
8 Appendix

Roadmap: In this appendix, we first list the symbols we used in this paper. We show the proof and
the empirical results for Theorem 3.3 (§ 8.1), more empirical evidence for model’s linearity (§ 8.2),
explanation for DP-SGD (§ 8.3), and more details about the sample separation (§ 8.4). Then, we
provide implementation details including details of datasets (§ 8.5) and used attacks (§ 8.6). We
then discuss the the resistance of NONE against more attacks (§ 8.7), and the efficiency of NONE
(§ 8.9). We measure the sensitivity of NONE against different configurable parameters (§ 8.8).
We then evaluate NONE on an adaptive attack (§ 8.10). In § 8.11, we compare NONE to another
defense DBD [58]. We also compare NONE to more defenses on natural Trojan in § 8.12. Finally,
we evaluate the generalization to larger models (§ 8.13) and larger datasets (§ 8.14).

Symbol Table.

Table 9: Summary of Symbols

Scope Symbol Meaning

Theory

x Benign Sample
x̃ Trojan Sample
T Trojan Sample Generation Function
m Mask of Trojan Trigger
t Pattern of Trojan Trigger
⊙ Hadamard product
M Model
X Input Domain
Y Set of Labels
Rl Decision Region of Label l
T Trojan Region
m The Number of Elements in m

{Ax − b = 0} Trojan Hyperplane
xj Inputs of Layer j
yj Outputs of Layer j
Wj Trained Weights of Layer j
bj Trained Bias of Layer j

Algorithm

D Training Data
E Maximal Epoch
e Current Epoch
M Model
n Neuron
A Activation Values
An Activation values on Neuron n
C Compromised Neurons
Bn The Cluster of Smaller Values in An

On The Cluster of Larger Values in An

µ Mean Value of Bn

σ Standard Deviation Value of Bn

i Input Sample
in The Activation Value of Input Sample i on Neuron n

8.1 Proof and Empirical Evidence for Theorem 3.3

We start our analysis from ideal Trojan attacks, which we define as complete and precise Trojans:
Definition 8.1. Complete Trojan: For a Trojaned model M : X 7→ Y with trigger (m, t) and
target label l, we say a Trojan is complete if ∀x ∈ T (X ,m, t),M(x) = l.
Definition 8.2. Precise Trojan: For a Trojaned model M : X 7→ Y with trigger (m, t) and
target label l, we say a Trojan is precise if the follow condition is met: ∀(m′, t′) ̸= (m, t),x′ =
T (x,m′, t′),M(x) ̸= l ⇒ M(x′) ̸= l.

Intuitively, a complete Trojan means the attack success rate of this attack is 100%, and a precise
Trojan means that the trigger is unique: if we change the trigger (t or m), it will not trigger the
predefined misclassification.

Proof. In Theorem 3.3, we have S0 ⇐⇒ S1 where:

• S0: Trojan in M with trigger being (m, t) and target label being l is a complete and precise
Trojan.
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• S1: The hyperplane {Ax − b = 0} is the Trojan region of M and the only one, where
i ∈ {1 . . .m}, diagonal matrix Ai,i = mi, b = At.

In this proof, we first prove x ∈ T (X ,m, t) ⇐⇒ x ∈ {Ax − b = 0}, and then prove S0 ⇒ S1

and S1 ⇒ S0.

Step 1: x ∈ T (X ,m, t) ⇒ x ∈ {Ax − b = 0}. Let x̃ be a Trojan input generated from x by
applying Eq. 1 (in § 3 of the main paper), x̃ = T (x,m, t) = (1−m)⊙ x+m⊙ t, we get:

Ax̃− b = A((1−m)⊙ x+m⊙ t)− b (2)

Then, based on the definition of matrix A, b, the Hadamard product, and the distributive property of
matrix multiplication, we can get the following equation, where E is the identity matrix:

A((1−m)⊙ x+m⊙ t)− b = A((E −A)x+At)−At

= A(E −A)x+AAt−At
(3)

Since A is a diagonal matrix, and all elements of A is 0 or 1 based on the definition of A and trigger
mask m, we can get AA = A and A(E − A) = 0. Then, according to Eq. 2 and Eq. 3, we get:
∀x ∈ T (X ,m, t), Ax− b = 0.

Step 2: x ∈ {Ax − b = 0} ⇒ x ∈ T (X ,m, t). This step is to prove that any sample in the
hyperplane {Ax − b = 0} can be obtained from pasting Trojan trigger on other samples. Let x̃
denote any sample in the hyperplane, and x is the sample that is not in the hyperplane, i.e., an
external sample. Any external sample x that satisfies (E−A)x = (E−A)x̃ can be transformed to
x̃ via the projection specified by m and t. Therefore, we conclude that any sample in the hyperplane
can be obtained by pasting the Trojan trigger on other samples.

Steps 1 and 2 prove that x ∈ T (X ,m, t) is equivalent to x in the hyperplane Ax− b = 0, namely:

x ∈ T (X ,m, t) ⇐⇒ x ∈ {Ax− b = 0} (4)

Step 3: S0 ⇒ S1. Based on S0, Trojan in M is a complete Trojan. Based on Eq. 4 and the definition
of complete Trojan (i.e., Theorem 8.2), we get: ∀x ∈ {Ax − b = 0},M(x) = l, which means
{Ax − b = 0} is a Trojan decision region. We then prove {Ax − b = 0} is the only Trojan
region using proof by contradiction. For any other hyperplane {A′x − b′ = 0} where (A′, b′) ̸=
(A, b), based on Eq. 4, we can get: (m′, t′) ̸= (m, t),x′ = T (x,m′, t′) ⇐⇒ A′x′ − b′ = 0.
According to S0, the Trojan is a precise Trojan: ∀(m′, t′) ̸= (m, t),x′ = T (x,m′, t′),M(x) ̸=
l ⇒ M(x′) ̸= l. Thus, we get that A′x− b′ = 0 is not a Trojan region. That is, the Trojan region
has only one hyperplane, {Ax− b = 0}.

Step 4: S1 ⇒ S0. According to S1, we have:

∀x ∈ {Ax− b = 0},M(x) = l (5)

∀(A′, b′) ̸= (A, b),A′x′ − b′ = 0,M(x) ̸= l ⇒ M(x′) ̸= l (6)

From Eq. 4 and Eq. 5, we get ∀x ∈ T (X ,m, t),M(x) = l, which means the Trojan is complete.
Based on Eq. 4 and Eq. 6, we can get ∀(m′, t′) ̸= (m, t),x′ = T (x,m′, t′),M(x) ̸= l ⇒
M(x′) ̸= l, where m′ = A′

i,i, b
′ = A′t′, indicating that the Trojan is precise.

From Step 3 and 4, we can conclude that S0 ⇐⇒ S1, and complete the proof of Theorem 3.3.

Intuitively, the Trojan is precise means the attack success rate is 100% which guarantees that all
samples with the trigger will be classified as the target label. The Trojan is complete means that
no other input patterns can trigger this trigger, and thus all inputs that activate this Trojan have this
trigger. In the real world, these are hard to achieve. In practice, a Trojan of model M whose trigger
is (m, t) and target label is l has

∃(m′, t′) ≈ (m, t),P(M(T (x,m′, t′)) = l) > λ (7)
P(M(T (x,m, t)) = l) < 1,x ∈ D (8)

where D is the dataset, and λ is a threshold value for the attack success rate (e.g., 90%). Namely,
in the real world, a Trojan trigger cannot guarantee a 100% attack success rate and the model can
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(a) Perfect Trojan (b) Real Case: 7.5% Poi-
soned

(c) Real Case: 10.0% Poi-
soned

(d) Real Case: 15.0% Poi-
soned

Fig. 4: Perfect Trojans and Relaxations on 2D Data. Each sub-figure contains test samples (dots) and the
learned decision regions for different labels (in different colors) under a specific setting. The Trojan trigger is
t = (−, 0.6), and the target label yt = 3. The red region near (-, 0.6) is the learned Trojan decision region.

Compromised Benign

(a) NiN

Compromised Benign

(b) VGG16

Fig. 5: Comparison of Activation Values on Different Network Architectures.

learn a trigger that is different from the intended one. Consequently, the real Trojan region T ′ and
the theoretical one T satisfy |T ′∩T |

|T | = α where α is the real attack success rate.

To evaluate if the Trojan decision region in real-world data is the relaxation of the Trojan linear
hyperplane, we visualize the decision regions of Trojaned neural networks.

Following Bai et al. [59], we visualize the decision region of neural networks on 2d data. Specifi-
cally, We visualize decision regions of compromised Multilayer Perceptrons (MLP) trained on dif-
ferent poisoning rates. The MLP model has 5 layers and each layer contains 100 neurons, and we use
ReLU as the activation function. Similar to Bai et al. [59], the used dataset contains five isotropic
Gaussian 2d blobs, in which each blob represents a class. In Fig. 4, we show the complete and
precise Trojan decision region (Fig. 4(a)) for this model and real-world relaxations with different
poisoning rates of BadNets attack (Fig. 4(b), Fig. 4(c), Fig. 4(d)). Each color in the figure denotes
one output label. In our experiments, we set the trigger to t = (−, 0.6), and the target class yt = 3
(red). Thus, the red region close to t = (−, 0.6) denotes the Trojan region. We observe that, with the
growth of the poisoning ratio, the attacks get a higher attack success rate and become more precise,
and the Trojan region also converts to the ideal one shown in Fig. 4(a). Despite such relaxations,
we can also confirm that the Trojan region has a large intersection with the hyperplane and other
possible triggers are around the ground truth one.

8.2 Empirical Evidence for Theorem 3.3 on Other Models

Different model architectures. To evaluate the linearity of different model architectures, we collect
the activation outputs of models with different architectures (i.e., NiN and VGG16). Similar to § 3
in the main paper, we use both benign samples and compromised samples as the input of models
and collect their activation outputs. The results are shown in Fig. 5. The results show that compro-
mised samples always lead to significantly higher activation values than benign samples in different
models. The conclusion is consistent with the linearity theory in § 3 of the main paper and proves
that our theory can generalize to different model architectures.

Different model layers: Besides the linearity on different model architectures, we also evaluate the
linearity on different model layers. Fig. 6 demonstrates the activation outputs of different convo-
lutional layers (i.e., 14th to 17th layers). Note that we only show the results on 4 layers due to the
space limitation.The results on other layers are similar. From the results, we observe that Trojans
introduce a large set of high activation values in each layer, leading to the final linearity between
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Fig. 6: Comparison of Activation Values on Different CNN Layers in ResNet18 Model.

input and activation output. The results are consistent with our previous analysis in § 3 of the main
paper and further confirm that Trojans can introduce linearity at each layer of the DNN model.

Different activation functions. To investigate if our theory and NONE can generalize on differ-
ent activation functions, we train 5 ResNet18 models on CIFAR-10 with 2 common used linear
activation functions (i.e., ReLU [60], LeakyReLU [61]) and 3 non-linear activation functions (i.e.,
ELU [62], Tanhshrink [63] and Softplus [64]). Then we apply NONE to protect these models. We
report the ASR and BA of both protected models and undefended models. The results are shown in
Table 10. Overall, we find that NONE always achieves a low ASR when using different activation
functions, showing the generalization of NONE on different activation functions. Even with non-
linear activation functions, NONE is still effective and we suspect the reason is that even though
some activation functions are non-linear, well-trained deep neural networks do fall into the "highly
linear" regions. The results are also consistent with existing papers [44].

Table 10: Evaluation Results with Different Activation Functions.

Activation Function Undefended NONE

BA ASR BA ASR

ReLU 94.10% 100.00% 93.62% 1.07%
LeakyReLU 94.32% 100.00% 93.48% 1.24%

ELU 92.99% 99.93% 91.11% 1.46%
Tanhshrink 91.68% 99.76% 90.18% 5.11%

Softplus 92.81% 100.00% 89.91% 2.07%

8.3 Explaining DP-SGD Defense

DP-SGD [24] improves existing SGD methods by removing the noises added to poisoning train-
ing samples and shadows promising results in defending against Trojans. Here, we explain why it
works. Specifically, we use the same settings with Fig. 4 to train 2 compromised models with vanilla
SGD and DP-SGD, and show the comparison results in Fig. 7. Results show that data poisoning can
successfully attack the vanilla SGD method. As a comparison, DP-SGD makes the decision region
(red) much more complex, and removes the malicious “hyperplane” effects to defense against Tro-
jans. Recently, Tursynbek et al. [65] quantitatively measured the curvature of DNN using Curvature
Profile [66] and showed that models trained with DP-SGD produce more curved decision bound-
aries, which is consistent with our results. By doing so, DP-SGD breaks the “hyperplane” Trojans
rely on and hence, removes the Trojan effects. However, this unavoidably affects the accuracy of
benign samples. As shown in Fig. 7, many benign samples got misclassified.
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(a) SGD (b) DP-SGD

Fig. 7: Decision Region Generated by SGD and DP-SGD.

Algorithm 2 Jenks Natural Breaks Optimization
Input: All Activation Values: An

Output: Cluster of smaller values: Bn, Cluster of larger values: On

1: function SEPARATION(An)
2: for break b in Breaks do
3: B′

n = {x ∈ An∥x ≤ b}
4: O′

n = {x ∈ An∥x ≥ b}
5: µB , σB = norm(B′

n)
6: µO, σO = norm(O′

n)
7: σ2

within = σ2
B + σ2

O

8: σ2
between = (µB − µO)

2

9: if σwithin/σbetween ≤ lowest then
10: lowest = σwithin/σbetween

11: On = O′
n

12: Bn = B′
n

8.4 Sample Separation

In line 13 of Algorithm 1, we separate the activation values into two clusters via Fisher’s linear
discriminant analysis. In detail, we minimize the variance within clusters σwithin and maximize the
variance between clusters σbetween. The process is implemented by Jenks natural breaks optimiza-
tion, which is an iterative optimization method that finds the minima/maxima of σwithin/σbetween.
The detailed process can be found in Algorithm 2. In line 2 of Algorithm 2, it iterates all possible
breaks. In lines 5 to 8, it calculates the value of σwithin and σbetween. Lines 9 to 12 find the lowest
value of σwithin/σbetween and the best separation.

8.5 Dataset Details

The overview of the dataset is shown in Table 11. Specifically, we order the datasets with their
data sizes and show their dataset names, input size of each sample, the total number of samples, the
number of classes and the default Trojan triggers used for generating poisoned data in each column.
Among these datasets, MNIST [47] is widely used for digit classification tasks. The GTSRB [48]
dataset is used for traffic sign recognition tasks in the self-driving scenario. TrojAI [51] contains
the images created by compositing a synthetic traffic sign, with a random background image from
the KITTI dataset [67]. Other datasets (i.e., CIFAR-10 [49] and ImageNet-102) are built for rec-
ognizing general objects (e.g., animals, plants and handicrafts). The default triggers (Fig. 3 in the
main paper) used for each dataset are shown in the last column of Table 11. All datasets used in
the experiments are with MIT license. They are open-sourced and do not contain any personally
identifiable information or offensive content.

2https://github.com/fastai/imagenette
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Table 11: Overview of Datasets.

Name Input Size Samples Classes Trigger

MNIST 28*28*1 60000 10 Single Pixel
GTSRB 32*32*3 39209 43 Static

CIFAR-10 32*32*3 50000 10 Dynamic
ImageNet-10 224*224*3 9469 10 Watermark

TrojAI 224*224*3 125000 5-25 Natural Trojans

Table 12: Results on More Attacks.

Dataset Network Attack Undefended NAD ABL NONE

BA ASR BA ASR BA ASR BA ASR

CIFAR-10 ResNet18

WaNet 94.39% 96.71% 88.81% 1.17% 90.79% 2.68% 92.24% 0.69%
SIG 94.34% 99.08% 88.26% 1.42% 91.44% 1.29% 93.79% 1.08%

Filter 91.08% 99.34% 87.91% 4.38% 88.46% 2.24% 89.87% 1.20%
Blend 94.62% 99.86% 88.24% 1.58% 92.72% 1.70% 94.21% 0.93%

8.6 Attack Details

We first evaluate the performances of NONE against BadNets [1] on two different settings: single
target attack and label specific attack. For the single target attack, we set the label whose index is
0, 0, 1 and 1 as the target label for MNIST, CIFAR-10, GTSRB and ImageNet-10, respectively. For
label specific attack, the target label of each sample is the label whose index is (the label index of
this sample plus 1)%(the number of classes in the dataset). Then, we evaluate the defense against
the label-consistent attack [11] and the natural Trojan attack [8]. We use the same implementation
and parameters in original papers to achieve these attacks and compare NONE with other defense
methods. Notice that for the label-consistent attack, the official github repository3 only provides
poisoned CIFAR-10 datasets, and the code for training GAN and generating poisoned samples are
not released. Therefore, we only evaluate NONE on CIFAR-10. For defending against the hidden
trigger Trojan attack [56], we follow the parameter settings in original paper and use a pair of image
categories (i.e., randomly selected from ImageNet dataset in the previous work [56]) for testing.

8.7 Resistance to More Attacks

In this section, we evaluate the resistance of NONE to more attacks. Four state-of-the-art poisoning
based Trojan attacks (WaNet [68], SIG attack [69], Filter attack [8] and Blend attack [10]) are
included in the experiments. The dataset and the network used are CIFAR-10 and ResNet18. We
report the BA and ASR of undefended model, and the model trained with NAD [38], ABL [9] and
NONE. Results in Table 12 demonstrates NONE has better performance than baseline methods
(i.e., NAD and ABL). On average, NONE has 0.98% ASR and 92.52% BA. The results indicate
that our method is resistance to various Trojan attacks.

8.8 Sensitivity to Configurable Parameters

NONE has a few configurable parameters that may affect its performance: learning rate in train-
ing, resetting fraction, number of neurons in each layer used to detect malicious samples (selection
threshold) and different thresholds used for the identification of compromised neurons. We vary the
configurable parameters in NONE independently and evaluate the impact of each. The setting of
dataset, models and attack type is the same as evaluation in § 5.3 of the main paper. We use 5%
poisoning rate, 3*3 trigger size as the default attack setting.

Learning rate. Learning rate usually affects the accuracy and convergence speed of the model
during the training process. To understand how the learning rate impacts the model deployed with
NONE, we choose learning rates from 0.01 to 0.00001 and then measure the BA and ASR of models
using different learning rates in the training process. The results are shown in Fig. 8.

Overall, as shown in Fig. 8(a), using a larger learning rate makes the convergence process faster and
the BA lower, except for using the learning rate 0.01. This is because using a larger learning rate can

3https://github.com/MadryLab/label-consistent-backdoor-code
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(a) Benign Accuracy (b) Attack Success Rate

Fig. 8: Evaluation Results with Different Learning Rates.

(a) Benign Accuracy (b) Attack Success Rate

Fig. 9: Evaluation Results with Different Resetting Fractions.

update the weights quickly, but a too large learning rate makes it difficult to find the local optimum
and decrease the BA.

In addition, in Fig. 8(b), we find that the final ASR is decreased with the decrease of learning rate
after the model is converged. Using learning rate 0.00001 finally achieves the lowest ASR. The
reason is that increasing the learning rate tends to make the model skip the local optimal value and
get a more likely worse value.

Therefore, combining the results in these 2 subfigures, we choose the learning rate 0.001 as the
default setting in § 5.2 because using 0.001 achieves the best BA and ASR. The epoch number is set
to 5 because ASR is not decreased after 5 epochs and the BA is already good.

Resetting fraction. Resetting fraction measures the number of neurons that are reset by NONE.
Specifically, NONE first sorts the probabilities that the neuron has activation values larger than
0 and then resets the neurons whose probabilities is in top r1% in each layer. Using a smaller
resetting fraction makes NONE to detect compromised neurons more conservatively (only labeling
and resetting the most likely compromised neurons). To measure the effect of resetting fraction
on defense performance of NONE, we obtain the BA and ASR of models at different resetting
fractions from 0.5% to 15%. The results are shown in Fig. 9, where the legend shows different
resetting fraction values.

From the results in Fig. 9(a), it is obvious that when we use a larger resetting fraction and reset more
neurons, the final BA is lower. The reason is that after we reset neurons, some good features learned
by the model are lost, which decreases the final BA. When we reset more neurons (i.e., using a larger
resetting fraction), the model loses more high quality features and decreases more BA. Therefore, to
avoid losing too much BA, the resetting fraction is recommended to be small.
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Table 13: Results on Different Selection Thresholds.

Number of Neurons Single Target Attack Label Specific Attack

BA ASR BA ASR

top 1 93.11% 1.03% 93.31% 0.96%
top 0.5% 93.10% 1.07% 93.32% 0.96%
top 1% 93.13% 1.07% 93.37% 0.95%

top 10% 93.11% 1.06% 93.29% 1.04%
top 30% 93.14% 1.04% 93.26% 41.07%
top 50% 93.08% 1.04% 93.18% 60.12%
top 100% 93.05% 1.07% 93.14% 71.78%

Table 14: Results on Different λl and λh.

λh BA ASR λl BA ASR

0.3 93.22% 1.07% 0.1 93.18% 1.13%
0.5 93.05% 1.14% 0.3 93.08% 0.99%
0.7 93.13% 1.11% 0.5 93.18% 1.11%
0.9 93.12% 1.11% 0.7 93.11% 1.03%

Furthermore, in Fig. 9(b), we find that different resetting fractions do not affect the ASR of models
after a certain threshold (i.e., 3%). Because when the resetting fraction is large, NONE can success-
fully detect almost all compromised neurons. Increasing the resetting fraction does not help NONE
to detect more compromised neurons.

Based on the above conclusions, we set the default resetting fraction as 3% because using resetting
fraction 3% requires changing fewer neurons, achieving high BA and low ASR.

Selection threshold. When detecting poisoning samples, we only use the neurons whose compro-
mised values are larger than the values of a portion of neurons in the same layer and we call this
portion as selection threshold. To fully understand the impact of this threshold, we vary the thresh-
old from 1 neuron to 100% neurons in the dataset and collect the corresponding BA and ASR under
different attack settings. We test the single target BadNets attack and the label specific BadNets
attack. We then show the results in Table 13, where the first column shows the threshold and the
following columns show the results against the BadNets.

As the results show, when we increase the selection threshold, the ASR of the label specific Bad-
Nets attack significantly increases when the threshold is larger than 10%. This is because only a few
neurons in the model are compromised. If the selection threshold is larger than the number of com-
promised neurons, NONE chooses many benign neurons to identify whether a sample is malicious
or not, which introduces more noise and reduces the detection accuracy because benign neurons
are not sensitive to Trojan behavior. Furthermore, the label specific BadNets attack specifies many
different labels as target labels, making the attack stealthy and detecting the attack more difficult.
Therefore, with the increase of the selection threshold, the defense performance becomes worse.

However, we observe that the ASR of the single target standard Trojan attack is not correlated with
the selection threshold, showing the robustness of NONE to selection threshold against the single
target Trojan attack. This is due to the fact that the single target BadNets attack only focuses on one
label, making the malicious behavior more obvious, thus reducing the impact of introduced noise
and still achieving a low ASR.

For the BA, we find that the BA against both the single target BadNets attack and the label specific
BadNets attack is stable. Although using a lower selection threshold may allow NONE to filter
out malicious samples conservatively (i.e., only use the most likely compromised neurons to detect
malicious samples), enabling NONE to train the model on most of the data and achieve good BA
results. Choosing a higher selection threshold does not decrease the BA significantly. Because con-
sidering there are a large number of benign samples in the dataset, even a higher selection threshold
introduces more benign neurons (i.e., noise) to identify malicious samples and reduces the number
of benign samples for finetuning, NONE still has enough benign samples for training and achieves
similar BA results as using low selection thresholds.

Therefore, considering both BA and ASR, we set the selection threshold as 10% to avoid the ASR
increasing significantly.

Parameters in compromised neurons identification. As mentioned in § 4 of the main paper, we
use an alternative implementation to evaluate our design. We first obtain two clusters of samples
according to their final layer probability outputs (the value in the probability vector). Subsequently,
we classify the samples whose probability values are lower than a threshold λl to the first cluster
(i.e., low confidence samples) and classify the samples whose probability values are higher than λh

to the second cluster (i.e., low confidence samples). Then, we use the gap between two clusters to
measure the linearity of each neuron. If a neuron has high linearity (i.e., top r1 in a layer), then we
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Table 15: Comparisons on Efficiency.
Method Runtime Overhead

Native training 2898.4s N/A
AC 4459.7s 53.86%

ABL 3197.4s 10.31%
NONE 3149.7s 8.60%

Fig. 10: Trojan Inputs with Large Triggers.

consider it as a compromised neuron. In this process, λh and λl determine the selection of the high
confidence

samples and the low confidence samples that affect the defense performance of NONE. Therefore,
to fully understand the impacts of them, We vary λh and λl values, and obtain the corresponding
ASR and BA. By default, we use λh as 0.9 and λl to be 0.1 when the other parameter is changing.

Table 14 shows the results with different λh and λl settings. The results indicate that there is no
obvious correlation between the performance of NONE and parameters (i.e., λl and λh). As the
results show, the ASR of models is always around 1.11% under different parameter settings. And
the difference between the highest BA and the lowest BA is 0.17% which is quite small. Therefore,
NONE is not sensitive to λl and λh, which improves the usability of NONE.

8.9 Efficiency

We compare the total training time of native training, AC [22], ABL [9], and our method on the
CIFAR-10 dataset with ResNet18. The results are shown in Table 15. The epoch number (i.e., 100)
and batch size (i.e., 128) for different methods are the same. The ASR and BA are consistent with
results in Table 1. We run each method with five trails and report the average time. All methods are
run on the same device specified in § 5 of the main paper. Thus, our method is efficient.

8.10 Adaptive Attack

In this paper, we assume that attackers can poison the training data but have no control over the
training procedure, e.g., the training algorithm, code, and hardware. This is consistent with existing
work [24, 22, 9, 58]. It is hard for attackers to conduct adaptive attacks under the threat model
because they can not directly control the training of the model, instead, NONE will be in charge of
the training process. Therefore, we relax the threat model and consider the adaptive attacker in a
code-poisoning attack [57], which requires extra capability from the adversary, i.e., modifying the
training procedure.

In the considered adaptive code-poisoning attacks, the adversary goal is to train a Trojaned model
with low linearity and try to evade the defense of NONE. However, under our threat model, the
adversary can only poison the data but cannot modify the training process of NONE, which makes
reducing the model’s internal linearity almost impossible. Therefore, we relax the threat model for
attackers and allow the attacker to control the training process of the model. We also assume the
defender can access both the training data and the trained model. The defender tries to use NONE
to eliminate Trojans injected in the model trained by the attacker.

Then, we design an adaptive loss that minimizes the activation difference between benign samples
and corresponding Trojan samples to achieve attack goals. The adaptive loss is defined in Eq. 9,
where x is benign sample and x̃ is the corresponding Trojan sample (i.e., the sample obtained by
pasting trigger on x).

L (Fθ(x), y) + L (Fθ(x̃), yt) + α
∑

(Ii(x)− Ii(x̃))
2 (9)
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Table 16: Adaptive Attack.

α
Undefended NONE

BA ASR BA ASR

1e-4 90.06% 100.00% 88.48% 67.89%
1e-3 89.53% 99.97% 87.92% 76.78%
1e-2 89.03% 99.91% 86.50% 86.20%
1e-1 88.72% 99.98% 85.71% 94.92%

y and yt are the label of benign sample x and target label respectively. Fθ donates the final prediction
of the model. L means the Cross-Entropy criterion. Meanwhile, Ii is the feature on the i-th layer,
and α is the weight that controls the influence of the third loss item. By design, the loss function
minimizes the distance between activation values of benign samples and the corresponding Trojan
samples, making the Trojan decision region more curve and complex. Trojan models trained with
the adaptive loss should have low linearity and may evade the detection of NONE.

To measure whether the adaptive attack works, we first train a benign model and then fine-tune that
model using adaptive loss when attackers use poisoned data to attack the model. The Trojan trigger
we use in the attack is the watermarking trigger and the model is VGG16. The results are shown
in Table 16. The results show that NONE does not always achieve good defense against adaptive
attacks. For example, when α = 1e − 1, the BA and the ASR of NONE is 85.71% and 94.92%,
respectively. However, the BA and ASR of the model trained with NONE are lower than that of the
undefended model, showing that NONE helps in training a better model.

8.11 Comparison with DBD

Besides existing defenses compared in § 5.2 (i.e., DP-SGD [24], NAD [38], AC [22], ABL [9]), we
also compare NONE with another training time defense DBD [58]. DBD defends backdoor attacks
by decoupling the end-to-end training process into three stages, i.e., self-supervised learning for
the backdoor, supervised training for the fully-connected layers, and semi-supervised fine-tuning of
the whole model. We use six different attacks (i.e., BadNets [1], Label-consistent [11], Blend [10],
SIG [69], Filter [8], WaNet [68]) and the CIFAR-10 dataset. We report the BA and ASR of the native
training, DBD, and NONE in Table 17. The average runtime of DBD and NONE are 18,988.4s and
3,149.7s, respectively. For all attacks, our method achieves higher BA than DBD. In addition, in five
of six attacks, the ASR of NONE is lower than that of DBD. The results show that our method is
more effective and efficient than DBD.

Table 17: Comparison to DBD [58].

Attack Undefended DBD NONE

BA ASR BA ASR BA ASR

BadNets 94.10% 100.00% 91.24% 1.25% 93.62% 1.07%
Label-consistent 94.73% 83.42% 91.08% 1.87% 94.01% 2.14%

Blend 94.62% 99.86% 92.03% 1.96% 94.21% 0.93%
SIG 94.34% 99.08% 91.55% 1.51% 93.79% 1.08%

Filter 91.08% 99.34% 88.75% 1.42% 89.87% 1.20%
WaNet 94.39% 96.71% 90.98% 0.95% 92.24% 0.69%

8.12 Comparison to More Defenses on Natural Trojan

Besides the results of comparison to DP-SGD on natural Trojan (§ 5.2), we compare NONE with
more training-time defenses (i.e., DP-SGD [24], NAD [38], AC [22], ABL [9], DBD [58]) on natural
Trojan [8]. The dataset used here is CIFAR-10, and DNNs are NiN and VGG16. As shown in
Table 18, the average ASR of NONE is 33.07%, 2.41 times lower than the undefended model.
However, the average ASR of DP-SGD, NAD, AC, ABL, and DBD are 75.4%, 80.43%, 77.45%,
79.32%, 77.99%, respectively. The results demonstrate all existing methods have high ASR when
facing natural backdoors, while our method can reduce the ASR significantly.
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Table 18: Comparisons to More Defenses on Natural Trojan.

Network Undefended DP-SGD NAD AC ABL DBD NONE

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

NiN 91.02% 87.62% 39.19% 87.22% 80.75% 88.10% 83.85% 88.28% 86.28% 86.33% 86.27% 87.54% 86.94% 34.21%
VGG16 90.78% 71.88% 53.40% 63.58% 85.20% 72.76% 85.69% 66.67% 86.46% 72.32% 86.38% 68.45% 81.83% 31.49%

8.13 Generalization to Larger Models

To study NONE’s generalization to larger models, we report its BA and ASR on ResNet34 [53] and
Wide-ResNet-16 (WRN16) [70]. The results of two baseline methods (i.e., NAD [38] and ABL [9])
are also reported. The dataset used is CIFAR-10. The runtime overhead of NONE on ResNet34 and
WRN16 are 10.15% and 9.73%, respectively. For both two models, NONE achieves higher BA and
lower ASR than NAD and ABL. For ResNet34, the BA of NONE is 2.47% and 2.84% higher than
NAD and ABL. The ASR of NONE for ResNet34 is also 1.45% and 0.19% lower than that of NAD
and ABL. The results show that our method is scalable to larger models.

8.14 Generalization to Larger Datasets

To evaluate the generalization of NONE to larger datasets, we report the performance (i.e., BA,
ASR, and Runtime) of native training and NONE on a ImageNet subset (200 classes with 100k
images for training and 10k images for testing) from Li et al. [71]. The results can be found in
Table 20. NONE achieves low ASR (i.e., 1.98%, 50.32 times lower than Native Training) with a
high BA (i.e., 1.66% lower than native training). In addition, the overheads compared with native
training is 13.86%.

Table 19: Generalization to Larger Models.

Networks NAD ABL Ours

BA ASR BA ASR BA ASR

ResNet34 90.54% 2.67% 90.17% 1.41% 93.01% 1.22%
WRN16 86.73% 5.96% 84.70% 5.04% 88.28% 3.88%

Table 20: Generalization to Larger Datasets.

Method BA ASR Runtime

Native Training 85.12% 99.65% 23.8h
NONE 83.46% 1.98% 27.1h
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