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Abstract

We consider the problem of fairly allocating sequentially arriving items to a set
of individuals. For this problem, the recently-introduced PACE algorithm lever-
ages the dual averaging algorithm to approximate competitive equilibria and thus
generate online fair allocations. PACE is simple, distributed, and parameter-free,
making it appealing for practical use in large-scale systems. However, current
performance guarantees for PACE require i.i.d. item arrivals. Since real-world
data is rarely i.i.d., or even stationary, we study the performance of PACE on non-
stationary data. We start by developing new convergence results for the general
dual averaging algorithm under three nonstationary input models: adversarially-
corrupted stochastic input, ergodic input, and block-independent (including peri-
odic) input. Our results show convergence of dual averaging up to errors caused by
nonstationarity of the data, and recover the classical bounds when the input data
is i.i.d. Using these results, we show that the PACE algorithm for online fair allo-
cation simultaneously achieves “best of many worlds” guarantees against any of
these nonstationary input models as well as against i.i.d. input. Finally, numerical
experiments show strong empirical performance of PACE against nonstationary
inputs.

1 Introduction

In fair division, the goal is to allocate a set of items, typically assumed divisible, among a set of
agents with heterogeneous preferences, while guaranteeing fairness and efficiency properties. In
this paper we are interested in how to fairly and efficiency allocate items that arrive online: at every
time step one item arrives, and we must irrevocably assign it to some agent. Recently, there has been
a growing literature on such online fair allocation problems (Azar et al., 2016; Balseiro et al., 2020;
Gao et al., 2021; Bateni et al., 2021; Sinclair et al., 2021; Banerjee et al., 2022). Real-world systems
that can be captured by such settings include Internet advertising systems, job recommender systems,
cloud computing platforms, and many more. One of the key challenges in such problems is to
balance the (often conflicting) goals of overall efficient resource utilization with fairness guarantees
for the individual agents.

For this setting, Gao et al. (2021) shows that a simple mechanism called PACE (Pace According to
Current Estimated utility) generates asymptotically fair and efficient allocations when the item ar-
rivals are drawn in an i.i.d. manner. PACE gives each agent a per-time-step budget of faux currency,
and the fair allocation is achieved by having agents participate in first-price auctions for each item,
using the faux money. By guaranteeing that each agent asymptotically spends their budget at the cor-
rect rate, the resulting allocations and prices converge to what is known as a competitive equilibrium
from equal incomes (CEEI), which guarantees both fairness and efficiency. In PACE, each agent
maintains a pacing multiplier to control their spending over time, and the pacing multipliers are up-
dated based on buyers’ budgets and cumulative utilities. This is similar to how budget-management
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systems work in Internet ad auctions. PACE is highly decentralized due to its auction-based alloca-
tion, it does not require dividing the item, and it is also completely parameter free. This makes it
suitable for large-scale practical implementation.

Yet in many large-scale settings, such as the context of fair recommender systems (Kroer et al., 2021;
Kroer and Stier-Moses, 2022) or Internet advertising, we would not expect items to be drawn i.i.d.
from a single distribution. One alternative is to assume that data arrives adversarially. However,
this leads to very pessimistic negative results and is not an accurate representation of the data one
would expect to see in practice. Instead, one would expect the data to have a strong stochastic
component, but with changes over time, e.g., due to flow of traffic, breaking news events, or system
updates (Esfandiari et al., 2018; Balseiro et al., 2020).

Motivated by the above considerations, we study online fair allocation when the data exhibits non-
stationary behavior. In particular, we focus on the performance of the PACE algorithm of Gao et al.
(2021). We ask

How does PACE behave when nonstationarity is present in the stream of items?

We show that, under several data-input models, the fairness and efficiency guarantees of the PACE
algorithm are still preserved, up to errors due to the nonstationarity of the data input. In this sense,
we significantly extend the main results in Gao et al. (2021). To show these results, we first consider
the more general setting of nonstationary stochastic optimization and develop new performance
guarantees for dual averaging in this setting. Given the ubiquitous use of dual averaging in online
and stochastic optimization, our results are of broader interest beyond (fair) resource allocation.

1.1 Summary of Contributions

Novel convergence results for dual averaging under three nonstationary settings.
We analyze the dual averaging (DA) algorithm for nonstationary stochastic optimization under differ-
ent data input models, namely, (1) mildly corrupted, (2) ergodic and (3) periodic input data. Specif-
ically, we consider the composite dual averaging algorithm, where the composite term is strongly
convex. We show that, in all cases, the iterates generated by dual averaging (DA) converge to the
optimal solution in mean square, where the bound on the mean-square error decomposes into two
terms: i) the typical O(log t/t) guarantee known from the i.i.d. case, and ii) a term that depends on
the amount of nonstationarity in the data input model. Our results recover the classical bounds under
i.i.d. data input as a special case.

Theoretical fairness and efficiency guarantees of PACE for nonstationary item arrivals.
We consider the online fair allocation problem where item arrivals follow any of the three data in-
put models that we consider for DA; these settings generalize the i.i.d. setting in Gao et al. (2021).
Utilizing our convergence results for DA under nonstationary data input models, we show that, for
item arrivals following these models, PACE ensures convergence of the pacing multipliers, again
with a decomposition into a O(log t/t) term as well as a term depending on the nonstationarity. We
then show that the agents’ realized utilities, envy, regrets, and expenditures all obtain convergence
bounds based on the convergence of pacing multipliers. Our results show that PACE as an online
fair resource allocation algorithm is robust against distributional uncertainty of the input and auto-
matically adapts to many different data input models without any parameter tuning. In Appendix F
we provide numerical experiments which corroborate the above theory and demonstrate the practical
efficiency of PACE under different data input models.

An extensive review of related work is provided in Appendix A.

Notation. We use 1t to denote the vector of ones of length t and ej to denote the vector with one in
the j-th entry and zeros in the others. We use ∆(Θ) to denote the space of probability measures on
a measurable space Θ, and ∆n to denote the simplex in Rn. To measure the nonstationarity in the
input data, we will use the total variation distance. Given two probability measures P and Q, it is
defined as ‖P −Q‖TV := (1/2)

∫
|dPdµ − dQ

dµ | dµ , where µ is a supporting measure.
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2 Preliminaries on Online Fair Allocation

An online fair allocation instance with infinitely divisible items with n agents and a finite horizon
t consists of a tuple A = (n, t,Θ, Q, v), where Θ is the (possibly uncountable) measurable space
of all possible items, with an associated σ-algebra M and a probability measure µ, the distribution
Q ∈ ∆(Θt) is the distribution over possible sequences of items γ = (θ1, . . . , θt) ∈ Θt, each of
unit supply, and the set v = (v1, . . . , vn) ∈ L1

+(Θ)n is the set of valuation functions of the n
agents. Here L1

+(Θ) is the space of positive integrable functions on Θ. Agent i sees a utility of
vi(θ) in item θ ∈ Θ. Abusing notation we let vi(γ) =

(
vi(θ1), . . . , vi(θt)

)
denote the valuation

for agent i of items in the sequence γ. Let Qτ be the marginal distribution of the item θτ at time
τ and Q̄ = (1/t)

∑t
τ=1Q

τ . We assume
∫
Θ vidQ̄ = 1 for all i ∈ [n]. We further assume |v|∞ :=

maxi ‖vi‖∞ < ∞. We stress that the PACE algorithm that we study is not going to require access
to either the valuation functions v or the set of possible items Θ; these are only required in order to
discuss the resulting bounds.

Given an instance A, the decision maker allocates the stream of items γ one at a time, in an irrevo-
cable manner. At time τ when item θτ is revealed, the decision maker must choose an allocation
xτ = (xτ

1 , . . . , x
τ
n) ∈ ∆n based on information available at that time, and allocate accordingly. Here

the i-th entry of xτ is the fraction of item θτ allocated to agent i. On receiving her fraction, agent
i realizes a utility of uτ

i := vi(θτ )xτ
i . We let x = (x1, . . . , xt) denote the sequence of allocations

made over time. For agent i, let xi = (x1
i , . . . , x

t
i) ∈ Rt denote the fraction of items given to agent

i across time. With this notation, the total utility of agent i is 〈xi, vi(γ)〉. The goal of the decision
maker is to choose, in an online fashion, an allocation x such that it achieves some form of both
efficiency and fairness guarantees.

2.1 Benchmark: The Hindsight Allocation

As a benchmark, we will consider the hindsight-optimal allocation. Suppose all items are presented
to the decision maker as opposed to arriving one by one. In that case, a fair and efficient allocation
can be found by allocating using the Eisenberg-Gale (EG) convex program Eisenberg and Gale
(1959). EG picks the allocation that maximizes the sum of weighted logarithmic utilities (which is
equivalent to maximizing the weighted geometric mean of utilities):

max
x≥0,u≥0

{
n∑

i=1

Bi log(Ui)

∣∣∣∣ Ui ≤
〈
vi(γ), xi

〉
∀i ∈ [n] ,

n∑

i=1

xτ
i ≤ 1 ∀τ ∈ [t]

}
. (1)

The weights Bi represent the priority given to each agent, and they they can be interpreted as budgets
in a market-based interpretation of the EG allocation.1. We will focus on the case where Bi = t/n
for all i, but all our results extend directly to the case of unequal weights, which can be useful in
settings such as when buyers have quasilinear utilities Gao et al. (2021); Conitzer et al. (2019) or
when it is desirable to give a larger allocation to certain agents.

The PACE algorithm asymptotically converges to the optimal dual solution, which is

βγ := argmin
β≥0

{
1

t

t∑

τ=1

max
i∈[n]

βivi(θ
τ )− 1

n

n∑

i=1

log βi

}
. (2)

We will also be interested in the underlying problem implied by the average item supplies s =
dQ̄/ dµ. Letting

〈
vi, xi

〉
:=
∫
Θ vixi dµ, this leads to the infinite-dimensional analogue of (1):

max
x∈L∞

+ (Θ),u≥0

{
1

n

n∑

i=1

log(ui)

∣∣∣∣ ui ≤
〈
vi, xi

〉
∀i ∈ [n],

n∑

i=1

xi ≤ s

}
, (3)

We let u∗ denote the optimal utilities in Eq. (3). The infinite-dimensional analogue of the dual (2)
is the following. For any δ0 > 0, The infinite-dimensional analogue of (2) is the following. For any
δ0 > 0,

β∗ := argmin
1

n(1+δ0)≤β≤1+δ0

{∫

Θ

(
max
i∈[n]

βivi(θ)
)
Q̄(dθ)− 1

n

n∑

i=1

log βi

}
. (4)

1The hindsight allocation Eq. (1) can be interpreted as a competitive equilibrium from equal incomes (CEEI)
in the corresponding Fisher market; see Appendix B for more details on this interpretation.
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A rigorous mathematical treatment of the infinite-dimensional program can be found in Gao and
Kroer (2021) and (Gao et al., 2021, Section 2). Note the additional constraint in Eq. (4) on β does
not affect the optimal solution since 1/n ≤ β∗

i ≤ 1; see Lemma 1 in Gao and Kroer (2021).

It is well-known that the hindsight allocation generated by the EG program enjoys the following
efficiency and fairness properties:

1. Pareto optimality: we cannot strictly increase any agent’s utility without decreasing some
other agents’ utility.

2. Envy-freeness: each agent prefers their own allocation to that of any other agent:
〈vi(γ), x∗

i 〉 ≥ 〈vi(γ), x∗
k〉 for all k *= i.

3. Proportionality: every agent achieves at least as much utility as under the uniform alloca-
tion, i.e. 〈vi(γ), x∗

i 〉 ≥ 〈vi(γ), (1/n)1t〉.
Therefore the hindsight EG allocation is the gold standard that we assume the decision maker would
use if she had known the sequence of items γ in advance. However, in the online setting the decision
maker does not know this sequence, and must therefore instead attempt to approximate an equally
good allocation in online fashion.

For an item sequence γ, we let xγ denote the optimal hindsight allocation, which is an optimal
solution to Eq. (1), and we denote the resulting total and average utility as

Uγ
i :=

〈
vi(γ), x

γ
i

〉
=

t∑

τ=1

xγ,τ
i vi(θ

τ ), uγ
i := (1/t) · Uγ

i . (5)

2.2 Performance Metrics

We measure the performance of an online allocation rule x on the instance γ via the following two
quantities. The regret of agent i is the difference between the total hindsight equilibrium utility Uγ

i
and their realized utilities uτ

i under x

Regi,t(γ) := Uγ
i −

t∑

τ=1

uτ
i . (6)

The envy of agent i is the maximal extent to which they prefer the allocation of any other agent:

Envyi,t(γ) := max
k∈[n]

{
〈vi(γ), xk〉 − 〈vi(γ), xi〉

}
. (7)

We seek to understand the worst-case behavior of an algorithm when facing a certain class of input
distributions. For a given input distribution class C ⊂ ∆(Θt), we will develop bounds on the worst-
case regret and envy under any distribution in C:

sup
Q∈C

Eγ∼Q

[
Regi,t(γ)

]
, sup

Q∈C
Eγ∼Q

[
Envyi,t(γ)

]
.

2.3 The PACE Algorithm

In this section, we review the PACE (Pace According to Current Estimated Utility) dynamics (Gao
et al., 2021). In PACE, each item is allocated via first-price auction, and each agent constructs bids
by scaling their value by a pacing multiplier. The pacing multipliers are maintained using simple,
distributed updates that can be handled either by the agents or by the platform.

Algorithmic details are displayed in Algorithm 1. Here Π[%,h][x] = max{',min{x, h}}. At every
time step τ an item θτ is revealed. At that point every agent comes up with a bid for that item,
which is equal to their value for the item multiplied by their current pacing multiplier βτ

i . Then, the
agents submit these bids to a first-price auction, and the item is allocated to the highest bidder. For
concreteness, we choose the bidder with the smallest index if a tie occurs, but any rule works. Each
agent then observes their realized utility, updates their average utility received so far, and updates
their pacing multiplier accordingly. As pointed out in Gao et al. (2021), PACE is an instantiation of
dual averaging Xiao (2010) applied to the dual of the hindsight allocation program in (4).

PACE has many attributes desirable in real-world applications.
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Algorithm 1: PACE(n, t, δ0)
Input: number of agents n, horizon t, algorithm parameter δ0 > 0.

1 Initialize: Set β1 = (1 + δ0) · 1n.
2 Environment draws the item sequence γ = {θ1, . . . , θt} from the distribution Q.
3 for τ = 1, . . . , t when item θτ is revealed do
4 Agent i bids βτ

i vi(θ
τ ), the whole item θτ is allocated to the highest bidder iτ (with

arbitrary tie breaking) iτ := min{argmaxi∈[n] β
τ
i vi(θ

τ )} .

5 Agent i updates current average utility uτ
i = vi(θτ )1{i = iτ} , ūτ

i = 1
τ

∑τ
s=1 u

s
i .

6 Agent i updates the pacing multiplier βτ+1
i = Π[%,h]

[
1/(nūτ

i )
]
, where the interval

[', h] =
[

1
(1+δ0)n

, 1 + δ0
]
.

Highlight 1. Decentralization. The PACE dynamics can be run in either centralized (by having
the mechanism designer emulate the pacing process for each agent) or decentralized fashion (since
the auction-based allocation is the only centralized step at each iteration), and are therefore suitable
for Internet-scale online fair division and online Fisher market applications.

Highlight 2. Pure Allocation. PACE allows each item to be fully allocated to a single agent, even
though the hindsight performance metric is allowed to utilize fractional allocations. While fractional
allocations can be interpreted as randomized allocations in many large-scale settings, this may not
always be desirable, for example when allocating food to food banks.

Highlight 3. Tuning-free. An important fact about the PACE dynamics is that each agent has no
stepsize parameter whatsoever, which means that no stepsize tuning is required. Moreover, PACE
is robust against the types of item arrivals since the algorithm needs neither knowledge of the item
distribution P nor the input type C.

In addition to the regret and the envy performance metrics, we will also derive results for the fol-
lowing two quantities that characterize the long-run behavior of PACE. Let ūt = (1/t) ·

∑t
τ=1u

τ

be the vector of average realized utilities for all agents. We will show that the agents’ utilities con-
verge to those associated to the underlying offline fair allocation problem, u∗, defined in Eq. (3), in
a mean-square sense, i.e., E

[
‖ūt − u∗‖2

]
→ 0, as long as the error due to nonstationarity grows

sublinearly in the number of time periods. Secondly, define the expenditure of agent i at time τ by
bτi := βτ

i vi (θ
τ )1 {i = iτ} . We will show (1/t) ·

∑t
τ=1b

τ
i → 1/n in mean square as well, as long

as the error due to nonstationarity grows sublinearly in the number of time periods.

3 Main Results

This section introduces the main results of this paper: the behavior of PACE under three different
types of nonstationary input models. All prior results on fair online allocation have been either for
worst-case inputs (with much more conservative guarantees and not for the PACE algorithm) (Azar
et al., 2016; Banerjee et al., 2022) or for i.i.d. input data Gao et al. (2021).

We first introduce some notation that will be useful for describing these input models. For s > τ ≥ 1
let Qs(θ1:τ ) denote the conditional distribution of θs given {θ1, . . . , θτ}. For a subset I of [t] let
QI denote the joint distribution of the variables {θτ}τ∈I . Let Q̄ = (1/t) ·

∑t
τ=1Q

τ be the uniform
mixture of {Qτ}τ . We study three types of input: independent input with adversarial corruption,
ergodic and Markov input, and periodic input. For each input setting, we describe our main theorem
for the performance guarantees of PACE here. The proofs are given in Appendix C, because these
results rely on developing a theory of nonstationary performance of DA, which is done in Section 4.

3.1 Independent Input with Adversarial Corruption

Adversarial perturbation of a fixed item distribution models scenarios where the items generally
behave in a predictable manner, but for some time steps the input behaves erratically. Typically this
is assumed to happen only for a small number of time steps. Such perturbation could be malicious,
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for example when item arrivals are manipulated in favor of certain agents; or non-malicious, such as
unpredictable surges of certain keywords on search engines (Esfandiari et al., 2018).

We study a type of adversarial perturbation where the item distribution at each time step might be
corrupted by an arbitrary amount, but distributions at different time steps are independent of each
other. We assume the average corruption is bounded by δ, as measured in TV distance. The set of
distributions over sequences that we consider is then:

CID(δ) :=

{
Q ∈ ∆(Θ)t :

1

t

t∑

τ=1

‖Qτ − Q̄‖TV ≤ δ

}
. (8)

We use Õ to hide numeric constants and polynomials of n, |v|∞, and log t. Our main fair online
allocation result for the adversarial corruption case is:
Theorem 1 (Independent Case). For the adversarially corrupted and independent case, Algorithm 1
guarantees that for an instance A = (n, t,Θ, Q, v), we have

sup
Q∈CID(δ)

Eγ∼Q

[
Regi,t(γ)

]
, sup
Q∈CID(δ)

Eγ∼Q

[
Envyi,t(γ)

]
= Õ

(√
t+

√
δ · t
)

(9)

and
supQ∈CID(δ) Eγ∼Q

[
‖b̄t−(1/n)1n‖2

]
,supQ∈CID(δ) Eγ∼Q

[
‖ūt−u∗‖2

]
,supQ∈CID(δ) Eγ∼Q

[
‖ūt−uγ‖2

]
=Õ(δ+1/t) .

The result shows that the regret and envy performance metrics degrade linearly in the average corrup-
tion δ. In the i.i.d. case where δ = 0, we recover the

√
t regret rate and the 1/t rate of convergence

for utilities and expenditures in terms of the mean-square error from Gao et al. (2021). If out of the
t distributions of items in each time step only O(

√
t) are corrupted, each by a constant amount, then

the
√
t regret and envy bounds, as well as 1/t convergence rates, are also preserved.

3.2 Ergodic Input and Markov Processes

To handle correlation across time, we next study ergodic inputs. For these inputs, strong correlation
might be present for items sampled at nearby time steps, but the correlation between items decays as
they are separated in time. For any integer ι such that 1 ≤ ι ≤ t−1, we measure the ι-step deviation
from some distribution Π ∈ ∆(Θ) by the quantity

δ(ι) := sup
γ

sup
τ=1,...,t−ι

‖Qτ+ι(θ1:τ )−Π‖TV .

Intuitively, this definition tells us that, no matter where and when we start the item arrival process,
it takes only ι steps to get δ(ι)-close to the distribution Π. We will consider the set of ergodic input
distributions whose ι-step deviation is bounded by δ:

CE(δ, ι) :=

{
Q ∈ ∆(Θt) : sup

γ
sup

τ=1,...,t−ι
‖Qτ+ι(θ1:τ )−Π‖TV ≤ δ, for some Π ∈ ∆(Θ)

}
. (10)

Theorem 2 (Ergodic Case). For the ergodic case, Algorithm 1 guarantees that for an instance
A = (n, t,Θ, Q, v), we have

sup
Q∈CE(δ,ι)

Eγ∼Q

[
Regi,t(γ)

]
, sup
Q∈CE(δ,ι)

Eγ∼Q

[
Envyi,t(γ)

]
= Õ(

√
ιt+

√
δ · t) (11)

and
supQ∈CE(δ,ι) Eγ∼Q

[
‖b̄t−(1/n)1n‖2

]
,supQ∈CE(δ,ι) Eγ∼Q

[
‖ūt−u∗‖2

]
,supQ∈CE(δ,ι) Eγ∼Q

[
‖ūt−uγ‖2

]
=Õ(δ+ι/t) .

Remark 1 (Markov Input). We can specialize the result in Theorem 2 to fast mixing or Markov item
sequences. Fast mixing means the deviation δ decreases exponentially, i.e., for all 1 ≤ ι ≤ t− 1,

sup
γ

sup
τ=1,...,t−ι

‖Qτ+ι(θ1:τ )−Π‖TV ≤ Mρι , (12)

for some M > 0, ρ ∈ [0, 1), and Π is the stationary distribution. Examples include finite state-
space time-homogeneous Markov chains and uniformly ergodic Markov chains on general state
spaces (Meyn and Tweedie, 2012, Chapter 16). In these cases, setting ι = log t+logM

log(ρ−1) = O( log t
log(ρ−1) )

implies δ ≤ 1/t. This means the Markov chain from which γ is generated takes O(log t) steps to
get (1/t)-close to stationarity. The dominant term for the regret in Theorem 2 (further ignoring
M ) is then (1 + 1

log(ρ−1) )
1/2

√
t. The term in the parenthesis reflects the inflation caused by input

dependency. To recover the case of i.i.d. input, we simply send ρ → 0 and the usual
√
t regret and

envy rates and 1/t utility and expenditure convergence rates are again recovered.
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3.3 Periodic Input

Item sequences often exhibit statistical periodic structure. For example, when allocating compute
time to requestors, there will be more requests during weekdays and less on weekends. The com-
pute request patterns vary throughout the week, and yet the weekly pattern would repeat over time.
Similarly, Internet traffic typically exhibits periodic structure.

Formally, assume that the horizon t divides into K blocks of time, each of size q. This divides the
item sequence γ into consecutive blocks of length q. Within each block, we allow a distribution with
arbitrary dependence between time steps, but we assume that the blocks, as a whole, are identically
and independently distributed. We define the set of periodic input distributions as follows:

CP(q) :=
{
Q ∈ ∆(Θq)K : Q1:q = Qq+1:2q = . . . = Qt−q+1:t

}
. (13)

Theorem 3 (Periodic Case). For the periodic case, Algorithm 1 guarantees that for an instance
A = (n, t,Θ, Q, v), we have

sup
Q∈CP(q)

Eγ∼Q

[
Regi,t(γ)

]
, sup
Q∈CP(q)

Eγ∼Q

[
Envyi,t(γ)

]
= Õ

(√
qt
)

(14)

and

supQ∈CP(q) Eγ∼Q

[
‖b̄t−(1/n)1n‖2

]
,supQ∈CP(q) Eγ∼Q

[
‖ūt−u∗‖2

]
,supQ∈CP(q) Eγ∼Q

[
‖ūt−uγ‖2

]
=Õ(q2/t) .

If the length q of the blocks is of order o(t) then the time-averaged regret and envy are both vanishing.
For the i.i.d. case, we can set q = 1 to recover the previous results.

Now we comment on dependence on the period length q. Suppose the item sequence consists of
K blocks, and blocks are i.i.d. We still allow arbitrary dependence within a block. The proof of
Theorem 3 essentially relies on the result (Theorem 9) that DA produces iterates whose squared
error is of order O(q2/t). Consider dual averaging with the knowledge of the block structure q.
Then the rate 1/K = q/t can be achieved by executing DA using one randomly chosen data point
within a block, throwing away the rest in that same block. Such selection produces K i.i.d. samples
from the distribution. In comparison, the rate in O(q2/t) is worse off by a factor of q due to not
knowing the block-structure information.

4 Proof Technique: Nonstationary Dual Averaging

The PACE dynamics can be cast as online dual averaging (Xiao, 2010) applied to the dual of the
hindsight allocation program in (1). This will be discussed in more detail in Section 4.2 and Ap-
pendix C.2. However, in order to characterize its performance under various types of nonstationary
input, we first extend the general convergence results for dual averaging to incorporate nonstationary
input. The convergence results that we developed for dual averaging under three different types of
input models are novel and are of independent interest.

We remark that the results for the stochastic setting given by Xiao (2010) cannot be used directly,
since they rely on the stringent i.i.d. assumption. Duchi et al. (2012) consider ergodic mirror descent
(MD) for convex problems under some (but not all) of our nonstationary input models. Their results
and analysis cannot be used in our case either, since their results do not allow using the composite
structure, whose strong convexity we leverage. Moreover, unlike DA, an MD-based approach would
require tuning parameters such as stepsizes.

In this section, after introducing the setup of DA in Section 4.1, we present a DA convergence
result for independent but not identical input in Section 4.3, for which we outline the proof idea and
technical challenges in Section 4.3. Due to space limitations, we present DA convergence results for
ergodic and periodic inputs in Appendix D.3.

In the nonstationary setup of DA, we emphasize that whenever we mention convergence, we mean
convergence of DA iterates to the population-level optimum w∗

Π (or sometimes the hindsight opti-
mum), up to some error caused by nonstationarity.
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4.1 Review: The DA Algorithm

We review the dual averaging setup in the strongly convex case (Xiao, 2010, §1.1). Consider a
stochastic optimization problem of the form

min
w

{
φ(w) := Ez∼Π

[
F (w, z)

]
= Ez∼Π

[
f(w, z)

]
+Ψ(w)

}
, (15)

where w ∈ (Rd, ‖ · ‖) is the variable, Ψ is a closed convex function with closed domain DomΨ :=
{w ∈ Rn : Ψ(w) < ∞}. The expectation is taken over a probability distribution Π on a measurable
space Z. For each z ∈ Z, the function f(·, z) is convex and subdifferentiable (a subgradient always
exists) on DomΨ. Let F (w, z) = f(z, w) +Ψ(w).

Assumptions. Let G(w, z) be a fixed element in the set of subgradients ∂wf(w, z).
1. For almost every z, it holds ‖G(w, z)‖∗ ≤ G, where ‖ · ‖∗ = max‖w‖≤1〈s, w〉 is the dual

norm.
2. There exists an F̄ ∈ R such that F (w, z) ≤ F̄ for all w ∈ DomΨ and (almost every) z.
3. Ψ is σ-strongly convex, i.e., Ψ(αw + (1 − α)u) ≤ αΨ(w) + (1 − α)Ψ(u) − σ

2α(1 −
α)‖w − u‖2 for w, u ∈ DomΨ.

Because of our strong convexity assumption, the solution to (15) is unique. Associated with Π we
define w∗

Π := argminEz∼Π

[
F (w, z)

]
.

The dual averaging algorithm (DA) (Xiao, 2010, Algorithm 1) aims to produce a sequence converg-
ing to the optimal point w∗

Π or minimize the associated regret (Xiao, 2010, §1.2). The algorithmic
details for DA are presented in Algorithm 2. Note that although Xiao (2010) only considers the case
of i.i.d. data, DA iterates are defined for every input sequence {zτ}tτ=1, regardless of any distribu-
tional properties of the sequence.

The first step in our analysis is a relationship between regret and the suboptimality ‖wt − w∗
Π‖

derived by Xiao (2010). Consider the dual averaging algorithm with data {zτ}tτ=1. We denote the
one-step subgradient by gτ := G(wτ , zτ ) and the average subgradient by ḡτ = (

∑τ
s=1 gs)/τ . Given

data {zτ}tτ=1, we define the regret and the sum of squared subgradient norms 2

Rt(w) :=
t∑

τ=1

(
F (wτ , zτ )− F (w, zτ )

)
, ∆t :=

1

2σ

(
5‖g1‖2∗ +

t−1∑

τ=1

‖gτ+1‖2∗/τ
)
.

The bound ∆t ≤ (6 + log t)G2/(2σ) holds in a deterministic manner due to the bounded subgradi-
ent assumption.

Xiao (2010) shows the following bound on suboptimality of wt

Lemma 1 (Regret Bound, Section B.2 in Xiao (2010)). For any sequence {zτ}tτ=1, any w ∈ DomΨ,
any t = 1, 2, . . . , it holds ‖wt+1 − w‖2 ≤ 2

σt

(
∆t −Rt(w)

)
.

4.2 Review: PACE as Dual Averaging

In this section we review how to cast PACE as dual averaging applied to the problem (4). This deriva-
tion was originally given in Gao et al. (2021). Let f(β, θ) = maxi βivi(θ), Ψ(β) = − 1

n

∑n
i=1 log βi,

in which case we get F (β, θ) = f(β, θ) + Ψ(β) = maxi∈[n]

{
βivi(θ)

}
− 1

n

∑n
i=1 log βi . Fol-

lowing (Gao and Kroer, 2021, §5), since f( · , θ) is a piecewise linear function, a subgradient is
G(β, θ) := viτ (θ)eiτ ∈ ∂βf(β, θ) , where iτ = min{argmaxi βivi(θ)} is the index of the winning
agent (see, e.g., Beck (2017, Theorem 3.50)). Based on this instantiation of DA, we get that the iter-
ates {βτ}t+1

τ=1 generated by the PACE dynamics (Algorithm 1) are exactly the iterates wτ generated
by DA(G,Ψ, γ) (Algorithm 2). A proof is given in Appendix C.2.

Before moving on to showing our results, let us first touch on the fact that dual averaging provides
worst-case regret guarantees. Naively, one may expect that these regret guarantees would directly
translate into regret guarantees on the primal performance, meaning a bound on supγ Regi,t(γ).

2 See the first equation on page 2584 in Xiao (2010). In Xiao (2010)’s notation, set βτ = 0 all τ ≥ 1 and
β0 = σ, plug in the bound h(w2) ≤ 2‖g1‖2∗/σ and we have the expression of ∆t in our paper.

8



Algorithm 2: DA(G,Ψ, {zτ}tτ=1)

Input: subgradient G, regularizer Ψ and data {zτ}tτ=1 .
1 Initialize: set ḡ0 = 0 and w1 = argminΨ.
2 for τ = 1, . . . , t do
3 Observe zτ and compute gτ = G(wτ , zτ ).
4 Average subgradients (the dual average) via ḡτ = τ−1

τ ḡτ−1 +
1
τ gτ .

5 Compute the next iterate wτ+1 = argminw{〈ḡτ , w〉+Ψ(w)}.

However, such dual regret bounds do not imply a worst-case primal regret bound. From a technical
perspective, it is unclear how a regret bound on the dual objective would translate to a regret bound
on envy or utilities. Secondly, based on results in the online fair allocation literature (Azar et al.,
2016; Banerjee et al., 2022), it is known that not only can we not get a no-regret guarantee on the
primal performance, it is not even possible to achieve a constant competitive ratio in the worst-case
setting.

4.3 Independent Data with Adversarial Corruption

We present a DA convergence result with independent data in this section. Theorem statements for
the ergodic case and periodic case are presented in Appendix D.3. Discarding the i.i.d. assumption
on the data {zτ}tτ=1, we let P be the joint distribution of {zτ}τ and let P τ be the marginal dis-
tribution of zτ . We study the relationship between the DA iterates wt+1 and w∗

Π by bounding the
mean-square difference E{zτ}t

τ=1∼P

[
‖wt+1 − w∗

Π‖2
]
, and thus demonstrate in what sense the data

distribution P should stay close to the i.i.d. distribution Π in order to preserve DA convergence.

We first introduce a variant of CID(δ) with a target distribution Π:

CID(δ;Π) :=

{
P ∈ ∆(Θ)t :

1

t

t∑

τ=1

‖P τ −Π‖TV ≤ δ

}
. (16)

Theorem 4 (DA Convergence, Independent Data with Adversarial Corruption). If {zτ}tτ=1 ∼ P
and P ∈ CID(δ,Π). Then for t ≥ 1,

E{zτ}t
τ=1∼P

[
‖wt+1 − w∗

Π‖2
]
≤ (6 + log t)G2

σ2t
+

8F̄

σ
δ = Õ(δ + 1/t) .

Moreover, the rate Õ(δ+1/t) applies to E
[
‖wt+1−w∗

γ‖22
]

and E
[
‖w∗

γ−w∗
Π‖22

]
(See Appendix D.1).

Remark 2. From this result we can tell when DA retains last-iterate convergence. Suppose the
number of corrupted data points is of order o(t) (assuming corruption on each data is of the same
order), then the corruption per item is δ = o(1) and DA converges to the optimal solution as t → ∞.
Furthermore, if the corruption per data point is of order δ = O(1/t), then the fast rate 1/t is
retained.

By Section 4.2, we get as a corollary that the PACE iterates {βt} will converge to β∗, the solution
to the infinite-dimensional dual program (4). This is the building block for our results in Section 3.

While the full proof is too long to fit in the paper, we now give a proof sketch to show the main ideas
behind how we derive Theorem 4. We begin the proof by noticing Lemma 1 is deterministic and
valid for any {zτ}tτ=1. Now set w = w∗

Π in Lemma 1. If the input data {zτ}tτ=1 were i.i.d. from Π,
i.e., P = Π⊗t, then E[Rt(w∗

Π)] would be greater than zero, and we would obtain

E
[
‖wt+1 − w∗

Π‖2
]
≤ 2

σt

(
E[∆t]− E

[
Rt(w

∗
Π)
])

≤ (6 + log t)G2

σ2t
.

However, in the nonstationary case, the regret E[Rt(w∗
Π)] might be negative. At a high level, our re-

sults are achieved by introducing appropriate measures of the nonstationarity and then lower bound-
ing E[Rt(w∗

Π)] based on those measures.
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To this end, we decompose the regret as follows. Write

Rt(w
∗
Π) =

t∑

τ=1

(
F (wτ , zτ )− φΠ(wτ )

)
+

t∑

τ=1

(
φΠ(w

∗
Π)− F (w∗

Π, zτ )
)

︸ ︷︷ ︸
I

+
t∑

τ=1

(
φΠ(wτ )− φΠ(w

∗
Π)
)

︸ ︷︷ ︸
II

.

By optimality of w∗
Π we have II ≥ 0. Using the bound on the TV distance between {P τ}τ and Π,

and boundedness of F we can control the other two terms. The key is, conditional on Fτ−1, the
iterate wτ is deterministic and the distribution of zτ is P τ due to independence assumption. For
each term in the first summation, we condition on Fτ−1 and obtain

|E[F (wτ , zτ )− φΠ(wτ )|Fτ−1]| =
∣∣∣∣E
[ ∫

Z
F (wτ , z)P

τ (dz | z1:τ−1)−
∫

Z
F (wτ , z) dΠ(z)|Fτ−1

]∣∣∣∣

=

∣∣∣∣E
[ ∫

Z
F (wτ , z)P

τ (dz)−
∫

Z
F (wτ , z) dΠ(z)|Fτ−1

]∣∣∣∣

≤ E
[∣∣∣∣
∫

Z
F (wτ , z)P

τ (dz)−
∫

Z
F (wτ , z) dΠ(z)

∣∣∣∣|Fτ−1

]

≤ 2F̄‖P τ −Π‖TV .
The second sum can be handled similarly. For the detailed proof and a generalization see Ap-
pendix D.2 in Appendix D.

We now discuss how this paper handles nonstationarity differently from the existing literature. Let
us use Balseiro et al. (2020) as a reference point, since they consider very similar categories of
nonstationary inputs. From a online constrained optimization perspective, Balseiro et al. (2020)
relies on the fact that their objective is separable across timesteps in order to handle nonstationarity.
In contrast, this structure does not exist for the online fair allocation problem, because the objective
takes the logarithm of the utility over time. Concretely, in Balseiro et al. (2020), the objective is
of the form

∑t
τ=1 fτ (x). This type of time-separability occurs in all works that we are aware of

for non-stationary inputs, also e.g. the ergodic mirror descent paper Duchi et al. (2012) (Duchi
et al. (2012) is not an online setting, but the expectation in their objective is analogous to time
separability). Time separability is used as a key property for deriving regret bounds in those papers.
The separability enables translating dual regret to primal regret by a weak duality argument (see e.g.
Prop. 1 in Balseiro et al. (2020) where a time-separable dual allows weak duality).

In contrast, our problem has time-separability only in the dual formulation, but not in the primal
one, which is where we ultimately want guarantees (since we are interested in utilities converging).
Our contribution to handling nonstationarity in online fair allocation is showing that a dual approach
works even without the separability structure. We begin by deriving convergence guarantees on
the last dual iterate, which we achieve by modifying the dual averaging proof to take into account
nonstationarity and analyzing the stability of the dual variables in dual averaging. We note that
this technique depends on strong convexity, unlike for the time-separable case. Next, to go from
dual last-iterate convergence to primal regret bounds we use the first-order optimality condition for
EG program, which are specific techniques for our problem (such techniques were also used in the
previous PACE paper Gao et al. (2021)).

5 Conclusion

We established new convergence results for dual averaging under nonstationary data input models,
namely, adversarial corruption, ergodic, and block-independent input models. Leveraging these re-
sults, we showed that, for online fair allocation problems with item arrivals generated from the above
nonstationary data input models, the PACE algorithm automatically adapts to them and achieves
asymptotic fairness and efficiency without any parameter tuning. Numerical experiments demon-
strated the effectiveness of PACE under these data input models.
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