masking length as 8 respectively.

• Text: All input words will be converted into lowercase and mapped as word indices via the
tokenizer of pre-trained BERT [2] and the maximum length of text inputs Lt is set to 30.

A.2.2 Model Setting

Except for the parameters in the predefined structures, the dimension d of intermediate representations
and learnable parameters are set to be 256. In the localization stream, we utilize a pre-trained DETR
encoder [1] with a R50 backbone to generate the object-aware embeddings V̂. The layer number, head
number, and feed-forward dimension of transformer encoder Φv are set as 3, 4, and 4d, respectively.
As for the alignment stream, the length of log-mel spectrograms will be initially compressed as
La = 54 by a stack of convolutional layers. The layer number, head number, and the feed-forward
dimension of transformer encoders Φt and Φa are set to be 6, 8, and 4d. The same configuration also
works for the transformer decoders Ωt and Ωa. Besides, the mask ratio in the reconstruction process
increases linearly with the number of training epochs from 0.5 to 1. More details can be referred to in
the uploaded code files.

A.2.3 Training and Inference

In the training stage, the hyper-parameters controlling the weights of different regularization terms
are set as λ1 = λ2 = 1, λ3 = 1, λ4 = λ5 = 0.1 and β = 0.25. The temperature for contrastive loss
τc is 0.1. And we employ AdamW optimizer proposed by Loshchilov and Hutter [5] with warm-up
strategy [9] and cosine annealing learning [4], where the warm-up epoch is set as 1. The weight
decay is set to be 1e-5, the maximal learning rate is set to be 1e-4, and the overall training process
will last for 30 epochs. The mini-batch size of the source domain and intermediate domain will be
balanced according to the scale of each corpus, and we fix the batch size of the source domain as
bs = 64. For the optimization of codebooks, we practically follow Van Den Oord et al. [8] and apply
the exponential moving averages (EMA) mechanism to update the parameters in codebooks. As for
the adaptive sampling strategy, the ratio k is fixed at 5 for all the training data. The maximal learning
rate is set as 1e-4 as well, but the training procedure will only last for two epochs. The training data
for the auxiliary domain classifier are obtained by combining all the data from the source domain
and intermediate domain. Moreover, although we use the subset of Flickr-SoundNet [7] as the dev
set to select the best checkpoint of our model, it will also be all right to use the validation partition
of source and intermediate domains, which can be more in line with the setting of zero-resource
sounding object localization.
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