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Abstract

Despite the considerable progress in automatic abdominal multi-organ segmenta-
tion from CT/MRI scans in recent years, a comprehensive evaluation of the models’
capabilities is hampered by the lack of a large-scale benchmark from diverse clini-
cal scenarios. Constraint by the high cost of collecting and labeling 3D medical
data, most of the deep learning models to date are driven by datasets with a limited
number of organs of interest or samples, which still limits the power of modern deep
models and makes it difficult to provide a fully comprehensive and fair estimate
of various methods. To mitigate the limitations, we present AMOS, a large-scale,
diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500
CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality,
multi-phase, multi-disease patients, each with voxel-level annotations of 15 ab-
dominal organs, providing challenging examples and test-bed for studying robust
segmentation algorithms under diverse targets and scenarios. We further bench-
mark several state-of-the-art medical segmentation models to evaluate the status of
the existing methods on this new challenging dataset. We have made our datasets,
benchmark servers, and baselines publicly available, and hope to inspire future re-
search. Information can be found at https://jiyuanfeng.github.io/AMOS/.

1 Introduction

A dense and pixel-precise understanding of abdominal anatomy is of fundamental importance for
computer-aided clinical applications such as disease diagnosis and radiotherapy planning. Specifically,
accurate abdominal organ segmentation provides crucial information such as the interrelations among
the organs as well as individual positions and shapes in the standardized space, which is essential
for assisting clinical decision-making. With the development of related datasets [1, 11, 12, 5, 15],
significant progress has been made in this area.

Nevertheless, robust segmentation of abdominal organs remains challenging in a real-world clinical
setting because of the large variety of organ morphological structures, appearance, and imaging
qualities between images acquired from different patients by different scanners. Some challenges are
rooted in the gap between the recent benchmarks and the real-world clinic, which we summarized
as follow: (a) Small-Scale: Since the acquisition and annotation of 3D Medical data are incredibly
expensive, currently available benchmarks contain only a limited number of data samples or organ
annotations, or both. (b) Lack of Diversity: The tremendous cost also restricts previous works to only
acquiring data samples from a single-center, phase, scanner, and disease [1]. Models trained with
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Figure 1: Example annotated slices from AMOS dataset. Watch the animations by clicking them (Not
all PDF readers support playing animations. Best viewed with Acrobat/Foxit Reader). The top and
bottom two rows show the CT and MRI slices acquired from different scanners, respectively.

homogeneous and inadequate datasets tend to perform catastrophically when the test data distribution
shifts under different clinical scenarios. To bridge the gap, one more reality-oriented and robust
solution is urgently needed to be proposed.

To mitigate the above two challenging limitations, we propose AMOS, a comprehensive abdominal
organ segmentation dataset with abundant annotations of multi-modality, multi-center, multi-scanner,
multi-phase, and multi-disease patients, that covers overall 15 organs. Compared with previous
benchmarks, AMOS owns its unique contributions to the research community from the following
aspects, (a) Large-Scale: AMOS contains 600 Computerized Tomography (CT) / Magnetic Resonance
Imaging (MRI) scans with over 74K annotate slices, which is 20× larger than the previous commonly-
used BTCV [12] dataset (3.6K). (b) Diverse and Clinical: AMOS acquires data from the real-world
clinical settings, where the patients with different abdominal cancers/abnormalities are tested from
eight different CT or MRI scanners at two medical centers. The significant heterogeneity poses
higher requirements for algorithm robustness. (c) Versatile: Despite the multi-organ segmentation,
we also show that AMOS could potentially serve as a multi-functional dataset for various learning
tasks, such as Out-of-Distribution (OOD) generalization, cross-modality learning, transfer learning,
privacy-preserving computation and so on.

With the proposed dataset, we build a new benchmark including existing popular medical segmen-
tation methods. The results prove that current state-of-the-art algorithms fail to make satisfactory
performance. Considering the diverse and reality-oriented characteristics owned by AMOS, we hope
that AMOS could serve as a new benchmark to evaluate multi-organ segmentation algorithms in
practical applications. To be more specific, the contributions of our work to the medial segmentation
community are as follow:

• We build a new large-scale, diverse, and clinical abdominal organ segmentation dataset
of 600 CT/MRI scans, namely AMOS, which is comprehensive with 15 organs. To our
knowledge, it is the largest dataset of its kind.

• We benchmark current baseline methods on this newly built dataset with various evaluation
metrics, showing the limitation of existing state of the arts abdominal organ segmentation
algorithms.

• We carefully design extended experiments to validate that AMOS could serve as a versatile
dataset for multiple learning tasks.

2 Related Work

Abdominal organ segmentation datasets As summarized in Table 1, existing abdominal organs
segmentation datasets vary in size, modality as well as the number of annotations. For example, for
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Abdomen Organ Dataset #Organs #Scans #Slices # Anns per Scan Modality Region Year
MSD-Liver† [1] 1 201 29,402 3410K CT France 2018
MSD-Spleen† [1] 1 61 1,563 40K CT United States 2018
MSD-Prostate† [1] 1 48 712 15K MRI Netherlands 2018
MSD-Pancreas† [1] 1 420 13,141 144K CT United States 2018
Kits† [8] 1 300 23,337 997K CT United States 2019
BTCV† [12] 13 50 3,629 431K CT United States 2015
Chaos† [11] 4 80 1,989 52K CT&MRI Turkey 2019
DenseVNet [5] 8 90 9,246 1430K CT United States 2018
AbdomentCT-1K† [15] 4 1,112 34,497 3412K CT Worldwide 2021
Word [14] 16 150 - - CT China 2021
AMOS (ours) 15 600 74,026 9952K CT&MRI China 2022

Table 1: Comparison of AMOS dataset with other conventional abdominal organ segmentation datasets.
† indicates that the value of the dataset is the estimate from released partial data. - means unavailable
estimation due to data inaccessibility.

the single-organ segmentation dataset, the MSD [1], considered as the most commonly-used one,
provides annotations of the single organ individually (e.g., the liver, spleen, prostat, and pancreas),
with data sizes ranging from tens to hundreds. For the multi-organ segmentation dataset, BTCV [12]
takes the pioneering step to provide 50 CT scans covering 13 types of organ annotations. Besides,
DenseVNet [5] improves the BTCV dataset via involving additional data, forming a total dataset
consisting of 90 scans with eight organ annotations. Compared to the single-modality dataset, the
Chaos Dataset [11] provides multi-modality information, including both 20 CT scans for the liver
and 20 MRI data with four organs. More recent works aim to include more samples in the specific
dataset, e.g., AbdomenCT-1K [15] provides 1,112 scans with four organs, while Word [14] contains
150 CT samples to cover 16 kinds of abdominal organs. Unlike the above works, our AMOS contains
600 CT/MRI scans with 15 types of organ annotation, making it the most comprehensive and diverse
benchmark of its kind to date. Besides, considering the underrepresentation problem in clinical
datasets, our proposed AMOS from the Asian sub-population will be a valuable resource to the existing
pool. We refer the readers to Appendix A for more detailed information on the mentioned datasets.

Methods for single abdominal organ segmentation The single organ segmentation has been the
dominant task for decades, where numerous solutions have been developed [13, 9, 30, 21, 4, 10, 25].
For example, to precisely segment the liver and tumor, H-DenseUNet [13] designs a hybrid 2D/3D
network for better features extraction. By proposing a self-configured framework based on the naive
UNet [19], nnUNet [9] achieves superior performance on segmenting the liver, spleen, kidney, as
well as pancreas, the approach can be easily adapted to multi-organ segmentation tasks. Besides,
to resolve the challenges of small target organs, a series of works [30, 21, 4] adopt the cascaded
structures, where the networks are designed in a coarse-to-fine manner. More recent works [10, 25]
replace the manual designs by the neural network searching for optimal segmentation architectures to
achieve better performance with fewer parameters.

Methods for Abdominal multi-organ segmentation For multi-organ segmentation, where multiple
organs are segmented simultaneously, networks should be designed to own more powerful ability of
discriminating the pixel-wise features. OAN [22] designs a fusion network that takes 2D multi-view
images as input and reconstructs the 3D segmentation result finally. DenseVNet [5] proposes a
dense 3D network for performance improvement. Besides, due to the data insufficiency, a series
of works [29, 3, 27] propose different training paradigms and achieve multi-organs segmentation
using partially label annotations from single organ datasets. In this group of work [28, 6, 7, 24], the
features patch or image patch are treated as tokens, which are used to conduct efficient non-local
context modeling among arbitrary positions, making them achieve SOTA performance on the most
popular dataset [12]. However, we empirically found that developing and validating methods with
limited data still hinders the potential power of modern deep models, leading to unfair/inaccurate
comparisons and estimates of different methods.

3 AMOS

AMOS collects both the CT and MRI image data from anonymous patients in clinical medical centers,
with abundant segmentation annotations. In this section, we will detail the data curation process for
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Figure 2: Annotation workflow of AMOS. The coarse annotations automatically labeled by pre-
trained segmentors will be further refined by human annotators for multiple times, including 5 junior
radiologists for the initial stage and 3 senior specialists for the second checking stage.

both the images and annotations, as well as provide recommendations for potential usages. Additional
details, including acquisition, annotation and so on, can be found in Appendix B.

3.1 Dataset Construction

Data Overview Following the standard clinical acquisition protocols, the CT/MRI data are collected
from 600 patients, who are diagnosed with abdominal tumors/abnormalities at Longgang District
People’s Hospital and Longgang District People’s Hospital, via one of the eight machines as shown in
Table 2. Both scanner-generated DICOM and diagnosis reports are collected, de-identified, and stored
securely. All data contributions to this study have been approved by the Research Ethics Committees
of Longgang District People’s Hospital (reference number: 2021077) and Longgang District Central
Hospital (reference number: 2021ECJ012).

Data Collection AMOS is designed to facilitate abdominal multi-organ segmentation in a more
diverse, clinical, and complex scenarios. To meet this purpose, we cautiously select data, generated
by two institutes from 2018 to 2021, based on the following criteria: 1) Patients should be diagnosed
with abdominal tumors/abnormalities, while the ones with normal abdomen will be excluded. 2)
The imaging quality of the scanned data should be high-quality enough for the radiologists to review
and annotate. 3) To ensure the data diversity, the collected samples should be derived from different
scanners, as well as different scanning stages. 4) The scan data should cover as many of the specified
abdominal organs as possible. To this end, we collected a total of 500 CT and 100 MRI scans
from 600 unique patients, covering 15 organ categories, including spleen, right kidney, left kidney,
gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, pancreas, right adrenal gland, left
adrenal gland, duodenum, bladder, prostate/uterus.

Data Annotation Considering the expensive cost of labeling 3D data, we follow [15, 23] to propose
a semi-automatic annotation workflow as shown in Figure 2. There are two stages for annotation,
including the coarse labeling stage and the refinement stage. Specifically, a few samples (50 CT and
20 MRI scans) are initially annotated with human labors. Then, we conduct the training process
with the annotated scans on several representative models, e.g., 3D-UNet [19] and VNet [16]. The
pre-trained segmentors are utilized to pre-label the remaining scans automatically and coarsely. To
this end, we finish the coarse labeling stage. For the second stage, five well-trained junior radiologists
are employed to check and revisit the segmentation results on a case-by-case basis. To further reduce
errors/biases, three senior radiologists with more than 10 years of clinical experience are responsible
for the final validation. Typically, they will conduct the annotation review, errors revision, and
feedback distribution to improve the annotation quality. The overall process will be iterated several
times in the second stage for the final consensus on the well-labeled annotations. Such interactive
checking reduces the possible bias caused by individual annotators. We illustrate our semi-automatic
annotation workflow in Figure 2. It is evident that human refinements and corrections are required to
achieve high-quality annotations. Overall, AMOS annotates 500 CT and 100 MRI scans, resulting into
two sub-datasets, i.e., AMOS-CT and AMOS-MRI. We refer the readers for more technical details in the
Appendix B.2.
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Scanner Domain #Train #Validate #Test # Total
AMOS-CT Aquilion ONE A 82 27 27 136
− Brilliance16 B 68 23 23 114
− Somatom Force C 50 50 28 128
− Optima CT660 D − − 64 64
− Optima CT540 E − − 58 58

200 100 200 500
AMOS-MRI Ingenia F − − 29 29
− Prisma G 33 20 11 64
− Signa HDe H 7 − − 7

40 20 40 100

Table 2: Partition of the AMOS dataset. In addition to the conventional train-to-training in-distribution
setting, we extend the evaluation setting to out-of-distribution data, where performance is also
measured on unseen test data (marked as gray cell)

.

Data Splits Distribution shift, where the training distribution differs from the test distribution, is
ubiquitous in medical applications. In practice, it is often the case that the testing data (a.k.a., target
domain) can differ from training data (a.k.a., source domain) in a variety of ways, such as imaging
protocol, device vendors, and patient populations. Such a domain shift always significantly degrade
the performance of the developed model. In AMOS, we consider the domain shift caused by the device
vendors, where domains are the image acquisition scanner. Besides, the model needs to generalize
to data from a new scanner that is disjoint with the training set. Specifically, as shown in Table 2,
we make data split according to their performed scanner. For the AMOS-CT, 378 unique abdominal
scans from three scanners are randomly split into 200 (n=82, domain A; n=68, domain B; n=50,
domain C), 100 (n=27, domain A; n=23, domain B; n=50, domain C), 78 scans (n=27, domain A;
n=23, domain B; n=28 domain C) for training, validation, testing (In Distribution, ID) respectively,
the other 122 cases (n=64, domain D; n=58, domain E) from other two scanners serve as unseen test
data and consist to the testing (Out of Distribution, OOD) split. The same split strategy is adopted to
AMOS-MRI, resulting in 40 scans for training, 20 scans for validation and 29 scans for testing (OOD),
and 11 scans for testing (ID).

Data Distribution All the scanned samples and segmentation annotations are distributed in multiple
formats (e.g., DICOM, NIFTI) to ensure their applicability in both the research community and
clinical scenarios. Patient-protected health information (PHI) metadata was removed from DICOM
files. For additional details on distribution and maintenance, please refer to Appendix B.3.

3.2 Dataset Statistics

Cohort Statistics To analyze the cohort characteristics of AMOS, we summarize the diagnoses of
the collected patients from two aspects (i.e., affected organ and disease type) based on the patient
reports. The word frequency results, in Figure 3(a), show that AMOS spreads over a large range of
diseases and organs, validating the diversity and variability of our dataset. Due to the page limit,
more cohort characteristics (e.g., sexual and age information) are available in Appendix B.4.

Annotation Statistics We also conduct the statistical measurements to analyze the semantic label
distribution in AMOS. As shown in Figure 3(b), the annotation of AMOS naturally has a long-tail
distribution. For example, the scale of liver annotation is about 200× larger than the adrenal gland.
This natural/reality-oriented long-tail distribution property makes AMOS more challenging for precise
multi-organ segmentation.

Dataset Comparison In this part, we compare the data statistics of our dataset to those of commonly
used abdominal organ segmentation datasets. Since not all annotations of these datasets are available
to the public, some statistics marked with †are estimated using a subset of the dataset. The overall
comparisons are conducted from the aspects of data scale and diversity. First, we compare the data
scale between AMOS and other representative segmentation datasets in Table 1. Specifically, AMOS
contains 74K annotated slices, which is 2.2× larger than the second-largest dataset AdbomentCT-1K,
and 20× larger than BTCV. For the number of scanned samples, our AMOS is significantly larger
than most datasets except for AdbomentCT-1K. Nevertheless, AMOS still takes advantage of organ
numbers, annotation numbers in a single scan, and modality numbers over AdbomentCT-1K. Second,
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Target Source BTCV [12] AMOS MSD-Spleen [1] MSD-Liver [1] MSD-Pancreas [1] Kits [8]
BTCV 83.62 84.47 _ _ _ _
AMOS 79.74 90.83 _ _ _ _
MSD-Spleen 91.10 94.73 95.39 _ _ _
MSD-Liver 92.32 95.40 _ 96.85 _ _
MSD-Pancreas 66.32 71.76 _ _ 86.68 _
Kits 80.21 88.33 _ _ _ 97.47

Table 3: The model pretrained on the AMOS dataset shows superior transfer performance compared to
those on the BTCV and MSD dataset, which implies our superior data capacity and quality.

for annotation diversity comparison, Table 8 in the Appendix B.4 shows that the min/max/median
values of slice spacing and size range are [0.8/6.0/5.0] and [40/553/115], respectively, which spreads
diversely than other abdominal multi-organ datasets. Besides, in term of the organs volume, we
visualize the distributions of Chaos, BTCV, AdbomentCT-1K and AMOS in Figure 4 in the Appendix.
Results reveal that AMOS’s distribution almost covers the others, validating its high diversity. Such a
property puts a higher requirement on the model’s capacity and perception abilities.

To further validate the data diversity and evaluate the annotation quality, we propose an experimental
comparison. Specifically, we first pre-train two UNets based on AMOS and its closest dataset, BTCV,
respectively. The pre-trained models will be employed to infer on multiple target datasets, e.g., MSD-
Spleen, MSD-Liver, MSD-Pancreas, and Kits. Given two datasets for comparison, the performance
are evaluated on their mutual classes. As shown in Table 3, The model trained on AMOS dataset attains
94.73%, 95.40%, 71.76%, 88.33% mDice scores on the target dataset MSD-Spleen, MSD-Liver,
MSD-pancreas, Kits dataset, respectively, which significant outperforms the one trained on the BTCV
dataset (91.10%, 92.32%, 66.32%, 80.21%), being slightly worse than MSD-pretrained models
(95.39%, 96.85%, 86.68%, 97.47%). Besides, the model trained on AMOS achieves 84.47% mDice on
the BTCV validation set, surpassing the model trained on BTCV training set, which indicates the
annotation quality and data diversity of AMOS facilitate the models in learning better representations.

0 50 100 150

Gastrointestinal
Gallbladder
Lung
Pancreas
Kidney
Gastric
Rectum
Liver
Abdominal
Colon

Organ

0 25 50 75

Hydronephrosis
Cholecystitis
Bleeding
Occupy
Lesion
Mass
Stone
Tumor
Pain
Cancer

Disease

(a) Top-ten most frequent diseases and diseased organs.

10
6

10
7

10
8

liv
er

st
om

ac
h

sp
le

en

le
ft 

ki
dn

ey

rig
ht

 k
id

ne
y

bl
ad

de
r

ao
rta

pa
nc

re
as

in
fe

rio
r v

en
a 

ca
va

du
od

en
um

pr
os

ta
te

/u
te

ru
s

ga
llb

la
dd

er

es
op

ha
gu

s

le
ft 

ad
re

na
l g

la
nd

rig
ht

 a
dr

en
al

 g
la

nd

(b) Number of annotated voxels per category

Figure 3: Statistics on data targets as well as data annotation, reflecting that AMOS is a clinical,
highly diverse data set. The x-axis units of both figures are counts

3.3 Evaluation Metrics
Following the previous work [12], we leverage two classical medical segmentation metrics for
evaluation, i.e., dice similarity coefficient (DSC), and normalized surface dice (NSD) [17]. DSC
score is a popular segmentation metric applied to a variety of segmentation tasks, while the NSD
score can provide supplementary information on segmentation quality for evaluating the precision of
segmentation boundaries. Specifically, we first calculate the category-wise performances based on
the above two metrics and then average the values to obtain the overall evaluation (i.e., mDice and
mNSD). For both metrics, a higher score indicates a better result. Besides, considering computational
efficiency, we encourage future works to provide information on the model capacity (the number of
parameters) and computational cost (GFlops).

3.4 Potential Usages
Despite the multi-organ segmentation, AMOS provides multi-fold and abundant information, enabling
other potential usages in the research community. For instance, in Table 2, we have shown that our
AMOS-CT and AMOS-MRI consist of five and three domains, respectively. It motivates us to conduct
corresponding extensions, e.g., OOD generalization, cross-modality learning and transfer learning.
Besides, under the general framework of domain shifts, AMOS can also be easily adapted to domain

6



Model Params(M) Flops(G) CT-Val CT-Test MRI-Val MRI-Test
mDice(%) mNSD(%) mDice(%) mNSD(%) mDice(%) mNSD(%) mDice(%) mNSD(%)

UNet [19] 31.18 680.31 88.87 79.87 89.04 78.32 85.59 80.56 67.63 59.02
VNet [16] 45.65 849.96 81.96 67.94 82.92 67.56 83.86 78.0 65.64 57.37
CoTr [24] 41.87 668.15 77.13 64.15 80.86 66.31 77.5 70.1 60.49 51.18
nnFormer [28] 150.14 425.78 85.63 74.15 85.61 72.48 80.6 74 62.92 54.06
UNetr [7] 93.02 177.51 78.33 61.49 79.43 60.84 75.3 65.3 57.91 47.25
Swin-UNetr [6] 62.83 668.15 86.37 75.32 86.32 73.83 75.7 65.8 57.5 47.04

Table 4: Overall results of six baselines method on the AMOS-CT and AMOS-MRI datasets, respectively.
The FLOPS/the number of parameters is estimated by using the [1 × 128 × 128 × 128] patch as model
input. The class-wise scores can be found in Appendix C.2.

adaption and sub-population shift problems. Since each domain in AMOS can be treated as a separate
client, it is also suitable for developing Privacy-Preserving Computation techniques, such as Federated
Learning, which are crucial in medical applications. We welcome community contributions towards
exploring more potential usages of AMOS.

4 Experiments
In this section, we perform experimental validation on various datasets to investigate the superior
properties of our proposed AMOS. First, we introduce the experimental settings, including the selected
baseline methods and implementation details. Then, experiments are carefully designed to report the
performance from multiple perspectives, with various baseline methods and datasets.

4.1 Experimental Settings

Baseline methods We select recent state-of-the-art segmentors as baseline methods, including the
CNN-based methods (e.g., UNet [19]), Transformer-based methods (e.g., UNetr [7], Swin-UNetr [6]),
and the hybrid ones (e.g., Cotr [24], nnFormer [28]). Unless specified otherwise, we follow the
default training and testing configurations provided in the published papers or the released codebases
to calculate the performances.

Implementation details In this work, we use the Pytorch toolkit [18] to conduct all experiments on
one single NVIDIA V100 GPU. The nnUNet [9] codebase is adopted for benchmark implementation.
For more training and testing details, we refer the readers to Appendix C.1.

4.2 Benchmark results
To comprehensively evaluate different segmentors on AMOS, we first train representative models on the
training split, and then report the corresponding performances in Table 4. The computational costs,
i.e., floating-point operations per second (Flops) and the number of parameters, are also reported
for efficiency comparisons. Surprisingly, we find that UNet consistently outperforms other recently
developed methods for a certain margin, achieving 88.87% and 85.59% mDice, and 79.87% and
80.56% mNSD on AMOS-CT and AMOS-MRI, respectively. Besides, it’s found that the Transformer-
based models take no obvious performance advantages over the CNN-based models, with overhead
computational consumption. For example, UNet with much less parameters surpasses nnFormer,
Swin-UNetr over 2 ∼ 3% mDice and 4 ∼ 5% mNSD scores on AMOS-CT. To further analyze the
segmentation performance, we show the detailed category-wise scores in Appendix C.2. Results
show that both the Transformer-based methods and CNN-based methods are able to perform well on
the large organs (e.g., spleen, liver, and kidney), but still poorly on small organs (e.g., duodenum and
adrenal gland). It indicates that the more fine-grained features needed to be captured to assist the
segmentors in pixel-wise understanding and precise segmentation. Finally, we have also observed a
significant gap between mDice and mNSD as previously mentioned by [15]. Future segmentation
algorithms should move toward improving the boundary segmentation accuracy as well as the
continuity to achieve better segmentation results.

4.3 Generalization Results
To analyze the generalization capabilities of different segmentors, we evaluate their performances on
the testing (ID) and testing (OOD) splits, respectively. As shown in Table 6, the performances between
two splits vary significantly on AMOS-MRI, but almost keep consistent on AMOS-CT. For example,
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Model CT-Test (ID) CT-Test (OOD) MRI-Test (ID) MRI-Test (OOD)
mDice(%) mNSD(%) mDice(%) mNSD (%) mDice (%) mNSD (%) mDice (%) mNSD (%)

UNet [19] 88.04 79.92 89.67 78.11 86.05 82.79 64.70 54.09
VNet [16] 81.60 69.30 83.76 66.45 85.06 80.93 62.57 52.53
CoTr [24] 79.32 67.54 81.83 65.53 78.62 71.94 57.44 46.86
nnFormer [28] 84.43 74.03 86.35 71.50 80.62 74.86 60.29 49.96
UNetr [7] 77.86 62.71 80.43 59.65 74.36 65.33 55.44 43.69
Swin-UNetr [6] 84.91 74.96 87.20 73.10 75.89 67.77 54.35 42.59

Table 6: The in-distribution (ID) v.s. out-of-distribution (OOD) performance of models trained with
empirical risk minimization. The OOD test set are drawn from data distinct from training data as
described in Section 3.1, while the ID comparison are draw from the training distribution. AMOS-MRI
dataset show significant performance drop due to to distribution shift , with substantially better ID
performance than OOD performance. While the AMOS-CT do not show significant performance gap
difference between the ID and OOD test set. We analysis the results in Section 4.3.

for AMOS-MRI, UNet achieves an 86.05% mDice on the testing (ID) set, but only 64.07%(−21.25%)
mDice on the testing (OOD) set. Similarly, the corresponding performance gap for nnFormer
is −17.68% mDice (80.6% v.s. 62.92%). The results demonstrate that there is indeed a data
distribution shift caused by collecting MRI samples from different scanners that hinders the model
from performing consistently on two sub-sets. However, for AMOS-CT, the performance gap between
testing ID and OOD set disappears (e.g., 88.87% v.s. 89.04% mDice for UNet). It is because the
CT samples collected by different scanners in our work are almost indistinguishable from each
other since the scans follow the same imaging standards, including the imaging protocols, intensity,
and so on. The detailed properties of the collected data, shown in Appendix B.4, also validate the
imaging intensity is consistent in AMOS-CT but distinguishable in AMOS-MRI. Due to the different
data distributions in AMOS-MRI subsets, we encourage the research community to explore AMOS-MRI
for more OOD generalization tasks.

4.4 Extended explorations on AMOS

Since AMOS contains more modalities and abundant annotations than other works, we are able to
additionally investigate the following properties of AMOS, which haven’t been explored by previous
abdominal segmentation datasets.

Training data CT-Val MRI-Val
Individual (200CT / 40MRI) 88.87/79.97 85.59/80.56
Joint (200CT+40MRI) 89.42/80.78 87.73/82.72
Joint (160CT+40MRI) 89.12/80.19 –/–
Joint (10CT+30MRI) –/– 86.28/80.96

Table 5: Cross modality learning results. The
performance is reported in mDice/mNSD.

Cross-Modality learning Though CT and MRI con-
tain internal body information, the information that
they are good at capturing is different. For instance,
CT shows more potential in imaging organs and skele-
tal structures, while MRI especially focuses on more
fine-grained organ details and soft tissues. An intuitive
motivation is that the data from two modalities (i.e., CT
and MRI) could complement each other for better clinical diagnosis. Here, we conduct experiments
to improve the segmentation performance via cross-modality learning. Specifically, we first train the
UNet model on three datasets (AMOS-CT, AMOS-MRI, and their joint), and then evaluate its perfor-
mance on each modality. Results in Table 5 show that the jointly trained model consistently improves
the individually trained model on AMOS-CT (i.e.,+0.55% mDice and +0.81% mNSD) and AMOS-MRI
(i.e., +2.14% mDice and +2.16% mNSD). To mitigate the effect that the improvement is caused by
more training data, we conduct two comparative experiments by selecting training samples randomly
(i.e., 160CT+40MRI, 10CT+30MRI). The improvement could also be observed, which validates the
effectiveness of cross-modalities training.

Transfer Learning Models trained on the large-scale and diverse dataset are usually supposed
to have stronger transfer learning abilities to perform well on the related sub-sets. We conduct
experiments in this part to validate how AMOS benefits models in transfer learning scenarios. Taking
UNet as the baseline method, we train the models with two training configurations: 1) the model
is trained on the specific dataset from scratch, 2) the model is first pre-trained on AMOS and then
fine-tuned on the other datasets. The performances are evaluated on 10 segmentation tasks, including
six related datasets that contain organs in AMOS, and four unrelated ones. The overall tasks are suitable
for evaluating the transfer learning abilities of AMOS, since they contain both the seen and unseen
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Train from scratch Pretrained with AMOS
mDice(%) mNSD(%) mDice(%) mNSD(%)

MSD-Liver [1] 80.31 57.40 81.97↑ 59.14↑
MSD-Spleen [1] 95.39 88.40 96.40↑ 90.12↑
MSD-Pancreas [1] 66.71 47.89 66.17 48.32
MSD-Prostate [1] 80.64 56.75 81.47↑ 58.73↑
Kits [8] 88.52 81.97 89.93↑ 83.62↑
SegTHOR 89.66 74.77 90.91↑ 75.29↑
MSD-Cardiac [1] 93.89 86.58 93.67 85.89
MSD-HepaticVesse [1] 70.21 61.5 70.36 61.79
ACDC [2] 92.30 93.64 92.45 94.05
Covid19-Seg [20] 72.53 56.22 72.68 56.51

Table 7: Transfer learning results on 10 target datasets.

domains. We detail these datasets and the corresponding experimental details in the Appendix C.2.
Results shown in Table 7 demonstrate that model trained on AMOS consistently outperforms the one
in train-from-scratch manner on 5/10 benchmarks, while performing comparably on the other 5/10
tasks. It indicates when the sub-sets are related to AMOS, the representations trained by AMOS are
transferable and beneficial. On the other hand, when the sub-sets domains are significantly different
from AMOS, e.g., MSD-Cardiac, AMOS’s representations will not cause the deleterious effects.

5 Discussion & Conclusion

In this work, we present a large-scale, diverse, clinical dataset for abdominal multi-organ segmentation,
termed AMOS. Thanks to its abundant information, we are able to explicitly focus on measuring
algorithm performance fairly and comprehensively. The extensive experiments on AMOS show that
our dataset can not only serve as a general multi-organ segmentation benchmark, but also assist the
research community in extended applications, including OOD generalization, cross-modality learning,
and transfer learning, which haven’t been explored by previous works. We believe that our work
provides an important step toward the dense, pixel-precise abdominal anatomy understanding and
other future explorations. For the limitation, first, all data were acquired from patients who received
an abdominal scan at two hospitals, which is a subgroup of the Asian population. Second, although
data were collected from different scanners, both scanners were from the two hospitals, which may
affect model performance on data acquired from the different medical centers. Additionally, there
are other anatomical structures in the scans (e.g., lung, heart), which is not densely annotated but
can help medical workflow. In future work, we will look to curate data from a more wide patient
pool and multi-center scanners and add annotations for additional organs. Besides, we carefully solve
privacy and social effects by strictly obtaining the Research Ethics Committees Approvement.

Acknowledgement

This work is supported by the General Research Fund of HK No.27208720, No.17212120, and
No.17200622, by the Open Research Fund from Shenzhen Research Institute of Big Data No.
2019ORF01005, by the Young Scientists Fund of the National Natural Science Foundation of China
under grant No. 62106154, No. 61902335, by Guangdong Province Basic and Applied Basic
Research Fund Project Regional Joint Fund-Key Project 2019B1515120039, by the Guangdong
Provincial Key Laboratory of Big Data Computing.

References
[1] Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Bennett A Landman,

Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M Summers, Bram van Ginneken, et al.
The medical segmentation decathlon. arXiv preprint arXiv:2106.05735, 2021.

[2] Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann
Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al. Deep
learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is
the problem solved? IEEE transactions on medical imaging, 37(11):2514–2525, 2018.

9



[3] Xi Fang and Pingkun Yan. Multi-organ segmentation over partially labeled datasets with
multi-scale feature abstraction. IEEE Transactions on Medical Imaging, 39(11):3619–3629,
2020.

[4] Yunhe Gao, Rui Huang, Ming Chen, Zhe Wang, Jincheng Deng, Yuanyuan Chen, Yiwei
Yang, Jie Zhang, Chanjuan Tao, and Hongsheng Li. Focusnet: imbalanced large and small
organ segmentation with an end-to-end deep neural network for head and neck ct images. In
International Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 829–838. Springer, 2019.

[5] Eli Gibson, Francesco Giganti, Yipeng Hu, Ester Bonmati, Steve Bandula, Kurinchi Gurusamy,
Brian Davidson, Stephen P Pereira, Matthew J Clarkson, and Dean C Barratt. Automatic
multi-organ segmentation on abdominal ct with dense v-networks. TMI, 37(8):1822–1834,
2018.

[6] Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger Roth, and Daguang Xu.
Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. arXiv
preprint arXiv:2201.01266, 2022.

[7] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett
Landman, Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image
segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 574–584, 2022.

[8] Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara, Edward Walczak, Keenan Moore,
Heather Kaluzniak, Joel Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich, et al. The
kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations,
and surgical outcomes. arXiv preprint arXiv:1904.00445, 2019.

[9] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net:
a self-configuring method for deep learning-based biomedical image segmentation. Nature
methods, 18(2):203–211, 2021.

[10] Yuanfeng Ji, Ruimao Zhang, Zhen Li, Jiamin Ren, Shaoting Zhang, and Ping Luo. Uxnet:
searching multi-level feature aggregation for 3d medical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages 346–356.
Springer, 2020.

[11] A Emre Kavur, N Sinem Gezer, Mustafa Barış, Sinem Aslan, Pierre-Henri Conze, Vladimir
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