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Abstract

Cross-Entropy Method (CEM) is commonly used for planning in model-based
reinforcement learning (MBRL) where a centralized approach is typically utilized
to update the sampling distribution based on only the top-k operations’ results on
samples. In this paper, we show that such a centralized approach makes CEM
vulnerable to local optima, thus impairing its sample efficiency. To tackle this
issue, we propose Decentralized CEM (DecentCEM), a simple but effective
improvement over classical CEM, by using an ensemble of CEM instances running
independently from one another, and each performing a local improvement of its
own sampling distribution. We provide both theoretical and empirical analysis to
demonstrate the effectiveness of this simple decentralized approach. We empirically
show that, compared to the classical centralized approach using either a single or
even a mixture of Gaussian distributions, our DecentCEM finds the global optimum
much more consistently thus improves the sample efficiency. Furthermore, we
plug in our DecentCEM in the planning problem of MBRL, and evaluate our
approach in several continuous control environments, with comparison to the state-
of-art CEM based MBRL approaches (PETS and POPLIN). Results show sample
efficiency improvement by simply replacing the classical CEM module with our
DecentCEM module, while only sacrificing a reasonable amount of computational
cost. Lastly, we conduct ablation studies for more in-depth analysis. Code is
available at https://github.com/vincentzhang/decentCEM.

1 Introduction

Model-based reinforcement learning (MBRL) uses a model as a proxy of the environment for planning
actions in multiple steps. This paper studies planning in MBRL with a specific focus on the Cross-
Entropy Method (CEM) [De Boer et al., 2005, Mannor et al., 2003], which is popular in MBRL due
to its ease of use and strong empirical performance [Chua et al., 2018, Hafner et al., 2019, Wang and
Ba, 2020, Zhang et al., 2021, Yang et al., 2020]. CEM is a stochastic, derivative-free optimization
method. It uses a sampling distribution to generate imaginary trajectories of environment-agent
interactions with the model. These trajectories are then ranked based on their returns computed from
the rewards given by the model. The sampling distribution is updated to increase the likelihood of
producing the top-k trajectories with higher returns. These steps are iterated and eventually yield an
improved distribution over the action sequences to guide the action execution in the real environment.

Despite the strong empirical performance of CEM for planning, it is prone to two problems: (1) lower
sample efficiency as the dimensionality of solution space increases, and (2) the Gaussian distribution
that is commonly used for sampling may cause the optimization to get stuck in local optima of
multi-modal solution spaces commonly seen in real-world problems. Previous works addressing
these problems either add gradient-based updates of the samples to optimize the parameters of CEM,
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or adopt more expressive sampling distributions, such as using Gaussian Mixture Model [Okada and
Taniguchi, 2020] or masked auto-regressive neural network [Hakhamaneshi et al., 2020]. Nevertheless,
all CEM implementations to date are limited to a centralized formulation where the ranking step
involves all samples. As analyzed below and in Section 3, such a centralized design makes CEM
vulnerable to local optima and impairs its sample efficiency.

We propose Decentralized CEM (DecentCEM), a simple but effective improvement over
classical CEM, to address the above problems. Rather than ranking all samples, as in the
centralized design, our method distribute the sampling budget across an ensemble of CEM
instances. These instances run independently from one another, and each performs a lo-
cal improvement of its own sampling distribution based on the ranking of its generated
samples. The best action is then aggregated by taking an argmax among the solution
of the instances. It recovers the conventional CEM when the number of instance is one.

(a) Centralized CEM (b) Decentralized CEM

Figure 1: Illustration of CEM approaches in opti-
mization. Shades of red indicate relative value of
the 2D optimization landscape: redder is better. and
optimal solutions are near bottom left corner of the
solution space. Blue dots are top-k samples, and
black dots are other samples. Open dots repre-
sent the sampling distributions whose sizes indicate
the number of generated samples.

We hypothesize that by shifting to this decentralized
design, CEM can be less susceptible to premature
convergence caused by the centralized ranking step.
As illustrated in Fig. 1, the centralized sampling
distribution exhibits a bias toward the sub-optimal
solutions near top right, due to the global top-k rank-
ing. This bias would occur regardless of the family
of distributions used. In comparison, a decentralized
approach could maintain enough diversity thanks to
its local top-k ranking in each sampling instance.

Through a one-dimensional multi-modal optimiza-
tion problem in Section 3, we show that DecentCEM
empirically finds the global optimum more consis-
tently than centralized CEM approaches that use
either a single or a mixture of Gaussian distribu-
tions. Also we show that DecentCEM is theoreti-
cally sound that it converges almost surely to a local
optimum. We further apply it to sequential decision
making problems and use neural networks to param-
eterize the sampling distributions. Empirical results
in several continuous control environments suggest
that DecentCEM offers an effective mechanism to
improve the sample efficiency over the baseline CEM under the same sample budget for planning.

2 Preliminaries

We consider a Markov Decision Process (MDP) specified by (S,A,R,P ,γ,d0,T ). S ⊂ Rds is
the state space, A ⊂ Rda is the action space. ds, da are scalars denoting the dimensionality.
R : S × A → R is the reward function that maps a state and action pair to a real-valued reward.
P (s′|s, a) : S×A×S → R+ is the transition probability from a state and action pair s, a to the next
state s′. γ ∈ [0, 1] is the discount factor. d0 denotes the distribution of the initial state s0. At time
step t, the agent receives a state st

2 and takes an action at according to a policy π(·|s) that maps
the state to a probability distribution over the action space. The environment transitions to the next
state st+1 ∼ P (·|st, at) and gives a reward rt = R(st, at) to the agent. Following the settings from
CEM-based MBRL papers (Sec. 6.1), we assume that the reward function is deterministic (a mild
assumption [Agarwal et al., 2019]) and known. Note that they are not fundamental limitations of
CEM and are adopted here so as to be consistent with the literature. The return Gt =

∑T
i=0 γ

irt+i,
is the sum of discounted reward within an episode length of T . The agent aims to find a policy π
that maximizes the expected return. We denote the learned model in MBRL as fω(·|s, a), which is
parameterized by ω and approximates P (·|s, a).

Planning with the Cross Entropy Method Planning in MBRL is about leveraging the model to
find the best action in terms of its return. Model-Predictive-Control (MPC) performs decision-time

2We assume full observability, i.e. agent has access to the state.
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planning at each time step up to a horizon to find the optimal action sequence:

πMPC(st) = argmax
at:t+H−1

E[ΣH−1
i=0 γir(st+i, at+i) + γHV (sH)] (1)

where H is the planning horizon, at:t+H−1 denotes the action sequence from time step t to t+H−1,
and V (sH) is the terminal value function at the end of the horizon. The first action in this sequence
is executed and the rest are discarded. The agent then re-plans at the next time step.

Figure 2: Cross Entropy Method (CEM) for Planning in MBRL

The Cross-Entropy Method (CEM) is a gradient-free optimization method that can be used for
solving Eq. (1). The workflow is shown in Fig. 2. CEM planning starts by generating N samples
{τj}Nj=1 = {(âj,0, âj,1, · · · , âj,H−1)}Nj=1 from an initial sampling distribution gϕ(τ) parameterized
by ϕ, where each sample τj is an action sequence from the current time step up to the planning
horizon H . The domain of gϕ(τ) has a dimension of dτ = daH .

Using a model f , CEM generates imaginary rollouts based on the action sequence {τj} (in the case
of a stochastic model) and estimate the associated value v(τj) = E[ΣH−1

i=0 γir(sj,i, aj,i)] where sj,0
is the current state s and sj,i+1 ∼ f(·|sj,i, aj,i). The terminal value γHV (sj,H) is omitted here
following the convention in the CEM planning literature but the MPC performance can be further
improved if paired with an accurate value predictor [Bertsekas, 2005, Lowrey et al., 2019]. The
sampling distribution is then updated by fitting to the current top-k samples in terms of their value
estimates v(τj), using the Maximum Likelihood Estimation (MLE) which solves:

ϕ′ = argmax
ϕ

N∑
j=1

1(v(τj) ≥ vth) log gϕ(τj) (2)

where vth is the threshold equal to the value of the k-th best sample and 1(·) is the indicator function.
In practice, the update to the distribution parameters are smoothed by ϕl+1 = αϕ′ +(1−α)ϕl where
α ∈ [0, 1] is a smoothing parameter that balances between the solution to Eq. (2) and the parameter
at the current internal iteration l. CEM repeats this process of sampling and distribution update in an
inner-loop, until it reaches the stopping condition. In practice, it is stopped when either a maximum
number of iterations has been reached or the parameters have not changed for a few iterations. The
output of CEM is an action sequence, typically set as the expectation3 of the most recent sampling
distribution for uni-modal distributions such as Gaussians µ̂ = E(gϕ) = (â0, â1, · · · , âH−1).

Choices of Sampling Distributions in CEM: A common choice is a multivariate Gaussian
distribution under which Eq.(2) has an analytical solution. But the uni-modal nature of Gaussian
makes it inadequate in solving multi-modal optimization that often occurs in MBRL. To increase the
capacity of the distribution, a Gaussian Mixture Model (GMM) can be used [Okada and Taniguchi,
2020]. We denote such an approach as CEM-GMM. Going forward, we use CEM to refer to the
vanilla version that employs a Gaussian distribution. Computationally, the major difference between
CEM and CEM-GMM is that the distribution update in CEM-GMM is more computation-intensive
since it solves for more parameters. Detailed steps can be found in Okada and Taniguchi [2020].

3 Decentralized CEM

In this section, we first introduce the formulation of the proposed decentralized approach called the
Decentralized CEM (DecentCEM). Then we illustrate the intuition behind the proposed approach
using a one-dimensional synthetic multi-modal optimization example where we show the issues of
the existing CEM methods and how they can be addressed by DecentCEM.

3Other options are discussed in Appendix A.2
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Formulation of DecentCEM DecentCEM is composed of an ensemble of M CEM instances
indexed by i, each having its own sampling distributions gϕi . They can be described by a set of
distribution parameters Φ = {ϕi}Mi=1. Each instance i manages its own sampling and distribution
update by the steps described in Section 2, independently from other instances.

Note that the N samples and k elites are evenly split among the M instances. The top- k
M sample

sets are decentralized and managed by each instance independently whereas the centralized approach
only keeps one set of top-k samples regardless of the distribution family used.

After the stopping condition is reached for all instances, the final sampling distribution is taken as the
best distribution in the set Φ according to (the argmax uses a deterministic tie-breaking):

ϕDecentCEM = argmax
ϕi∈Φ

Eϕi [v(x)] ≈ argmax
ϕi∈Φ

N
M∑
j=1

v(τi,j) (3)

where Eϕi
[v(x)] denotes the expectation with respect to the distribution gϕi

, approximated by the
sample mean of N

M samples. When M = 1, it recovers the conventional CEM.
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Figure 3: Left: The objective function in a 1D optimization task. Right: Comparison of the proposed
DecentCEM method to CEM and CEM-GMM, wherein the line and the shaded region denote the mean and the
min/max cost from 10 independent runs. x̂: solution of each method.

Motivational Example Consider a one dimensional multi-modal optimization problem shown
in Fig. 3 (Left): argminx sin(x) + sin(10x/3),−7.5 ≤ x ≤ 7.5. There are eight local optima,
including one global optimum f(x∗) = −1.9 where x∗ = 5.146. This objective function mimics the
RL value landscape that has many local optima, as shown by Wang and Ba [2020]. This optimization
problem is “easy” in the sense that a grid search over the domain can get us a solution close to the
global optimum. However, only our proposed DecentCEM method successfully converges to the
global optimum consistently under varying population size (i.e., number of samples) and random
runs, as shown in Fig. 3 (Right). For a fair comparison, hyperparameter search has been conducted
on all methods for each population size (Appendix A).
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Figure 4: How the sampling distributions evolve in the 1D optimization task, after the specified iteration.
Symbols include samples , elites , local optima , global optimum . 2nd row in each figure shows the
weighted p.d.f of individual distribution. Population size: 200.

Both CEM-GMM and the proposed DecentCEM are equipped with multiple sampling distributions.
The fact that CEM-GMM is outperformed by DecentCEM may appear surprising. To gain some
insights, we illustrate in Fig. 4 how the sampling distribution evolves during the iterative update (more
details in Fig. 10 in Appendix). CEM updated the unimodal distribution toward a local optimum
despite seeing the global optimum. CEM-GMM appears to have a similar issue. During MLE on the
top-k samples, it moved most distribution components towards the same local optimum which quickly
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led to mode collapse. On the contrary, DecentCEM successfully escaped the local optima thanks
to its independent distribution update over decentralized top-k samples and was able to maintain a
decent diversity among the distributions.

GMM suits density estimation problems like distribution-based clustering where the samples are
drawn from a fixed true distribution that can be represented by multi-modal Gaussians. However,
in CEM for optimization, exploration is coupled with density estimation: the sampling distribution
in CEM is not fixed but rather gets updated iteratively toward the top-k samples. And the “true”
distribution in optimization puts uniform non-zero densities to the global optima and zero densities
everywhere else. When there is a unique global optimum, it degenerates into a Dirac measure that
assigns the entire density to the optimum. Density estimation of such a distribution only needs one
Gaussian but the exploration is challenging. In other words, the conditions for GMM to work well
are not necessarily met when used as the sampling distribution in CEM. CEM-GMM is subject to
mode collapse during the iterative top-k greedification, causing premature convergence, as observed
in Fig 4. In comparison, our proposed decentralized approach takes care of the exploration aspect by
running multiple CEM instances independently, each performing its own local improvement. This
is shown to be effective from this optimization example and the benchmark results in Section 6.
CEM-GMM only consistently converge to the global optimum when we increase the population size
to the maximum 1,000 which causes expensive computations. Our proposed DecentCEM runs more
than 100 times faster than CEM-GMM at this population size, shown in Table A.3 in Appendix.

Convergence of DecentCEM The convergence of DecentCEM requires the following assumption:

Assumption 1. Let M be the number of instances in DecentCEM and each instance has a sample size
of Nk

M where Nk is the total number of samples that satisfies Nk = Θ(kβ) where β > max{0, 1−2λ}.
M and λ are some positive constant and 0 < M < Nk ∀ k.

Here the assumption of the total sample size follows the same one as in the CEM literature. Other
such standard assumptions are summarized in Appendix H.

Theorem 3.1 (Convergence of DecentCEM). If a CEM instance described in Algorithm 3 converges,
and we decentralize it by evenly dividing its sample size Nk into M CEM instances which satisfies
the Assumption 1, then the resulting DecentCEM converges almost surely to the best solution of the
individual instances.

Proof. (sketch) We show that the previous convergence result of CEM [Hu et al., 2011] extends to
DecentCEM under the same sample budget. The key observation is that the convergence property of
each CEM instance still holds since the number of samples in each instance is only changed by a
constant factor, i.e., number of instances. Each CEM instance converges to a local optimum. The
convergence of DecentCEM to the best solution comes from the argmax operator and applying the
strong law of large numbers. The detailed proof is left to Appendix H.

4 DecentCEM for Planning

In this section, we develop two instantiations of DecentCEM for planning in MBRL where the
sampling distributions are parameterized by policy networks. For the dynamics model learning, we
adopt the ensemble of probabilistic neural networks proposed in [Chua et al., 2018]. Each network
predicts the mean and diagonal covariance of a Gaussian distribution and is trained by minimizing
the negative log likelihood. Our work focuses on the planning aspect and refer to Chua et al. [2018]
for further details on the model.

CEM Planning with a Policy Network In MBRL, CEM is applied to every state separately to
solve the optimization problem stated in Eq. (1). The sampling distribution is typically initialized
to a fixed distribution at the beginning of every episode [Okada and Taniguchi, 2020, Pinneri et al.,
2020], or more frequently at every time step [Hafner et al., 2019]. Such initialization schemes are
sample inefficient since there is no mechanism that allows the information of the high-value region in
the value space of one state to generalize to nearby states. Also, the information is discarded after the
initialization. It is hence difficult to scale the approach to higher dimensional solution spaces, present
in many continuous control environments. Wang and Ba [2020] proposed to use a policy network in
CEM planning that helped to mitigate the issues above.
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They developed two methods: POPLIN-A that plans in the action space, and POPLIN-P that plans
in the parameter space of the policy network. In POPLIN-A, the policy network is used to learn to
output the mean of a Gaussian sampling distribution of actions. In POPLIN-P, the policy network
parameters serve as the initialization of the mean of the sampling distribution of parameters. The
improved policy network can then be used to generate an action. They show that when compared to
the vanilla method of using a fixed sampling distribution in the action space, both modes of CEM
planning with such a learned distribution perform better. The same principle of combining a policy
network with CEM can be applied to the DecentCEM approach as well, which we describe next.

Policy Network 1

Policy Network M

Policy Network 2

Policy Network M-1

CEM Instance 1

CEM Instance 2

CEM Instance M-1

CEM Instance M

state action

Training Inference

Figure 5: The architecture of DecentCEM planning with M CEM instances. ψi = ϕi for planning in action
space and ψi = θi for planning in policy network parameter space with the instance index i ∈ {1, · · · ,M}.

DecentCEM Planning with an Ensemble of Policy Networks For better sample efficiency in
MBRL setting, we extend DecentCEM to use an ensemble of policy networks to learn the sampling
distributions in the CEM instances. Similar to the POPLIN variations, we develop two instantiations
of DecentCEM, namely DecentCEM-A and DecentCEM-P. The architecture of the proposed algorithm
is illustrated in Fig. 5. DecentCEM-A plans in the action space. It consists of an ensemble of policy
networks followed by CEM instances. Each policy network takes the current state st as input, outputs
the parameters ϕi of the sampling distribution for CEM instance i in the action space. There is no
fundamental difference from the DecentCEM formulation in Section 3 except that the initialization
of sampling distributions is learned by the policy networks rather than a fixed distribution.

The second instantiation DecentCEM-P plans in the parameter space of the policy network. The
output of each policy network is the network parameter θi. The initial sampling distribution of CEM
instance i is a Gaussian distribution over the policy parameter space with the mean at θi. In the
argmax operation in Eq. (3), the sample τi,j denotes the j-th parameter sample from the distribution
for CEM instance i. Its value is approximated by the model-predicted value of the action sequence
generated from the policy network with the parameters τi,j .

The ensemble of policy networks in both instantiations DecentCEM-A and DecentCEM-P are initial-
ized with random weights, which is empirically found to be adequate to ensure that the output of the
networks do not collapse into the same distribution (Sec. 6.2 and Appendix F).

Training the Policy Networks in DecentCEM When planning in action space, the policy networks
are trained by behavior cloning, similar to the scheme in POPLIN [Wang and Ba, 2020]. Denote the
first action in the planned action sequence at time step t by the i-th CEM instance as ât,i, the i-th
policy network is trained to mimic ât,i and the training objective is minθi Est,ât,i∼Di∥aθi(st)−ât,i∥2
where Di denotes the replay buffer with the state and action pairs (st, ât,i). aθi(st) is the action
prediction at state st from the policy network parameterized by θi.

While the above training scheme can be applied to both planning in action space and parameter space,
we follow the setting parameter average (AVG) [Wang and Ba, 2020] training scheme when planning
in parameter space. The parameter is updated as θi = θi +

1
|Di|

∑
δi∈Di

δi where Di = {δi} is a
dataset of policy network parameter updates planned from the i-th CEM instance previously. It is
more effective than behavior cloning based on the experimental result reported by Wang and Ba
[2020] and our own preliminary experiments.
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Note that each policy network in the ensemble is trained independently from the data observed by
its corresponding CEM instance rather than from the aggregated result after taking the argmax.
This allows for enough diversity among the instances. More importantly, it increases the size of the
training dataset for the policy networks compared to the approach taken in POPLIN. For example,
with an ensemble of M instances, there would be M training data samples available from one real
environment interaction, compared to the one data sample in POPLIN-A/P. As a result, DecentCEM
is able to train larger policy networks than is otherwise possible, shown in Sec. 6.2 and Appendix F.

5 Related Work

We limit the scope of related works to CEM planning methods, which is one of the broad class of
planning algorithms in MBRL. For a review of different families of planning algorithms, the readers
are referred to Wang et al. [2019]. Vanilla CEM planning in action space with a single Gaussian
distribution has been adopted as the planning method for both simulated and real-world robot control
[Chua et al., 2018, Finn and Levine, 2017, Ebert et al., 2018, Hafner et al., 2019, Yang et al., 2020,
Zhang et al., 2021]. Previous attempts to improving the performance of CEM-based planning can be
grouped into two types of approaches. The first type includes CEM in a hybrid of CEM+X where “X”
is some other component or algorithm. POPLIN [Wang and Ba, 2020] is a prominent example where
“X” is a policy network that learns a state conditioned distribution that initializes the subsequent CEM
process. Another common choice of “X” is gradient-based adjustment of the samples drawn in CEM.
GradCEM [Bharadhwaj et al., 2020] adjusts the samples in each iteration of CEM by taking gradient
ascent of the return estimate w.r.t the actions. CEM-RL [Pourchot and Sigaud, 2019] also combines
CEM with gradient based updates from RL algorithms but the samples are in the parameter space of
the actor network. To improve computational efficiency, Lee et al. [2020] proposes an asynchronous
version of CEM-RL where each CEM instance updates the sampling distribution asynchronously.

The second type of approach aims at improving CEM itself. Amos and Yarats [2020] proposes a
fully-differentiable version of CEM called DCEM. The key is to make the top-k selection in CEM
differentiable such that the entire CEM module can be trained in an end-to-end fashion. Despite
cutting down the number of samples needed in CEM, this method does not beat the vanilla CEM
in benchmark test. GACEM [Hakhamaneshi et al., 2020] increase the capacity of the sampling
distribution by replacing the Gaussian distribution with an auto-regressive neural network. This
change allows CEM to perform search in multi-modal solution space but it is only verified in toy
examples and its computation seems too high to be scaled to MBRL tasks. Another method that
increases the capacity of the sampling distribution is PaETS [Okada and Taniguchi, 2020] that uses
a GMM with CEM. It is the approach that we followed for our CEM-GMM implementation. The
running time results in the optimization task in Sec.3 shows that it is computationally heavier than
the CEM and DecentCEM methods, limiting its use in complex environments. Macua et al. [2015]
proposed a “distributed” CEM that is similar in spirit to our method in that they used multiple sampling
distributions and applied the top-k selection locally to samples from each instance. However, their
instances are cooperative as opposed to being independent as in our work. They applied “collaborative
smoothed projection steps” to update each sampling distribution as an average of its neighboring
instances including itself. The updating procedure is more complicated than our proposed method
and proper network topology of the instances is needed: a naive approach of updating according to
all instances will lead to mode collapse since the resulting sampling distributions will be identical.
The method was tested in toy optimization examples only. Overall, this second type of approach did
not outperform vanilla CEM, a phenomenon that motivated our move to a decentralized formulation.

6 Experiments

We evaluate the proposed DecentCEM methods in simulated environments with continuous action
space. The experimental evaluation is mainly set up to understand if DecentCEM improves the
performance and sample efficiency over conventional CEM approaches.

6.1 Benchmark Setup

Environments We run the benchmark in a set of OpenAI Gym [Brockman et al., 2016] and Mu-
JoCo [Todorov et al., 2012] environments commonly used in the MBRL literature: Pendulum,
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Figure 6: Learning curves of the proposed DecentCEM methods and the baselines on continuous control
environments. The line and the shaded region shows the mean and standard error of evaluation results from 5
training runs with different random seeds.

InvertedPendulum, Cartpole, Acrobot, FixedSwimmer4, Reacher, Hopper, Walker2D, HalfChee-
tah, PETS-Reacher3D, PETS-HalfCheetah, PETS-Pusher, Ant. The three environments prefixed
by “PETS” are proposed by Chua et al. [2018]. Note that MBRL algorithms often make different
assumptions about the dynamics model or the reward function. Their benchmark environments are
often modified from the original OpenAI gym environments such that the respective algorithm is
runnable. Whenever possible, we inherit the same environment setup from that of the respective
baseline methods. This is so that the comparison against the baselines is fair. More details on the
environments and their reward functions are in Appendix B.

Algorithms The baseline algorithms are PETS [Chua et al., 2018] and POPLIN [Wang and Ba,
2020]. PETS uses CEM with a single Gaussian distribution for planning. The POPLIN algorithm
combines a single policy network with CEM. As described in Sec. 4, POPLIN comes with two
modes: POPLIN-A and POPLIN-P with the suffix “A” denotes planning in action space and “P”
for the network parameter space. We reuse default hyperparameters for these algorithms from the
original papers if not mentioned specifically. For our proposed methods, we include two variations
DecentCEM-A and DecentCEM-P as described in Sec. 4 where the suffix carries the same meaning
as in POPLIN-A/P. The ensemble size of DecentCEM-A/P as well as detailed hyperparameters for
all algorithms are listed in the Appendix D.2. We also included Decentralized PETS, denoted by
DecentPETS. All MBRL algorithms studied in this benchmark use the same ensemble networks
proposed by Chua et al. [2018] for model learning. And a model-free RL baseline SAC [Haarnoja
et al., 2018] was included.

Evaluation Protocol The learning curve shows the mean and standard error of the test performance
out of 5 independent training runs. The test performance is an average return of 5 episodes of
the evaluation environment, evaluated at every training episode. At the beginning of each training
run, the evaluation environment is initialized with a fixed random seed such that the evaluation
environments are consistent across different methods and multiple runs to make it a fair comparison.
All experiments were conducted using Tesla V100 Volta GPUs.

6.2 Results

Learning Curves The learning curves of the algorithms are shown in Fig. 6 for InvertedPendulum,
Acrobot, Reacher, Walker2D, PETS-Pusher and Ant, sorted by the state and action dimensionality

4a modified version of the original Gym Swimmer environment where the velocity sensor on the neck is
moved to the head. This fix was proposed by Wang and Ba [2020]
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of task. The curves are smoothed with a sliding window of 10 data points. The full results for all
environments are included in Appendix E. We can observe two main patterns from the results. One
pattern was that in most environments, the decentralized methods DecentPETS, DecentCEM-A/P
either matched or outperformed their counterpart that took a centralized approach. In fact, the former
can be seen as a generalization of the later, by an additional hyperparameter that controls the ensemble
size with size one recovering the centralized approach. The optimal ensemble size depends on the
task. This additional hyperparameter offers flexibility in fine-tuning CEM for individual domains.
For instance in Fig. 6, for the P-mode where the planning is performed in policy parameter space,
an ensemble size of larger than one works better in most environments while an ensemble size of
one works better in Ant. The other pattern was that using policy networks to learn the sampling
distribution in general helped improving the performance of centralized CEM but not necessarily in
decentralized formulation. This is perhaps due to that the added exploration from multiple instances
makes it possible to identify good solutions in some environments. Using a policy net in such case
may hinder the exploration due to overfitting to previous actions.

Ablation Study A natural question to ask about the DecentCEM-A/P methods is whether the
increased performance is from the larger number of neural network parameters. We added two
variations of the POPLIN baselines where a bigger policy network was used. The number of the
network parameters was equivalent to that of the ensemble of policy networks in DecentCEM-A/P.
We show the comparison in Reacher(2) and PETS-Pusher(7) (action dimension in parenthesis) in
Fig. 7. In both action space and parameter space planning, a bigger policy network in POPLIN either
did not help or significantly impaired the performance (see the POPLIN-P results in reacher and
PETS-Pusher). This is expected since unlike DecentCEM, the training data in POPLIN do not scale
with the size of the policy network, as explained at the end of Sec. 4.
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Figure 7: Ablation study on the policy network size where POPLIN-A&P have a bigger policy network
equivalent in the total number of network weights to their DecentCEM counterparts.

Next, we look into the impact of ensemble size. Fig. 8 shows the learning curves of different ensemble
sizes in the Reacher environments for action space planning (left), parameter space planning (middle)
and planning without policy networks (right). Since we fix the total number of samples the same
across the methods, the larger the ensemble size is, the fewer samples that each instance has access
to. As the ensemble size goes up, we are trading off the accuracy of the sample mean for better
exploration by more instances. Varying this hyperparameter allows us to find the best trade-off, as
can be observed from the figure where increasing the ensemble size beyond a sweet spot yields
diminishing or worse returns.
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ensemble with 2 instances. The total number of samples during planning are the same across all variations.
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Figure 9: Ablation of ensemble diversity in Pendulum during training of DecentCEM-A with 5 instances. (a)
Cumulative selection ratio of each CEM instance. (b)(c) Statistics of the actions and pairwise action distances of
the instances, respectively. The line and shaded region represent the mean and min/max.

Figure 9(a) shows the cumulative selection ratio of each CEM instance during training of DecentCEM-
A with an ensemble size of 5. It suggests that the random initialization of the policy network is
sufficient to avoid mode collapse. We also plot the actions and pairwise action distances of the
instances in Figure 9(b) and 9(c). For visual clarity, we show a time segment toward the end of the
training rather than all the 10k steps. DecentCEM-A has maintained enough diversity in the instances
even toward the end of the training. DecentCEM-P and DecentPETS share similar trends. The plots
of their results along with other ablation results are included in Appendix F.

7 Conclusion and Future Work

In this paper, we study CEM planning in the context of continuous-action MBRL. We propose a
novel decentralized formulation of CEM named DecentCEM, which generalizes CEM to run multiple
independent instances and recovers the conventional CEM when the number of instances is one. We
illustrate the strengths of the proposed DecentCEM approach in a motivational one-dimensional
optimization task and show how it fundamentally differs from the CEM approach that uses a Gaussian
or GMM. We also show that DecentCEM has almost sure convergence to a local optimum. We
extend the proposed approach to MBRL by plugging in the decentralized CEM into three previous
CEM-based methods: PETS, POPLIN-A, POPLIN-P. We show their efficacy in benchmark control
tasks and ablations studies.

There is a gap between the convergence result and practice where the theory assumes that the number
of samples grow polynomially with the iterations whereas a constant sample size is commonly used
in practice including our work. Investigating the convergence properties of CEM under a constant
sample size makes an interesting direction for future work. Another interesting direction to pursue is
finite-time analysis of CEM under both centralized and decentralized formulations. In addition, the
implementation has room for optimization: the instances currently run serially but can be improved
by a parallel implementation to take advantage of the parallelism of the ensemble.
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Appendix

A Details of the Motivational Example

A.1 Setup and Running Time

For a fair comparison of the three methods CEM, CEM-GMM and DecentCEM, we performed a hyperparameter
search for all. The list of hyperparmeters are summarized in Table A.1 and the best performing hyperparameters
for each method under each population size are shown in Table A.2. These hyperparameters were what the data
in Fig. 3 were based on. Note that the top percentage of samples “Elite Ratio” (in Table A.1) was used in the
implementation instead of top-k but they are equivalent. The running time are included in Table A.3.

Table A.1: Hyperparameters
Algorithm Parameter Value

Shared Total Sample Size 100, 200, 500, 1000
Parameters Elite Ratio 0.1

α: Smoothing Ratio 0.1
ϵ: Minimum Variance Threshold 1e-3
Maximum Number of Iterations 100

CEM-GMM M : Number of Mixture Components 3,5,8,10
κ: Weights of Entropy Regularizer 0.25, 0.5
r: Return Mode ‘s’: mean of the mixture component

sampled based on their weights
‘m’: mean of the component that

achieves the minimum cost

DecentCEM E: Number of Instances in the Ensemble 3,5,8,10

Table A.2: Best Hyper-Parameter

Total Sample Size
100 200 500 1000

CEM-GMM M = 10 M = 8 M = 8 M = 8
κ = 0.25, κ = 0.5 κ = 0.25 κ = 0.5
r =‘m’ r =‘m’ r =‘m’ r =‘s’

DecentCEM E = 10 E = 10 E = 10 E = 8

Table A.3: Total Time of 10 Runs (in seconds)

Total Sample Size
100 200 500 1000

CEM 0.079 0.093 0.165 0.318
CEM-GMM 7.322 11.500 24.431 59.844
DecentCEM 0.407 0.420 0.506 0.545

A.2 Output of CEM Approaches

In terms of the output of CEM approaches, there exist different options in the literature. The most common
option is to return the sample in the domain that corresponds to the highest probability density in the final
sampling distribution. It is the mean in the case of Gaussian and the mode with the highest probability density
in the case of GMM. One can also draw a sample from the final sampling distribution [Okada and Taniguchi,
2020] and return it. Another option is to return the best sample observed [Pinneri et al., 2020]. The best option
among the three may be application dependent. It has been observed that in many applications, the sequence of
sampling distributions numerically converges to a deterministic one [De Boer et al., 2005], in which case the
first two options are identical.
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Table A.4: The setup of the environments. The number in the bracket in the “Environment” column
denotes the source of this environment: [1] refers to the benchmark paper from Wang et al. [2019];
[2] denotes PETS [Chua et al., 2018]. In the reward functions, dt denotes the vector between the end
effector to the target position. zt denotes the height of the robot. ∥v∥1 and ∥v∥2 denote the 1-norm
and 2-norm of vector v, respectively. In PETS-Pusher, d1,t is the vector between the object position
and the goal and d2,t denotes the vector between the object position and the end effector.

Environment |S| |A| Episode Length Reward Function

Pendulum 3 1 200 θ2t + 0.1θ̇t
2
+ 0.001a2t

InvertedPendulum [1] 4 1 100 −θ2t
Cartpole [1] 4 1 200 cos θt − 0.01x2t
Acrobot [1] 6 1 200 − cos θ1,t − cos(θ1,t + θ2,t)
FixedSwimmer [1] 9 2 1000 ẋt − 0.0001∥at∥22
Reacher [1] 11 2 50 −∥dt∥ − ∥at∥22
Hopper [1] 11 3 1000 ẋt − 0.1∥at∥22 − 3(zt − 1.3)2

Walker2d [1] 17 6 1000 ẋt − 0.1∥at∥22 − 3(zt − 1.3)2

HalfCheetah [1] 17 6 1000 ẋt − 0.1∥at∥22
PETS-Reacher3D [2] 17 7 150 −∥dt∥22 − 0.01∥at∥22
PETS-HalfCheetah [2] 18 6 1000 ẋt − 0.1∥at∥22
PETS-Pusher [2] 20 7 150 −1.25∥d1,t∥1 − 0.5∥d2,t∥1 − 0.1∥at∥22
Ant [1] 27 8 1000 ẋt − 0.1∥at∥22 − 3(zt − 0.57)2

B Benchmark Environment Details

In this section, we go over the details of the benchmark environments used in the experiments.

Table A.4 lists the environments along with their properties, including the dimensionality of the state |S| and
action spaces |A|, the maximum episode length. as well as the reward function. Whenever possible, we reuse the
original implementations from the literature as noted in Table A.4 so as to avoid confusion. The environments
that start with “PETS” are from the PETS paper [Chua et al., 2018], which is one of the baseline methods. Most
other environments are from Wang et al. [2019] where the dynamics are the same as the OpenAI gym version
and the reward function in Table A.4 is exposed to the agent. For more details of the environments, the readers
are referred to the original paper.

Note that FixedSwimmer is a modifed version of the original Gym Swimmer environment where the velocity
sensor on the neck is moved to the head. This fix was originally proposed by Wang and Ba [2020]. For the
Pendulum environment, we use the OpenAI Gym version. The modified version in [Wang et al., 2019] uses a
different reward function which we have found to be incorrect.

C Algorithms

In this section, we give the pseudo-code of the proposed algorithms DecentCEM-A and DecentCEM-P in
Algorithm 1 and 2 respectively. We only show the training phase. The algorithm at inference time is simply the
same process without the data saving and network update. For the internal process of CEM, we refer the readers
to De Boer et al. [2005], Wang and Ba [2020].

D Implementation Details

D.1 Reproducibility

Our implementation is fully reproducible by identifying the sources of randomness and controlling the random
seeds as summarized in Table D.1. The seeds are set once at the beginning of the experiments.

D.2 Hyperparameters

This section includes the details of the key hyperparameters used in the baseline algorithms PETS
(Table D.3), POPLIN-A/P (Table D.4) and SAC5 (Table D.2). The proposed DecentCEM algorithms

5Our SAC implementation used network architectures that are similar to the policy network in our method.
The results of our implementation either matches or surpasses the ones reported in [Chua et al., 2018, Wang and
Ba, 2020] and [Wang et al., 2019]
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Algorithm 1: DecentCEM-A Training

1 Initialize the policy networks pi with θi, i = 1, 2, · · · ,M where M is the ensemble size. Planning horizon
H . Initialize the dynamics network fω parameterized by ω. Empty Datasets Dm and Dp

// Episode 1, warmup phase
2 Rollout using a random policy, fill the dataset Dm with the transition data {(st, at, st+1)}
3 Update ω using Dm by Mean-Squared Loss // Train the dynamics network with Dm

// Episode 2 onwards
4 repeat
5 t = 0, Dp = {} // Each episode, reset time and dataset
6 repeat
7 foreach policy network pi in the ensemble do
8 generate reference mean of action sequence distribution µi using pi and the model fω .

// Apply CEM to refine the action distribution.
// µ̂i, vi are the mean action sequence of the refined distribution and its expected value

9 µ̂i, vi = CEM(µi)
10 ât,i = µ̂i[0]
11 end
12 at = argmaxât,i

vi // Pick best distribution
13 st+1 = step(at) // Execute the first action in the mean sequence
14 Append the transition (st, at, st+1) to Dm

15 Append the data {(st, ât,i)}Mi=1 to Dp

16 t = t+ 1 // Update time step
17 until Either reached the maximum episode length or terminal state
18 Update the model parameter ω using dataset Dm

19 Update the policy network weights {θi}Mi=1 using dataset Dp by the behavior cloning objective
20 until bored

Algorithm 2: DecentCEM-P Training

1 Initialize the policy networks pi with θi, i = 1, 2, · · · ,M where M is the ensemble size. Planning horizon
H . Initialize the dynamics network fω parameterized by ω. Empty Datasets Dm and Dp

// Episode 1, warmup phase
2 Rollout using a random policy, fill the dataset Dm with the transition data {(st, at, st+1)}
3 Update ω using Dm by Mean-Squared Loss // Train the dynamics network with Dm

// Episode 2 onwards
4 repeat
5 t = 0, Dp = {} // Each episode, reset time and dataset
6 repeat
7 foreach policy network pi in the ensemble do

// Apply CEM to refine the distribution of the neural network weight.
// µ̂i, vi are the mean of the refined weight distribution sequence and its expected value

8 µ̂i, vi = CEM(θi)
9 δi = µ̂i[0] // Keep the weight at the first step and discard the rest

10 end
11 θt = argmaxθi+δi

vi // Pick the best distribution of weight sequence
12 at = pθt(st)
13 st+1 = step(at) // Execute the action returned by the policy network pθt
14 Append the transition (st, at, st+1) to Dm

15 Append the data {δi}Mi=1 to Dp

16 t = t+ 1 // Update time step
17 until either reached the maximum episode length or terminal state
18 Update the model parameter ω using dataset Dm

19 Update the policy network weights {θi}Mi=1 using dataset Dp by the AVG training objective
20 until bored
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Table D.1: Random Seed. The set {1,2,3,4,5} refers to the seeds for five runs. Note that we control
the random seed for the environments since there is a random number generator in openai gym
environments independent from other sources

Source of randomness Random Seed

Tensorflow
{1,2,3,4,5}numpy

python random module
the training environment 1234
the evaluation environment 0

Table D.2: Hyperparameters of SAC

Parameter Value

Actor learning rate 0.0001
Critic learning rate 0.0001
Actor network architecture [|S|, 64, 64, 2× |A|]
Critic network architecture [|S|+ |A|, 64, 64, 1]

Table D.3: Hyperparameters of PETS

Parameter Value

Model learning rate 0.001
Warmup episodes 1
Planning Horizon 30
CEM population size 500 (400 in PETS-reacher3D)
CEM proportion of elites 10%
CEM initial distribution variance 0.25
CEM max # of internal iterations 5

Table D.4: Hyperparameters of POPLINA and POPLINP

Parameter Value

Model learning rate 0.001
Warmup episodes 1
Planning Horizon 30
CEM population size 500 (400 in PETS-reacher3D)
CEM proportion of elites 10%
CEM initial distribution variance 0.25
CEM max # of internal iterations 5
Policy network architecture (A) [|S|, 64, 64, |A|]
Policy network architecture (P) [|S|, 32, |A|]
Policy network learning rate 0.001
Policy network activation function tanh

(DecentPETS, DecentCEM-A, DecentCEM-P) have identical hyperparameters as their corresponding
baselines (PETS, POPLIN-A, POPLIN-P) except for an additional ensemble size parameter. The
hyperparameter search for the ensemble size is performed by sweeping through the set {2, 3, 4, 5, 6}
for each environment. For the neural network architecture for the dynamics model, the DecentCEM
methods exactly follow the original one in PETS and POPLIN for a fair comparison, which is an
ensemble of fully connected networks.

E Full Results

E.1 Detailed visualization of the iterative updates in the one-dimensional optimization task

Figure 10 is a version of Figure 4 with more iterations. It shows the iterative sampling process of
CEM methods in the 1D optimization task and how the sampling distributions evolve over time.
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Figure 10: The iterative sampling process in the one-dimensional optimization task.

E.2 Full Learning Curves

In Figure 11, we report the learning curves in all environments listed in Appendix B.

The algorithms evaluated in the benchmark are: PETS, POPLIN-A, POPLIN-P and the proposed
methods DecentPETS, DecentCEM-A and DecentCEM-P. We also included a model-free algorithm
SAC as a baseline. DecentCEM subsumes POPLIN and they are equivalent when the ensemble size
is one. The same applies to DecentPETS and PETS. To distinguish them in the learning curves and
discussions, we show the DecentCEM results from an ensemble size larger than one.

The learning curves in some environments can be noisy. We apply smoothing with 1D uniform filter.
The window size of the filter was 10 for all but Cartpole, where 30 was used due to its large noise for
all algorithms.

Note that the performance of the baseline methods may be different from the results reported in their
original paper. Specifically, in the paper by Wang and Ba [2020], PETS, POPLIN-A and POPLIN-P
have been evaluated in a number of environments that we use for the benchmark. Our benchmark
results may not be consistent with theirs due to differences in the implementation and evaluation
protocol. For example, our results of PETS, POPLIN-A and POPLIN-P in the Acrobot environment
are all better than the results in Wang and Ba [2020]. We have identified a bug in the POPLIN code
base that causes the evaluation results to be on a wrong timescale that is much slower than what it
actually is. Hence the results of our implementation look far better, reaching a return of 0 at about 4k
steps as opposed to 20k steps reported in Wang and Ba [2020].
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Figure 11: The learning curves of the proposed DecentCEM methods and the baseline methods on
continuous control environments. The line and shaded region shows the mean and standard error
of evaluation results from 5 training runs using different random seeds. Each run is evaluated in an
environment independent from training and reports average return of 5 episodes at every training
episode. To ensure that the evaluation environments are the same across different methods and
multiple runs, we set a fixed random seed in the evaluation environment of each task.
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E.3 Analysis

Let’s group the environments into two categories based on how well the decentralized methods
perform in them:

1. Pendulum, InvertedPendulum, Acrobot, Cartpole, FixedSwimmer, Reacher, Walker2D,
PETS-Pusher, PETS-Reacher3D, Ant

2. Hopper, HalfCheetah, PETS-HalfCheetah

The first category is where the best performing method is one of the proposed decentralized algorithms:
DecentPETS, DecentCEM-A or DecentCEM-P. In environments where the baseline PETS, POPLIN-
A or POPLIN-P could reach near-optimal performance such as pendulum and invertedPendulum,
applying the ensemble method would yield similar performance as before. It is also evident from
InvertedPendulum results that the decentralized version significantly improves over the centralized
algorithm where the performance of the latter is poor. In Cartpole, Acrobot, Reacher, Walker2D and
PETS-Pusher, applying the decentralized approach increases the performance in both action space
planning (“A”) and parameter space planning (“P”). In Pendulum, InvertedPendulum, FixedSwimmer,
PETS-Reacher3D and Ant, ensemble helps in the action space planning but either has no impact or
negative impact on the parameter space planning.

The second category is where it is better not to use a decentralized approach with multiple instances
(note that the decentralized methods with one instance fall back to one of PETS, POPLIN-A, POPLIN-
P). In Hopper and HalfCheetah, the issue might lie in the model rather than planning since all MBRL
baselines performed worse than the model-free baseline SAC. In HalfCheetah, DecentCEM-A in
fact performs the best out of all model-based methods but it falls behind SAC. One possible issue
is that the true dynamics is difficult to approximate with our model learning approach. Another
possibility is that it may be necessary to learn the variance of the sampling distribution, which none
of these model-based approaches do. To be clear, the variance is adapted online by CEM but it is not
learned. PETS-HalfCheetah is slightly different in that the ensemble does improve the performance
significantly when used for action space planning. However, POPLIN-P performs significantly
better than all other algorithms. This suggests that the parameter space planning has been able to
successfully find a high return region using a single Gaussian distribution. In this case, distributing
the population size would not be able to trade the estimation accuracy for a better global search.

One interesting phenomenon is that DecentPETS performs better than or comparably as PETS in all
environments in both categories except in Hopper (where they are quite close as well). This suggests
that when not using a learned neural network to initialize the distribution in CEM, decentralizing the
samples is an effective technique to achieve an improvement of the optimization performance.

F More Ablations
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Figure 12: Policy control ablation where the policy network is directly used for control without CEM
policy improvement

We study the performance of policy control where the policy network is directly used for control
without the CEM step, denoted by the extra suffix “-PC”. The result is shown in Fig. 12. Without the
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policy improvement from CEM, all algorithms perform worse than their counter-part of using CEM.
POPLIN-P-PC and DecentCEM-P-PC both get stuck in local optima and do not perform very well.
This makes sense since the premise of planning in parameter space is that CEM can search more
efficiently there. The policy network is not designed to be used directly as a policy. Interestingly,
DecentCEM-A-PC achieves a high performance from about 7k steps (35 episodes) of training. The
ensemble of policy networks seems to add more robustness to control compared to using a single one.
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Figure 13: Ablation of ensemble diversity in Pendulum during training of DecentPETS with 5 instances. (a)
Cumulative selection ratio of each CEM instance. (b)(c) Statistics of the actions and pairwise action distances of
the instances, respectively. The line and shaded region represent the mean and min/max.
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Figure 14: Ablation of ensemble diversity in Pendulum during training of DecentCEM-P with 5 instances. (a)
Cumulative selection ratio of each CEM instance. (b)(c) Statistics of the actions and pairwise action distances of
the instances, respectively. The line and shaded region represent the mean and min/max.

Figure 13 and 14 are additional plots for the ensemble diversity ablation. They show the results for
DecentPETS and DecentCEM-P, respectively. The same as in Fig. 9 (b)(c), we only show a time
window toward the end of training for visual clarity and the line and shaded region represent the
mean and min/max. Comparing the action and action distances statistics of the three algorithms
shown in Fig. 9 (b)(c), 13 (b)(c), 14 (b)(c), the actions from DecentPETS cover a smaller range of
values compared with those from DecentCEM-A/P. This suggests that the use of policy networks in
the multiple instances add more exploration without sacrificing performance thanks to the argmax.

G Overhead of the Ensemble

The sample efficiency is not impaired when going from one policy network to the multiple policy
networks used in DecentCEM-A and DecentCEM-P. This is because that the generation of the training
data only involve taking imaginary rollouts with the model, rather than interacting with the real
environment, as discussed in Section 4.

In terms of the population size (number of samples drawn in CEM), the DecentCEM methods do
not impose additional cost. We show in both the motivational example (Sec. 3) and the benchmark
experiments (Appendix E) that the proposed methods work better than CEM under the same total
population size.
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The additional computational cost is reasonable in DecentCEM compared to POPLIN. Each branch
of policy network and CEM instance runs independently from the others, allowing for a parallel
implementation. The instances have to be synchronized (argmax) but its additional cost is minimal.
One caveat with our current implementation though is that the instances run serially, which slows
down the speed. This is not a limitation of the method itself though and the speed loss can be
alleviated by a parallel implementation.

H Convergence Analysis of Decentralized CEM

This section analyzes the convergence of the proposed DecentCEM algorithm in optimization.

Consider the following optimization problem:

x∗ ∈ argmax
x∈X

V (x) (4)

where X ⊂ Rn is a non-empty compact set and V (·) is a bounded, deterministic value function to be
maximized. We assume that this problem has a unique global optimal solution x∗ but the objective
function V (·) may have multiple local optimum and may not be continuous.

We will show that the existing convergence result of CEM in continuous optimization established in
[Hu et al., 2011] also applies to DecentCEM. It assumes that the sampling distribution gϕ(x) in CEM
is in the natural exponential families (NEFs) which subsumes Gaussian distribution (with known
covariance). We restate the definition of NEFs for completeness (definition 2.1 in [Hu et al., 2011]):

Definition H.1 (Natural Exponential Family). A family of parameterized distributions {gϕ(·), ϕ ∈
Φ ⊂ Rd} on X ⊂ Rn is called a Natural Exponential Family (NEF) if there exists continuous map-
pings Γ : Rn → Rd, h : Rn → R and K : Rd → R such that gϕ(x) = exp(ϕ⊤Γ(x)−K(ϕ))h(x),
where the parameter space Φ = {ϕ ∈ Rd : |K(ϕ)| < ∞}, K(ϕ) = ln

∫
X exp(ϕ⊤Γ(x))h(x)ν(dx)

and ν is the Lebesgue measure of X .

The mean vector function
m(ϕ) = Eϕ[Γ(x)] (5)

where the expectation Eϕ is with respect to gϕ and Γ is the mapping in Def. H.1. It can be shown
that m(·) is invertible. Note that the expression of the densities can be simplified when restricted to
a multivariate Gaussian distribution (with known diagonal covariance) where the natural sufficient
statistics Γ(x) = x.

We then present the CEM algorithm below to fix notations. It follows Algorithm 2 in [Hu et al., 2011]
but is modified to align with some notations introduced in previous sections in our paper.

The convergence results will require the following assumptions from Hu et al. [2011]:

Assumption 2. The parameter ϕk+1 computed at step 3 of Algorithm 3 satisfies ϕk+1 ∈ int(Φ) for
all k.

Assumption 3. The step size sequence {αk} satisfies: αk > 0 ∀ k , limk→∞ αk = 0 and
∑∞

k=0 αk =
∞.

Assumption 4. The sequence {λk} satisfies λk = O(k−λ) for some constant λ ≥ 0 and the sample
size Nk = Θ(kβ) where β > max{0, 1− 2λ}.

Assumption 5. The (1− ρ)-quantile of {V (x), x ∼ gϕ(x)} is unique for each ϕ ∈ Φ.

We know from Hu et al. [2011] that the sequence {ηk}∞k=0 from equation 7 asymptotically approaches
the solution set of the ODE:

dη(t)

dt
= L(η) (8)

L(η) = ∇ϕ lnEϕ[1(V (x), γ(m−1(η)))] |ϕ=m−1(η) (9)

where γ(m−1(η)) is the true (1− ρ)-quantile of V (x) under gm−1(η).

Assumption 6. The function L(η) defined in equation 9 has a unique integral curve for a given
initial condition.
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Algorithm 3: CEM

1 Choose the family of distributions gϕ(x), x ∈ X from NEFs defined in H.1 and the initial parameter
ϕ0 ∈ int(Φ) where int denotes the interior of the parameter space Φ.

2 Specify elite ratio ρ ∈ (0, 1) and step size sequence {αk} and {λk} where k denotes the time step. Set
k = 0. Specify ϵ > 0 which is the parameter in the thresholding function defined in Equation 3.

3

1(x, γ) =


1, if x ≥ γ
x−γ+ϵ

ϵ
, if γ − ϵ < x < 1

0, if x ≤ γ − ϵ

(6)

4 repeat
5 Step 1: Draw Nk i.i.d samples Λk = {x1, x2, ..., xNk} from the distribution gϕk (x)
6 Step 2: Calculate the sample (1− ρ)-quantile γ̂k = V(⌈(1−ρ)Nk⌉) where ⌈a⌉ is the ceiling function that

gives the smallest integer greater than a and V(i) is the ith-order statistics of the sequence
{V (xj)}Nk

j=1 where V (·) is the objective function to be maximized.
7 Step 3: Compute the new parameter ϕk+1 = m−1(ηk+1), where η0 = m(ϕ0) = Eϕ0(Γ(x)) and

ηk+1 = αk

∑
x∈Λk

1(V (x), γ̂k)Γ(x)∑
x∈Λk

1(V (x), γ̂k)
+

(1− αk)

 λk

Nk

∑
x∈Λk

Γ(x) + (1− λk)ηk

 (7)

8 Step 4: k = k + 1
9 until a stopping condition is reached

10 return ϕk

The above assumptions 2-6 are the assumptions required by the previous convergence result of
CEM. To show the convergence of DecentCEM, we only require one additional mild condition in the
assumption 1 (note that the sample size requirement is included here only for completion since it is
already part of Assumption 4).

Now we restate the convergence result of DecentCEM from the main text and show the proof:
Theorem 3.1 (Convergence of DecentCEM). If a CEM instance described in Algorithm 3 converges,
and we decentralize it by evenly dividing its sample size Nk into M CEM instances which satisfies
the Assumption 1, then the resulting DecentCEM converges almost surely to the best solution of the
individual instances.

Proof. Each individual CEM instance has a sample size of Nk

M and Nk = Θ(kβ). Since Assumption
1 holds, M is constant and gets absorbed into the Θ and we have Nk

M = Θ(kβ). Hence the conditions
of Theorem 3.1 in [Hu et al., 2011] holds for each CEM instance indexed by i and can be directly
applied to show the almost sure convergence of their solutions {ηi,k} to an internally chain recurrent
set of Equation 8. If the recurrent sets are isolated equilibrium points, then {ηi,k} converges almost
surely to a unique equilibrium point.

Due to the fact that the instances in DecentCEM run independently from each other, their solutions
{ηi,k}Mi=1 (or equivalently {ϕi,k}Mi=1 = {m−1(ηi,k)}Mi=1) might converge to identical or different
solutions denoted as {η∗i }Mi=1. DecentCEM computes the final solution by applying an argmax
over all individual solutions: ηo,k = argmaxη∈{ηi,k}M

i=1
Em−1(η)[V (x)] (equivalent to Equation 3).

Here the expectation is approximated by the sample mean with respect to the distribution gm−1(η):
1
Nk

∑Nk

j=1 V (xj), which converges almost surely to the true expectation according to the strong law of
large numbers. Hence we have that ηo,k converges almost surely to the best solution in the set {η∗i }Mi=1
found by the individual CEM instances, in terms of the expected value of Em−1(η)[V (x)].

Note that the theorem implies that the solution of CEM / DecentCEM assigns the maximum probability
to a locally optimal solution to Equation 4. It does not guarantee whether this local optimum is a
global optimum or not. To the best of our knowledge, almost sure convergence to a local optimum is
the only convergence result that has been established about CEM in continuous optimization.
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I Visualization of DecentCEM Planning
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Figure 15: Planning trajectories of DecentCEM-A (ensemble size 5) and POPLIN-A. It’s overlaid
on the heatmap showing the true optimal state value (red means higher value). Title of each plot
shows the steps in the evaluation environment. Each planned trajectory has 30 steps, denoted by a
sequence of dots. The starting state is denoted by a cross and the ending (planned) state is denoted
by a big solid dot (with different colors corresponding to different trajectories). The color for
POPLIN-A and the best solution from DecentCEM-A is indicated in the legend in the plot and the
rest of DecentCEM-A trajectories are colored with different shades of gray. Note that θ of 2π and
−2π are identical in the angular position but appears as “disconnected” on the plots.

To better understand the planning process of DecentCEM, we visualized the planning trajectories of
POPLIN-A and DecentCEM-A in Fig.15. The planned state trajectories are denoted by sequences of
dots. Each plot show the planned trajectories at different steps from running both algorithms (at 2k
training steps) on the same evaluation environment such that the comparison is fair. The heatmap
shows the optimal state value solved by value iteration on the discretized pendulum environment. The
discretization is performed by discretizing the state space and action space of the original pendulum
environment into 100 and 50 intervals respectively. The best trajectory from the multiple instances
in DecentCEM-A is colored in cyan. Note that it is not ranked based on the true value, but on the
imaginary value during planning. We could observe that this solution may not always be the true best
solution among the trajectories due to the model inaccuracy at 2000 training steps. However, these
trajectories are able to explore the space better than using a single instance as in POPLIN-A which
can easily get stuck in the state regions with low values.
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