
Appendix

A Theoretical Derivation and Analysis of H2O

In this section, we provide the derivation of the closed-form solution to Eq. (5) and the detailed
theoretical analysis of H2O as discussed in Section 5. In particular, we first provide an approximated
dynamics-aware policy evaluation objective of H2O based on Eq. (6), after we claim the derivation of
the original one, and (8) in the main text, which offers a much cleaner form for theoretical analysis.
The approximation can be tight under some reasonable problem setups. Based on the approximated
objective, we can show that the dynamics-aware policy evaluation is equivalent to adding an adaptive
reward adjustment term to the original MDP. We can further show that this leads to an underestimated
value function V (s) in high dynamics-gap areas, which achieves desirable learning behavior under
our offline-and-online policy learning setting involving imperfect simulators.

A.1 Derivation of the closed-form solution for dϕ(s,a)

The Lagrangian of the primal optimization problem in Eq. (5) is given by:

L
(
dϕ;µ,λ

)
= Es,a∼dϕQ(s,a)−DKL

(
dϕ(s,a)∥ω(s,a)

)
+µ

(∑
s,a

dϕ(s,a)− 1

)
+λ(s,a)dϕ(s,a)

(12)
where µ is the Lagrangian dual variable for the normalization constraint

∑
s,a d

ϕ(s,a) = 1, and
λ(s,a) is the Lagrangian dual variable for positivity constraints on dϕ. Setting the gradient of the
Lagrangian w.r.t. dϕ to 0 yields:

dϕ∗ (s,a) = ω(s,a) exp[Q(s,a) + µ · 1+ λ(s,a)− 1],∀(s,a) ∈ S ×A (13)

If we assume the dynamics gap distribution ω(s, a) > 0 holds for all state-action pairs, hence
dϕ∗ (s,a) > 0 trivially holds, which implies λ(s,a) = 0 for each state-action pair according to the
complementary slackness condition. Utilizing the normalization constraint

∑
s,a d

ϕ(s,a) = 1, we
have: ∑

s,a

dϕ∗(s,a) =
∑
s,a

ω (s,a) exp[Q(s,a)]e(µ−1)·1 = 1 (14)

Solving e(µ−1)·1 using Eq. (14) and plugging it into Eq. (13), we then obtain the final closed-form
solution for dϕ∗:

dϕ∗ (s,a) =
ω(s,a) exp[Q(s,a)]∑
s,a ω(s,a) exp[Q(s,a)]

∝ ω(s,a) exp[Q(s,a)] (15)

Note that if we plug the exact solution dϕ∗ and the regularization termR(dϕ) = −DKL(d
ϕ||ω) in

Eq. (4), we have:

β
[
Es,a∼dϕ(s,a)[Q(s,a)− log(dϕ(s,a)/ω(s,a))]− Es,a∼D[Q(s,a)]

]
+ Ẽ

(
Q, B̂πQ̂

)
= β

[
Es,a∼dϕ(s,a)

[
Q(s,a)− log

(
exp[Q(s,a)]∑

s,a ω(s,a) exp[Q(s,a)]

)]
− Es,a∼D[Q(s,a)]

]
+ Ẽ

(
Q, B̂πQ̂

)
= β

[
Es,a∼dϕ(s,a)

[
log

(∑
s,a

ω(s,a) exp[Q(s,a)]

)]
− Es,a∼D[Q(s,a)]

]
+ Ẽ

(
Q, B̂πQ̂

)
= β

[
log
∑
s,a

ω(s,a) exp[Q(s,a)]− Es,a∼D[Q(s,a)]

]
+ Ẽ

(
Q, B̂πQ̂

)
(16)

In the last step, we can remove Es,a∼dϕ(s,a) as log
∑

s,a ω(s,a) exp[Q(s,a)] is a value that does not
depend on (s,a) any more. The objective in the last equation is exactly the objective we have used in
Eq. (6). Note that the derivation is based on the exact solution of dϕ∗ rather than the proportional one.

15

A.2 Adaptive Reward Adjustment Under Dynamics-Aware Policy Evaluation
The weighted log-sum-exp term in Eq. (6) is quite cumbersome to work with. To draw more insights
from H2O as well as to make the analysis simpler, we will derive a reasonably approximate version
of the original dynamics-aware policy evaluation objective. Before presenting the final form, we first
introduce the following lemma from [Liao and Berg, 2018]:

Lemma 1. (A sharpened version of Jensen’s inequality [Liao and Berg, 2018]). Let X be a one-
dimensional random variable with P (X ∈ (a, b)) = 1, where −∞ ≤ a < b ≤ ∞. Let φ(x) be a
twice differentiable function on (a, b), we have:

inf
x∈(a,b)

φ′′(x)

2
var(X) ≤ E[φ(X)]− φ(E(X)) ≤ sup

x∈(a,b)

φ′′(x)

2
var(X) (17)

Define [Qmin, Qmax] as the range of learned Q-values (we assume r > 0, hence Qmin > 0), and
Varω[exp(Q(s,a))] is the variance of exp(Q(s,a)) under (s,a) samples drawn from the distribution
ω(s,a). With Lemma 1, we can have the following result on the weighted log-sum-exp term:

Corollary 1. The weighted log-sum-exp term log
∑

s,a ω(s,a) exp (Q(s,a)) can be reasonably
approximated by Es,a∼ω(s,a)[Q(s,a)] if

√
Varω[exp(Q(s,a))]/ exp(Qmin) is small. In particular,

following bounds on the weighted log-sum-exp term holds:

Es,a∼ω(s,a)[Q(s,a)] ≤ logEs,a∼ω(s,a) exp(Q(s,a)) ≤ Es,a∼ω(s,a)[Q(s,a)] +
Varω[exp(Q(s,a))]

2 exp(2Qmin)
(18)

Proof. The LHS inequality is a straightforward result of Jensen’s inequality:

log
∑
s,a

ω(s,a) exp (Q(s,a)) = logEs,a∼ω(s,a) exp(Q(s,a)) ≥ Es,a∼ω(s,a)[Q(s,a)]

The RHS inequality directly follows from Lemma 1 by setting φ(·) = log(·), x = exp(Q(s,a)) with
(s,a) sampled from the dynamics gap distribution ω(s,a), a = Qmin and b = Qmax:

logEs,a∼ω(s,a) exp(Q(s,a)) ≤ Es,a∼ω(s,a)[Q(s,a)] +
Varω[exp(Q(s,a))]

2 exp(2Qmin)

where we use the relationship infx∈(a,b) log(x)
′′/2 = infx∈(a,b)−1/2x2 =

infexp(Q)∈(exp(Qmin),exp(Qmax))−1/2 exp(2Q) = −1/2 exp(2Qmin).

Corollary 1 suggests that Es,a∼ω(s,a)[Q(s,a)] can be a reasonable approximation of the weighted
log-sum-exp term in Eq. (6) if

√
Varω[exp(Q(s,a))]/ exp(Qmin) is relatively small compared to

Es,a∼ω(s,a)[Q(s,a)]. This can be practically satisfied if we properly design the value range of reward
function r ∈ [Rmin, Rmax] and the episode done condition to control the gap between Qmax and
Qmin, as well as let γ → 1 to encourage the learned Q function in taking large values.

With the above approximation, we instead consider the following approximated policy evaluation
objective of H2O based on Eq. (6) and (8) in the main text, which is much easier for our analysis:

min
Q

β
(
Es,a∼ω(s,a)[Q(s,a)]− Es,a∼D [Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q− B̂πQ̂

)
(s,a)

]2
+
1

2
Es,a,s′∼B

[
PM(s′|s,a)
PM̂(s′|s,a)

(
Q− B̂πQ̂

)
(s,a)

]2 (19)

Note that in the original objective of H2O (Eq. (6)), we perform minimization on the weighted soft-
maximum of Q-values, whereas in the approximated objective, we are minimizing on the weighted
mean of Q-values. Both objectives penalize Q-values with high dynamics gap density ω, but the origi-
nal objective can be seen as minimizing the worst-case objective as in robust optimization [Bertsimas
et al., 2011], which often leads to better results under uncertainty. Additional empirical comparisons
between the original H2O policy evaluation objective in Eq. (6) and the approximated version in
Eq. (19) are provided in Appendix C.1. Despite the differences, the approximated objective provides
a much cleaner form of our analysis, from which we can gain some insights into how H2O works by
combining both offline and online learning.

16

Consider the tabular and approximate dynamic programming setting, by setting the derivative of the
approximated objective Eq. (19) with respect to Qk to zero in iteration k, we have

β (ω(s,a)− dπD
M (s,a)) + Es′d

πD
M (s,a)PM(s′|s,a)

(
Q− B̂πQ̂

)
(s,a)

+ Es′d
π
M̂(s,a)PM̂(s′|s,a) · PM(s′|s,a)

PM̂(s′|s,a)
·
(
Q− B̂πQ̂

)
(s,a) = 0

⇒ β (ω(s,a)− dπD
M (s,a)) + Es′PM(s′|s,a)

(
dπD
M (s,a) + dπM̂(s,a)

)(
Q− B̂πQ̂

)
(s,a) = 0

⇒ Q̂k+1(s,a) = (B̂πQ̂k)(s,a)− β

[
ω(s,a)− dπD

M (s,a)

dπD
M (s,a) + dπ

M̂
(s,a)

]
= (B̂πQ̂k)(s,a)− βν(s,a) (20)

where dπD
M (s,a) and dπ

M̂
(s,a) are state-action marginal distributions under behavioral policy πD and

the learned policy π respectively. Note that due to the introduction of the dynamics ratio PM/PM̂ as
importance sampling weight, both the Bellman operators for Bellman errors of the offline dataset D
and simulated data B are now defined on the true dynamicsM (i.e., B̂πQ̂ = B̂πMQ̂), hence can be
combined. This is not possible without PM/PM̂, as we face B̂πMQ̂ and B̂π

M̂
Q̂ for the Bellman error

of offline data D and simulated data B respectively.

We can see that ν(s,a) = ω(s,a)−d
πD
M (s,a)

d
πD
M (s,a)+dπ

M̂
(s,a)

in Eq.(20) corresponds to an adaptive reward adjustment

term, which penalizes or boosts the reward at a state-action pair (s,a) depending on the relative
difference between ω(s,a) and dπD

M (s,a). If ω(s,a) > dπD
M (s,a) (high dynamics gap or OOD areas),

ν acts as a reward penalty on state-action pair (s,a); otherwise, it serves as a reward boost term to
encourage exploration in low dynamics-gap areas. For more discussion on ν, please refer to Section 5
in the main text.

A.3 Lower Bounded Value Estimates on High Dynamics-Gap Samples
In this section, we show that the approximated dynamics-aware policy evaluation of H2O in Eq. (19)
learns an underestimated value function on high dynamics-gap areas. We first discuss in Theorem 1,
the case under the absence of sampling error, and further incorporate sampling error in Theorem 2
under some mild assumptions. All theoretical analyses are given under tabular settings. In continuous
control problems, the continuous state-action space can be approximately discretized into a tabular
form, but the tabular form may be large.

Theorem 1. Assuming no sampling error in the empirical Bellman updates (B̂π = Bπ), the value
function learned via Eq. (19) lower bounds the actual value function (i.e., V̂ π(s) ≤ V π(s)) in high
dynamics-gap data regions, which satisfy

∑
a ω(s,a) >

∑
a d

πD
M (s,a)ζπ(s,a), with ζπ(s,a) given

as:

ζπ(s,a) =
dπD
M (s)maxa{πD(a|s)

π(a|s) }+ dπ
M̂
(s)

dπD
M (s)πD(a|s)

π(a|s) + dπ
M̂
(s)

≥ 1, ∀s,a (21)

Proof. Note that in Eq. (20), for state-action pairs with ω(s,a) > dπD
M (s,a), we have potential

underestimation on the Q-function. But this condition can be over-restrictive. We derive a more
relaxed lower bounded condition for the state-value function V̂ π(s).

Taking expectation of Eq. (20) over the distribution π(a|s), we have

V̂ k+1(s) = (B̂πV̂ k)(s)− Ea∼π(a|s)

[
β

(
ω(s,a)− dπD

M (s,a)

dπD
M (s,a) + dπ

M̂
(s,a)

)]

= (B̂πV̂ k)(s)− β ·
∑
a

ω(s,a)− dπD
M (s,a)

dπD
M (s)πD(a|s)

π(a|s) + dπ
M̂
(s)︸ ︷︷ ︸

∆(s)

(22)

where dπD
M (s) and dπ

M̂
(s) are state marginal distributions of behavior policy πD and the learned

policy π. Above condition implies that the value iterates on states with ∆(s) > 0 will incur some

17

underestimation, i.e., V̂ k+1(s) < (B̂πV̂ k)(s). We are interested to find how does this underestimation
correspond to the extent of dynamics gaps in these states. Note that∑

a

ω(s,a)

dπD
M (s)πD(a|s)

π(a|s) + dπ
M̂
(s)
≥

∑
aω(s,a)

dπD
M (s)maxa{πD(a|s)

π(a|s) }+ dπ
M̂
(s)

(23)

We can consider a relaxed condition to make ∆(s) > 0 by enforcing the following relationship:∑
aω(s,a)

dπD
M (s)maxa{πD(a|s)

π(a|s) }+ dπ
M̂
(s)

>
∑
a

dπD
M (s,a)

dπD
M (s)πD(a|s)

π(a|s) + dπ
M̂
(s)

(24)

Above inequality leads to the following condition,

∑
a

ω(s,a) >
∑
a

dπD
M (s,a) ·

dπD
M (s)maxa{πD(a|s)

π(a|s) }+ dπ
M̂
(s)

dπD
M (s)πD(a|s)

π(a|s) + dπ
M̂
(s)

 =
∑
a

dπD
M (s,a)ζπ(s,a) (25)

where ζπ(s,a) is given by Eq. (21). It can be easily observed that ζπ(s,a) ≥ 1, for ∀(s,a) and
only depends on the offline dataset properties (πD, dπD

M) as well as the policy properties (π, dπ
M̂

).
This establishes a condition between the dynamics gap of a state

∑
a ω(s,a) as well as a threshold

characterized only by the offline dataset and the current policy π,
∑

a d
πD
M (s,a)ζπ(s,a).

Now, since the exact Bellman operator Bπ is a contraction mapping, we have:

||BπV̂ k+1 − BπV̂ k|| = ||(BπV̂ k+1 − β∆)− (BπV̂ k − β∆)|| ≤ γ||V̂ k+1 − V̂ k|| (26)

which suggests that the state value function updates V̂ k+1 = BπV̂ k − β∆ in Eq. (22) are also
contraction mappings. Based on the contraction mapping theorem, a fixed point V̂ π exists when we
recursively update V̂ k using Eq. (22). We can compute the fixed point of the recursion in Eq. (22),
and obtain the following estimated policy value:

V̂ π(s) = V π(s)− β
[
(I − γPπ)−1∆

]
(s) (27)

in which the operator (I − γPπ)−1 is positive semi-definite. For high dynamics-gap states s that
satisfy the condition in Eq. (25), we will have ∆(s) > 0, thus resulting in V̂ π(s) < V π(s).

By inspecting the form of ζπ(s,a) in Theorem 1, we can draw some interesting insights. Note that
as ζπ(s,a) ≥ 1, compared with element-wise condition ω(s,a) > dπD

M (s,a), the new condition∑
a ω(s,a) >

∑
a d

πD
M (s,a)ζπ(s,a) is more tolerant on simulated samples in terms of their dy-

namics gaps. Only samples with sufficiently large dynamics gaps will lead to underestimated state
values. In particular, for state-action pairs with dπD

M (s,a) > 0 and π(a|s)→ 0, even if the dynamics
gap ω(s,a) is large, it will not necessarily lead to underestimated values. This is reasonable as the
learned policy π(a|s) is not likely to visit these state-action pairs, the state values need not to be over
pessimistically estimated. In OOD regions (dπD

M (s,a) = 0), we will generally obtain underestimated

state value functions, and the level of underestimation is proportional to
∑

a

[
ω(s,a)/dπ

M̂
(s,a)

]
.

Again, high dynamics-gap OOD samples less visited by the policy will get heavier penalization, while
frequently visited low dynamics-gap samples are less impacted. This treatment of H2O is different
from most offline RL algorithms. H2O is less conservative and more adaptive with respect to the
dynamics gap measures in simulated samples.

To extend the analysis to the setting with sampling error, we first make the following three assumptions.
LetM and M̂ be the real and simulated MDP, andM be the empirical MDP under the true dynamics,
we assume:

Assumption 1. The dynamics ratio PM(s′|s,a)/PM̂(s′|s,a) in H2O can be accurately estimated.

Assumption 2. The reward function r(s,a) ∈ [0, Rmax] is explicitly defined and only depends on
state-action pairs (s,a).

Assumption 3. For ∀s,a ∈ M, the following relationship of the transition dynamics holds with
probability greater than 1− δ, δ ∈ (0, 1):

||PM(s′|s,a)− PM(s′|s,a)||1 ≤
CP,δ√
|D(s,a)|

(28)

18

Assumption 2 indicates that the reward does not depend on transition dynamics, which is a mild
assumption for many real-world problems. In many cases, we use human-designed reward functions
based on the currently observed state and action information from the system, rather than using the
raw reward signal from a black-box environment. Assumption 3 is a commonly adopted assumption
in theoretical analysis of prior works [Kumar et al., 2020; Yu et al., 2021; Li et al., 2022b]. Moreover,
as discussed in Section A.2, if the dynamics ratio can be accurately evaluated (Assumption 1), using
it as an importance weight will correct the Bellman error, which makes the Bellman operators in
Eq. (6) and the approximated version Eq. (19) all defined on the real dynamicsM, regardless of
whether the training data is from the offline dataset D or simulated data B (i.e., B̂πQ̂ = B̂πMQ̂).

Based on these assumptions, we can show that with high probability ≥ 1− δ, the difference between
the empirical Bellman operator BπM and the actual Bellman operator Bπ

M̂
can be bounded as:

|BπMV̂ (s)− BπMV̂ (s)| = |(r(s,a)− r(s,a)) + γ
∑
s′

(PM(s′|s,a)− PM(s′|s,a))V̂ (s′)|

= γ|
∑
s′

(PM(s′|s,a)− PM(s′|s,a))V̂ (s′)| ≤ γCP,δRmax

(1− γ)
√
|D(s,a)|

(29)

With the above bound, we can introduce the following theorem that incorporates the sampling error:

Theorem 2. When considering the sampling error, the learned value function via Eq. (19) lower
bounds the actual value function at high dynamics-gap states that satisfy the following condition:

∑
a

ω(s,a) >
∑
a

dπD
M (s,a)ζπ(s,a) +

γCP,δRmax ·
[
dπD
M (s)maxa{πD(a|s)

π(a|s) }+ dπ
M̂
(s)
]

β(1− γ)
√
|D(s,a)|

(30)

Proof. Similar to the proof of Theorem 1, when incorporating the sampling error, the fixed point of
the recursion in Eq. (22) gives the following result:

V̂ π(s) ≤ V π(s)− β
[
(I − γPπ)−1∆

]
(s) +

[
(I − γPπ)−1 γCP,δRmax

(1− γ)
√
|D(s,a)|

]
(s) (31)

Following the derivation in Eq.(22)-(25), in order to lower bound the true value function at high
dynamics gap states, we need to have

β

∑
aω(s,a)

dπD
M (s)maxa{πD(a|s)

π(a|s) }+ dπ
M̂
(s)

> β
∑
a

dπD
M (s,a)

dπD
M (s)πD(a|s)

π(a|s) + dπ
M̂
(s)

+
γCP,δRmax

(1− γ)
√
|D(s,a)|

(32)

Re-arranging terms in the above inequality, we can easily obtain the final form in Eq. (30).

Note that under the case with sampling error, value underestimation will occur on simulated samples
with even larger dynamics gap as compared to the case without sampling error. To guarantee reliable
policy update on these risky data areas, β should be reasonably large to scale down the impact due to
the involvement of sampling error.

B Implementation Details and Experiment Setup
B.1 Implementation Details
The implementation details for H2O4 and other baselines in our experiments are specified as follows:

• Discriminators. In H2O, DARC and DARC+, we train two discriminator networks Dsas (s,a, s
′)

and Dsa (s,a) to approximate p (real|s,a, s′) and p(real|s,a) respectively. We use the activation
function of “2×Tanh” (soft clip the output values to [−2, 2]) before the final Softmax layer
that maps the network outputs into real/simulation domain prediction probabilities. Moreover, we
follow the treatment in DARC [Eysenbach et al., 2020] that add the results before the Softmax
layer of Dsa (s,a) to the soft-clipped results in Dsas (s,a) to compute the final Softmax outputs.
This enables Dsas (s,a) to propagate gradients back through the Dsa (s,a) network, guaranteeing

4Our code is available at https://github.com/t6-thu/H2O

19

https://github.com/t6-thu/H2O

the coupling of two discriminators. The training update frequency of the discriminators is aligned
with the policy update iterations. Using the discriminator-based dynamics ratio estimation regime
in Eq. (7), the KL divergence u(s,a) between the real and simulated dynamics is approximated in
a sample-based manner (N = 10 in all the tasks):

u(s,a) := DKL

(
PM̂∥PM

)
≈

N∑
s′i∼PM̂(s′i|s,a)

log
PM̂ (s′i|s,a)
PM (s′i|s,a)

=

N∑
s′i∼PM̂(s′i|s,a)

log

[
1− p (real|s,a, s′)
p (real|s,a, s′)

/
1− p (real|s,a)
p (real|s,a)

]

=

N∑
s′i∼PM̂(s′i|s,a)

log

[
1−DΦsas

(·|s,a, s′)
DΦsas(·|s,a, s′)

/
1−DΦsa

(·|s,a)
DΦsa(·|s,a)

]
(33)

where PM̂ (·|s,a) is approximated by N (s′, Σ̂D), and Σ̂D is the covariance matrix of states
estimated from the real dataset.

• Replay buffer size. For practical considerations, we approximate the log-sum-exp term in
Eq. (6) log

∑
s,a ω(s,a) exp (Q(s,a)) as well as the dynamics gap distribution ω(s,a) =

u(s,a)/
∑

s̃,ã u(̃s, ã) using mini-batch of simulated samples rather than evaluating over the whole
state-action space. To achieve a reasonable approximation, the replay buffer should be set relatively
large to enable the mini-batch data sampled from the replay buffer close to samples from a uniform
distribution defined on state-action space. In both our simulation and real-world experiments, we
make replay buffer accommodate 10x transitions against the offline dataset D.

• Min Q weight. H2O uses a fixed value for β in Eq. (6) rather than auto-tuning the min Q weight
parameter α (see Eq. (3)) as in the original CQL paper [Kumar et al., 2020] with an additional
Lagrange threshold parameter. H2O and H2O(v) only have a single hyperparameter β, and we use
only 3 values for β in different experiments (0.01 for all simulation experiments, 0.1 for Standing
Still and 1.0 for Moving Straight in real-world validation). To build a cleaner comparison, we
disable some icing-on-the-cake tricks (e.g., auto-tuning min Q weight) in H2O that are inherited
from CQL, and so does the CQL baseline. For the CQL baseline, we follow the suggested best
configurations in a public CQL implementation5, and choose α =2.0 for Mujoco experiments and
10.0 by default in the repository to run the real-world tasks. The min Q weights of H2O and CQL
are chosen to be higher values in real-world experiments as we find the value regularization terms
take small values and do not offer sufficient regularization, probably due to the reasonably good
quality of the real dataset.

Other network structure and model training parameters are listed in Table 3. We keep the identical
setting in all compatible methods, including the activation function, double-Q function, temperature
parameter in SAC, and its automatic tuning scheme, etc. Only a few adjustments (i.e. network
architecture, batch size) are made different in real-world experiments to accommodate the change in
state and action space dimensions in the wheel-legged robot tasks. Generally speaking, H2O needs
little hyperparameter tuning when solving different tasks.

As for computing resources, we ran experiments largely on NVIDIA A100 GPUs via an internal
cluster.

B.2 Real-World Experiment Setting
We use a real wheel-legged robot for real-world validation of H2O. The control action is the sum of
the torque τ of the motors at the two wheels. Each of the motor output the torque of τ

2 . The control
frequency of the robot is 200Hz. In the follows, we describe our two experiments in detail:

(1) Standing still: The state space of the robot is represented by s = (θ, θ̇, x, ẋ), where θ denotes
the forward tilt angle of the body, x is the displacement of the robot, θ̇ and ẋ are the angular and
linear velocity respectively. We collect a dataset containing 100,000 human controlled transitions of

5https://github.com/young-geng/CQL

20

https://github.com/young-geng/CQL

Table 3: Hyperparameters. “-” denotes the same choice in simulation and real-world tasks
Hyper-parameter Value (Sim) Value (Real)

Shared
Number of hidden layers (Actor and Critic) 2 -
Number of hidden layers (Discriminators) 1 -
Number of hidden units per layer 256 32
Learning rates (all) 3× 10−4 -
Discount factor 0.99 -
Nonlinearity ReLU -
Nonlinearity (discriminator output layer) 2×Tanh -
Target smoothing coefficient 5× 10−3 -
Batch size 256 / 512 32
Optimizer Adam -

H2O & H2O(v)
KL Divergence clipping range [1× 10−45, 10] -
Dynamics ratio on TD error clipping range [1× 10−5, 1] -
Min Q weight β 0.01 0.1 / 1.0
Replay buffer size 10× |D| -

DARC & DARC+
∆r clipping range [−10, 10] -
Replay buffer size 106 -

CQL
Min Q weight α 2.0 10.0

SAC
Replay buffer size 106 -

27.5 28.0 28.5 29.0 29.5 30.0
Reward

0

2000

4000

6000

8000

Nu
m

be
r

Standing Still

13.0 13.5 14.0 14.5 15.0
Reward

0

5000

10000

15000

20000

25000

Moving Straight

Figure 4: Single-step reward distribution in human-collected datasets of Standing Still and Moving
Straight tasks

(s, a, s′, r, d), where s is the current state, a is the torque of the motor, s′ is the next state, r is the
reward and d is the flag of terminal. The dataset is collected near the balanced state. Since we want
to keep the robot standing still, the reward r is calculated by the following formulation:

r = 30.0− θ2 − θ̇2 − x2 − ẋ2 − τ2 (34)

When the robot stand still at the position of zero, −θ2 − θ̇2 − x2 − ẋ2 will reach the maximum value.
To prolong the motor life, we add a penalty on torque values τ2 in the formulation. The constant 30.0
is to keep the reward to be positive. During performance evaluation, we run all algorithms for 50
epochs and report the final results in the main text.

(2) Moving straight: The state space of the robot is represented by s = (θ, θ̇, ẋ), which does not
include x of the robot since we only want to keep the velocity of the robot stable. We collect a
dataset containing 100,000 human controlled transitions of (s, a, s′, r, d). The dataset is collected

21

H2O CQL DARC SAC DARC+
0

50000

100000

150000

200000

250000

Cu
m

ul
at

iv
e

Re
wa

rd

227689.20

65213.00

7124.36 -747.09
17315.72

Standing Still

H2O CQL DARC SAC DARC+
0

20000

40000

60000

80000

100000

120000 116288.70

59761.00

-661.04 -277.81
10115.26

Moving Straight

Figure 5: Cumulative rewards of different baselines recorded in real-world validation

when the robot moves forward. We want to keep the robot keep the target speed of 0.2m/s and the r
is calculated by the following formulation:

r = 15.0− (ẋ− 0.2)
2 − τ2 (35)

The speed ẋ is penalized from deviating 0.2m/s using (ẋ− 0.2)
2, and the penalization on torque

values τ2 also remains. We add 15.0 since we want to keep the reward to be positive. To illustrate
the human performance of the collected datasets, we visualize the single-reward distribution of both
tasks in Figure 4. During performance evaluation, we run all algorithms for 100 epochs and report
the final results in the main text. In the real-world validation, we plot the cumulative reward in one
recorded episode of each comparative method into Figure 5. In the standing still task, an episode is
terminated by failing down or standing still for 30 seconds, while failing into the ground or moving
forward steadily for 20 seconds in the moving straight task.

C Additional Ablations
C.1 Additional Comparative Results for H2O(v)
In Appendix A.2, we obtain an approximated version for our dynamics-aware policy evaluation in
Eq. (19), getting rid of the cumbersome log-sum-exp term. To examine the behavior and performance
of this variant (referred to as H2O(v)), we compare it with original H2O in Table 4. All the scores
for H2O(v) are averaged over 3 seeds. Based on the empirical results, we find that H2O(v) exhibits
a similar level of performance as compared with H2O. The original H2O generally outperforms
H2O(v), while in a few cases, H2O(v) performs better. As expected, the results also show that H2O(v)
is less robust compared with the original H2O in some environments (e.g., HalfCheetah with modified
friction coefficient) and produces unstable scores under different datasets. This probably is due to the
absence of worst-case optimization as in original H2O, in which the value regularization minimizes
the weighted soft maximum of Q-values under highly dynamics-gap samples. These indicate that the
approximation scheme used in Eq. (19) can be a reasonable simplification of the original H2O, which
trades off some robustness with less computation complexity. To guarantee the best performance, the
original H2O should be used in practical deployment.

Table 4: Comparison with H2O(v) on average returns.
Dataset Unreal dynamics H2O(v) H2O H2O - H2O(v)

Medium
Gravity 7040±517 7085±416 45
Friction 5132±2041 6848±445 1716

Joint Noise 7116±24 7212±236 96

Medium Replay
Gravity 6589±281 6813±289 224
Friction 6637±456 5928±896 -709

Joint Noise 6822±45 6747±427 -75

Medium Expert
Gravity 4798±681 4707±779 -91
Friction 4726±2878 6745±562 2019

Joint Noise 4623±995 5280±1329 657

22

Table 5: Comparison of H2O-KL (original version) and H2O-Reverse-KL.
HalfCheeetah_Gravity Medium Medium Replay Medium Expert

H2O-KL (original version) 7085±416 6813±289 4707±779
H2O-Reverse-KL 7065±170 6476±129 4709±274

100k 90k 80k 70k 60k 50k 40k 30k 20k 10k
Offline Samples for Training

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

Re
tu

rn

H2O
CQL

Figure 6: Average return of H2O and CQL with different amounts of offline data on the HalfCheetah
Medium Replay task with modified gravity acceleration. Averaged over 3 seeds.

C.2 Additional Experiments for Reverse KL
We tested another variant of H2O which uses a learned dynamics model PM̃ (s′i | s,a) from offline
data as in model-based offline RL methods , and then use the reverse-KL in Eq. (36) to estimate the
dynamics gap. In this implementation, we use the deep neural network to learn a probabilistic model
PM̃ that approximates PM similar to MOPO [Yu et al., 2020] and COMBO [Yu et al., 2021]. The
next state s′ is directly sampled from PM̃, and we again approximate the dynamics ratio using the
same two discriminators. The final performance of this variant does not show noticeable performance
improvement, at the extra cost of learning an additional dynamics model. Results are presented in
Table 5.

u(s,a) := DKL

(
PM∥PM̂

)
≈

N∑
s′i∼PM̃(s′i|s,a)

log
PM̃ (s′i | s,a)
PM̂ (s′i | s,a)

(36)

C.3 Ablation on Offline Data Consumption
We analyze the impacts of offline data size on the performance of H2O and offline RL method CQL
in Figure 6. We conduct the experiments in the HalfCheetah environment with the D4RL Medium
Replay dataset and use 2x gravity acceleration for the dynamics gap setup. The simulation buffer in
H2O keeps the constant size of 1M transitions, but we gradually reduce the amount of offline data
size from 100k to 10k. As illustrated in Figure 6, H2O enjoys consistently better performance than
CQL when the offline data size is greater than 50k. The performance of H2O does not have noticeable
deterioration when the training offline data are reduced from 90k to 60k, while the performance
CQL drops with the decrease of data size. This shows the benefit of leveraging online simulation
data to complement the limited offline data. However, it is also observed that H2O still needs a
reasonable amount of data for reliable dynamics gap quantification. An overly small offline dataset
(e.g., data size ≤40k) might hurt the performance of H2O as compared with directly applying offline
RL methods like CQL.

D Additional Experiment Results
D.1 Additional Experiments on Walker2d
We further conduct a set of additional experiments on Walker2d with the D4RL Medium Replay
dataset with various types of modified dynamics. Results are presented in Table 6 (averaged over 3
random seeds), with the same hyperparameter setting as the HalfCheetah tasks in the main paper. It
is found that H2O achieves the best performance among all other baselines.

23

Table 6: Average returns for MuJoCo-Walker2d Medium Replay tasks. Averaged over 3 seeds.

Dataset Unreal
Dynamics SAC CQL DARC DARC+ H2O

Walker2d
Medium Replay

Gravity 1233±841 1445±1077 1987±965 1618±1446 2187±1103
Friction 2879±569 1445±1077 2518±1244 2375±579 3656±582

Joint Noise 852±386 1445±1077 64±115 630±561 2998±854

D.2 Additional Experiments on Random Datasets
We have empirically observed in Table 1 that DARC-style methods struggle in tasks on Medium and
Medium Replay datasets. It is somewhat surprising that DARC struggles with low-quality real-world
data and even could not outperform CQL, but has a competitive performance on the Medium Expert
dataset. A possible explanation of this might associate with the limitation in DARC’s theoretical
derivation, that it derives the dynamics gap-related reward penalty ∆r by minimizing the gap between
the policy trajectory and the real-world idealized optimal policy π∗. Thus, DARC might unleash
more potential over real-world datasets with high-quality expert data theoretically. By contrast, H2O
is developed under a completely different value regularization framework, without suffering from this
problem. To validate the above analyses, we evaluate H2O and baselines on HalfCheetah Random
dataset with various types of modified dynamics in Table 7.

It can be observed that DARC-style algorithms indeed perform badly when given low-quality data,
due to their theoretical foundation of trajectory distribution divergence minimization. Again, we find
H2O performs very well even given the random dataset, which greatly surpasses the performance of
pure online or offline baselines. Note as the quality of the random dataset is quite poor, we halve
the Min Q weight β in these tasks to reduce the impact of value regularization to encourage online
exploration in the simulation environment.

Table 7: Average returns for MuJoCo-HalfCheetah Random tasks. Averaged over 3 seeds.

Dataset Unreal
Dynamics SAC CQL DARC DARC+ H2O

HalfCheetah Random Gravity 4513±513 2465±180 357±617 -97±121 4602±223
Friction 2684±2646 2465±180 537±250 425±99 4862±1608

D.3 Learning Curves
With all the comparative results in Table 1 and Table 4, we visualize the cumulative returns in the
course of training in Figure 7. It is interesting to note that DARC+ (use both online and offline data
for policy evaluation) performs worse in most cases as compared with DARC, and in some cases even
fails completely (Gravity and Joint Noise environments under Medium Expert dataset), suggesting
the necessity for carefully combining offline and online learning. It also needs to be emphasized that
we accommodate DARC into our offline-and-online setting so it slightly differs from the original pure
online setting as in [Eysenbach et al., 2020], in which we do not allow the periodical data collection
from the real world. Nevertheless, we note from the results that the proposed H2O, and even its
simplified version H2O(v) outperform the baseline methods in most of the tasks, which demonstrates
the effectiveness of H2O.

24

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0

2000

4000

6000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium - Gravity

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0
1000
2000
3000
4000
5000
6000
7000

C
um

ul
at

iv
e

re
tu

rn
HalfCheetah - Medium_Replay - Gravity

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0

1000

2000

3000

4000

5000

6000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium_Expert - Gravity

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0
1000
2000
3000
4000
5000
6000
7000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium - Friction

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0
1000
2000
3000
4000
5000
6000
7000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium_Replay - Friction

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium_Expert - Friction

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0
1000
2000
3000
4000
5000
6000
7000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium - Joint_Noise

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0
1000
2000
3000
4000
5000
6000
7000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium_Replay - Joint_Noise

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

0.0 0.2 0.4 0.6 0.8 1.0
Steps (×106)

0

1000

2000

3000

4000

5000

6000

C
um

ul
at

iv
e

re
tu

rn

HalfCheetah - Medium_Expert - Joint_Noise

Ours
Ours(variant)
DARC
DARC+
SAC
CQL

Figure 7: Corresponding learning curves for Table 1

25

