
Addressing Resource Scarcity across Sign Languages
with Multilingual Pretraining

and Unified-Vocabulary Datasets

Gokul NC1,2, Manideep Ladi2, Sumit Negi2, Prem Selvaraj1,
Pratyush Kumar1,2,3, Mitesh Khapra1,2

1AI4Bharat, 2IIT Madras, 3Microsoft Research
gokulnc@ai4bharat.org, manideepladi@gmail.com, sumitnegi662@gmail.com, prem@ai4bharat.org,

pratyush@cse.iitm.ac.in, miteshk@cse.iitm.ac.in

Abstract

There are over 300 sign languages in the world, many of which have very limited
or no labelled sign-to-text datasets. To address low-resource data scenarios, self-
supervised pretraining and multilingual finetuning have been shown to be effective
in natural language and speech processing. In this work, we apply these ideas
to sign language recognition. We make three contributions. First, we release
SignCorpus, a large pretraining dataset on sign languages comprising about 4.6K
hours of signing data across 10 sign languages. SignCorpus is curated from
sign language videos on the internet, filtered for data quality, and converted into
sequences of pose keypoints thereby removing all personal identifiable information
(PII). Second, we release Sign2Vec, a graph-based model with 5.2M parameters that
is pretrained on SignCorpus. We envisage Sign2Vec as a multilingual large-scale
pretrained model which can be fine-tuned for various sign recognition tasks across
languages. Third, we create MultiSign-ISLR – a multilingual and label-aligned
dataset of sequences of pose keypoints from 11 labelled datasets across 7 sign
languages, and MultiSign-FS – a new finger-spelling training and test set across 7
languages. On these datasets, we fine-tune Sign2Vec to create multilingual isolated
sign recognition models. With experiments on multiple benchmarks, we show
that pretraining and multilingual transfer are effective giving significant gains over
state-of-the-art results. All datasets, models, and code has been made open-source
via the OpenHands toolkit1.

1 Introduction

According to the World Health Organization, 500 million people in the world have disabling hearing
loss, and the number is expected to go up to 700 million by 2050. Sign language is a common medium
of communication amongst the Deaf and Hard of Hearing (DHH). In sign languages, expressions
are through the visuospatial modality by combining movements of fingers, arms, face, and upper
body. Sign languages are full-fledged languages that have evolved over long durations of time to
have their unique lexical and grammatical features. Across the world, there are over 300 different
sign languages which often have very little commonality with languages spoken in respective regions.
Finally, there are large variations in signing between people using the same sign language. All these
characteristics make it challenging to build tools to reduce communication barriers between DHH
people and those who do not know sign languages.

1https://openhands.ai4bharat.org

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.
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One class of such tools are AI-based sign language recognition (SLR) models which can process a
video of a person signing to identify a single character (finger-spelling recognition), a single signed
unit or a gloss (isolated sign recognition), or a sequence of glosses (continuous sign recognition). As
summarized by Koller [2020], there has been growing interest in creating datasets and training SLR
models for various sign languages across the world. However, the available sign language datasets
are still limited in various ways. First, in sheer size these datasets are orders of magnitude smaller
than speech or text datasets. For example, even the largest continuous sign language corpora have
up to 1,00,000 sign instances [Koller et al., 2015] while speech corpora have millions of spoken
words and text corpora have billions of tokens. Second, the availability of resources is non-uniform
across languages. American Sign Language has most data with over 4 datasets with a total of 57,187
videos, while Indian Sign Language has only 1 publicly available dataset with 4,287 videos [Sridhar
et al., 2020]. Finally, these datasets are often not diverse with representation of only few signers and
with limited variation in backgrounds and other visual conditions. In contrast, speaker diversity is
an essential metric in speech datasets. In summary, the field of sign language recognition is lacking
datasets to develop usable AI tools.

In text and speech processing, several techniques have been developed for low-resource languages, i.e.,
languages that have limited amount of data resources. One such technique is self-supervised learning
to build language and acoustic models on large unlabelled datasets. Removing the requirement to
label data allows curating data from web-scale resources, even for low-resource languages. The
second technique is to create transfer amongst one or more high-resource language and related
low-resource languages by training a single model across languages. Such multilingual models may
additionally enforce linguistic transfer with aligned model outputs, such as using a common decoding
script in a machine translation system. In this work, we apply these techniques to sign languages
with both contributions in datasets and models trained on these datasets.

We make the following three dataset contributions. First, we create SignCorpus a pretraining dataset
for sign language modelling across 10 sign languages - American, Australian, British, Chinese, Greek,
Indian, Korean, Russian, Spanish, Turkish. SignCorpus comprises of about 4,568 hours of temporal
sequences of 75 pose keypoints from the upper half of the body including 11 keypoints in the face.
The modality of pose keypoints focuses on the movement of body parts and their relation to each
other, while removing extraneous features such as the background. Further, pose keypoints do not
contain personally identifiable information which may be a concern in releasing a large public dataset.
The videos are curated from language specific sources on YouTube and other platforms and filtered
based on a variety of identified quality measures. Second, we create MultiSign-ISLR a multilingual
dataset with temporal sequences of pose keypoints from 11 publicly available isolated sign language
recognition datasets across 7 sign languages: American, Argentinian, Chinese, German, Greek,
Indian, and Turkish. MultiSign-ISLR also maps the datasets to have a common label set; for example,
the signs for the gloss cat in American Sign Language are mapped to the same label as the signs for
the gloss猫 in Chinese Sign Language. In total, MultiSign-ISLR has more than 300K videos across
5, 144 aligned labels. Third, we create MultiSign-FS a new label-aligned multilingual dataset for
finger spelling from videos we curated from YouTube and other sources. MultiSign-FS contains
sequences of pose trajectories across 7 sign languages – American, Argentine, Chinese, Greek,
German, Indian, Turkish and 69 finger spelt characters and digits.

We analyze the value of the above datasets by training and evaluating models for sign recognition.
First, we pretrain a Decoupled GCN network with 5.2M parameters on SignCorpus with a self-
supervised objective based on Dense Predictive Coding [Han et al., 2019]. We call this model
Sign2Vec, which is a multilingual large-scale pretrained model that can be adapted for various sign
recognition tasks across multiple languages. We then fine-tune Sign2Vec on MultiSign-ISLR to obtain
a multilingual sign language recognition model for 7 languages. We compare the accuracy of the
model against baseline models varying both pretraining and finetuning stages to be monolingual or
multilingual. We see significant improvements against each of these baselines and also against state-
of-the-art models trained individually for each dataset. We also finetune Sign2Vec on MultiSign-FS to
create a multilingual finger spelling recognition dataset. With similar comparisons with baselines
we report large improvements in accuracy both due to multilingual pretraining and joint fine-tuning.
With these results, we demonstrate the value of the datasets we release - SignCorpus, MultiSign-ISLR,
and MultiSign-FS, and effectiveness of the multilingual Sign2Vec model. All models are released as
part of the OpenHands repository.
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Dataset SL GL Vocab Signers Videos Hrs

ASLLVD [de Amorim et al., 2019] American English 2745 6 9,748 2.7
AUTSL [Sincan and Keles, 2020] Turkish Türkçe 226 43 38,336 20.5
BosphorusSign22k [Özdemir et al., 2020] Turkish Türkçe 744 6 22,542 19
CSL [Huang et al., 2019] Chinese Mandarin 500 50 125,000 108.8
DEVISIGN [Chai et al., 2014] Chinese Mandarin 2000 30 24,000 21.9
GSL [Adaloglou et al., 2021] Greek Elliniká 310 7 40,785 6.4
INCLUDE [Sridhar et al., 2020] Indian English 263 7 4,287 3.6
LSA64 [Ronchetti et al., 2016] Argentinian Spanish 64 10 3,200 1.9
MSASL [Joze and Koller, 2019] American English 1000 222 25,513 24.0
Phoenix-W-S03 [Forster et al., 2012] German Deutsch 271 1 3659 0.5
WLASL [Li et al., 2020] American English 2000 119 21,083 14.0

Table 1: The diverse set of existing ISLR datasets which we study in this work. SL indicates the sign
language and GL indicates the language used for the corresponding glosses

2 Related Work

2.1 Datasets for Isolated Sign Recognition

Isolated Sign Language Recognition (ISLR) is one of the primary tasks in sign language processing,
which involves classifying individual signs in a video to corresponding glosses. A gloss is a fun-
damental text unit of sentence in sign language, usually conveying a meaning or a concept through
a single signing action. Given the importance of ISLR and ease of building datasets for this task
compared to other SL tasks (like CSLR), there has been relatively more number of datasets released
for ISLR. Each dataset usually consists of a subset of the vocabulary from the sign language being
considered, with multiple samples for each gloss to train ML models.

Table 1 shows the list of 11 ISLR datasets (across 7 sign languages) that are openly available and
being studied in this work. American and Chinese SL datasets are the largest available datasets,
whereas Argentinian and German SL have the lowest amount of data. It is to be noted that none of
these datasets are large enough to represent rich diversity of vocabulary used in practice. Also, there
are still a large number of unexplored sign languages for which even small ISLR datasets have not
yet been built. This signifies the importance of building datasets and pretrained models which can
enable information transfer under few-shot or even zero-shot settings.

2.2 Low-resource Text and Speech Processing

Self-supervised learning is one of the key approaches in NLP to improve the performance of models
using both unlabeled data as well as labeled data. This usually involves 2 phases – an initial training
of the model using the unlabeled data, commonly known as pretraining phase. The pretrained model
is then used for other downstream tasks by further training on different task-specific objectives, and
called fine-tuning phase. This method was particularly effective for the BERT model by Devlin et al.
[2019], wherein a large Transformer-encoder model was trained on a large corpus of unlabelled
text, and then fine-tuned on language understanding tasks. Since then, there has been improved
self-supervised techniques not only for NLP [Doddapaneni et al., 2021], but also for other domains
like speech [Schneider et al., 2019], image [Dosovitskiy et al., 2020] and video [Feichtenhofer et al.,
2022] including action recognition [Han et al., 2019].

Furthermore in NLP, training a single model for multiple languages has enabled information transfer
from related high-resource languages to low-resource languages [Chau and Smith, 2021]. This
multilingual transfer can also happen at the pretraining stage: Self-supervised learning is effective
during fine-tuning even for languages that are unseen during pretraining stage, showing that such
language models are good few-shot learners [Winata et al., 2021]. This effectiveness of multilingual
transfer suggests that modeling human language using large amounts of unlabelled data captures
patterns that generalize across languages.

In addition to multilingual models, converting text data from languages using different scripts
to a common representation has shown to improve transfer to low-resource languages, for tasks
like Machine Translation [Ramesh et al., 20d] and Automatic Speech Recognition [Javed et al.,
2022]. Such script unification makes explicit the transfer of common knowledge like shared formal
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vocabulary across related languages. In the domain of speech synthesis, it is now a common approach
to unify all languages to the International Phonetic Alphabet (IPA) when training multilingual
text-to-speech (TTS) models [Zhang et al., 2019].

2.3 Self-supervised Training for Sign Languages

There has been limited research on improving performance on low-resource sign languages, especially
given that almost all sign languages listed in Table 1 are low-resource. This was brought to the notice
of the wider NLP community in a recent paper by Yin et al. [2021]. Self-supervised training for sign
languages has been recently studied by Selvaraj et al. [2022] and Hu et al. [2021]. In the work by Hu
et al. [2021], the pretraining is performed only on the hand skeleton and thus does not capture facial
features or other bodily articulations. Also, no pretraining dataset is created for SL, but rather they
reuse the pose data available from hand skeleton datasets, which is not in any way related to sign
language data. In contrast, we pretrain on a large unlabeled corpus that contains clean sign language
pose data covering different SLs. In our previous work [Selvaraj et al., 2022], the training was done
only on Indian Sign Language (ISL), while this work expands the training to 10 sign languages
and increases the dataset size by 4×. As we show, this increased diversity of pretraining results in
improved accuracy.

3 SignCorpus: Pretraining Dataset across 10 Sign Languages

The success of pretraining in NLP and speech is due to large corpora such as the OSCAR corpus
[Abadji et al., 2022] which contains multiple terabytes of text collected for 166 languages. In the
following, we describe how we use similar web resources to build SignCorpus.

3.1 Curating Content

First, we identify the sign languages that we consider in SignCorpus. Based on analysis of the amount
of content available in YouTube, we decided to focus on 10 sign languages - American, Australian,
British, Chinese, Green, Indian, Korean, Russian, Spanish, and Turkish. For Indian Sign Language
(ISL), in our earlier work we presented a pretraining corpus of 1,129 hours [Selvaraj et al., 2022].
Hence we focus on the remaining 9 languages in this work.

Second, we identify a list of channels and content sources for each sign language. This was performed
by searching for related keywords both in English and in native languages. We found that a majority
of the sources were from news and media outlets who provided sign language interpreters. The
second major source was religious content which also came with sign language interpretation. A
third major source of content was sign language learning material such as glossaries and tutorials.
These three sources accounted for 90.7% of the videos that we found. The full list of all channels and
sources, for each language, is provided in the Appendix.

We divided the videos into three categories: (a) isolated - has a single gloss signed, (b) continuous -
has sequences of glosses translating a continuous stream of audio, and (c) multiple isolated - has a
few glosses signed one-by-one usually with a pause (for teaching purposes). All three types of videos
are of relevance to pretraining which is done over small windows of time of the order of a couple
of seconds. The statistics of the number of videos and their length found across each type and sign
language is shown in Table 2. In total, we found 84,420 videos totalling to 4,145 hours of content
across the 9 sign languages. Majority of the content was in American Sign Language, while Turkish
SL has the least.

3.2 Dataset Processing

First, we crop videos to capture the signer. We manually find the coordinates to crop for each
video and then use FFmpeg for cropping. An example of this is shown in the Appendix. In our
experience, these crop coordinates remain relatively constant throughout all frames in a video and
often throughout different videos in the same channel/playlist.

As the second and crucial step, we convert the RGB video frames into frames of pose keypoints.
An example conversion is shown in Figure 1. This is a crucial choice we make because of three
reasons. One, all personally identifiable information (PII) is removed thereby eliminating most

4



Sign Language Isolated Continuous Multiple Isolated Total Raw Data Total Data
Videos Hours Videos Hours Videos Hours Videos Hours Hours

American SL 34,510 53.05 12,271 1,104.25 - - 46,781 1,157.30 879.25
Australian SL - - 1,035 117.70 89 2.20 1,124 119.90 71.99
British SL 198 0.93 3,102 808.85 726 16.93 4,026 826.71 675.78
Chinese SL 8,588 17.50 947 333.20 16 2.00 9,551 352.70 305.65
Greek SL - - 3,773 524.25 37 2.00 3,810 526.25 475.18
Korean SL 2,171 7 4,980 446.50 102 1.00 7,253 454.50 426.72
Russian SL 7,633 7.72 1,359 451.05 254 17.73 9,246 476.50 412.67
Spanish SL - - 1,514 171.63 141 6.83 1,655 178.46 161.48
Turkish SL 671 0.85 268 38.35 35 14 974 53.20 48.50
Indian SL - - - 1,129.00 - - - 1,129.00 1,129.00
Total 53,771 87.05 29,249 5124.78 1400 62.69 84,420 5274.52 4586.22

Table 2: Category-wise statistics of the unlabeled dataset that we collect in our work. The last column
indicates the final number of hours per sign language after all pre-processing and quality checks.

privacy concerns. This is of particularly important because large pretraining corpora for audio or
text have significantly lesser risks of PII content. Two, accurate pose extractors have been trained
on much larger datasets. This modularizes the sign recognition problem instead of framing it as an
end-to-end video-to-gloss classifier. Three, the sign language recognition models working on pose
data have one or two orders of magnitude fewer parameters than models that process video directly.

We use the MediaPipe Holistic [Grishchenko and Bazarevsky, 2020] toolkit to extract pose keypoints.
The library provides separate models for body pose, facial, and hand landmark extraction. Across
these three, 543 landmarks (33 body pose, 21 left hand, 21 right hand, and 468 face) are extracted. Out
of these points, we store 75 keypoints - covering both hands, body, and face. A detailed description
of all keypoints, the ones we have chosen, and the data format are in the Appendix. Thus, for all
363.32M frames in the dataset, we use MediaPipe to extract 75 keypoints represented by x and y
coordinates which are relative to the width and height of the cropped video.

Figure 1: Illustration for image to pose keypoints conversion. Left: RGB image of a person signing.
Right: 75 keypoints which we use to represent the frame.

3.3 Filtering Videos based on Quality Check

Given the large scale of data, we designed and implemented multiple data quality checks. First we
remove all intervals of time wherein no person is detected for a heuristically chosen interval length of
3 seconds. Second, we remove all videos where multiple people are visible in the crop of the signer.
With these two rules, we filter out 6.5% of the curated videos.

Next, we apply frame-wise checks and statistical filtering based on those checks. The first check was
to ensure that a person is clearly visible in the cropped frame. This ruled out videos in which pose
extraction fails, a person is not present, or those which only contain hands of signers. The second
check was to ensure that a person is signing, and not just speaking. We did this by checking that both
hands are visible and are being moved. The third check was to ensure that the person is oriented
properly facing the camera. We applied these binary checks to individual frames and aggregated an
average score across all frames in a video. We then identified thresholds for each check to be met by
a video. These thresholds were identified language-wise and based on the type of video - isolated,
continuous, or multiple isolated. Applying these thresholds resulted in varying ratios of accepted
videos - ranging from 87% for British Sign Language channels to 99% for Korean Sign Language
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channels. Details of the identified thresholds, and the fractions of videos meeting different checks by
language are in the Appendix.

Upon completing all quality checks, the number of hours of data by language is shown in the last
column of Table 2. In combination with the data we released for Indian Sign Language (ISL) earlier
[Selvaraj et al., 2022], we have a total of 4,586 hours of pretraining data in SignCorpus.

4 Sign2Vec: Model Pretrained on SignCorpus

In this section, we describe the network architecture and pretraining approach that utilizes SignCor-
pus dataset. We call this pretrained model Sign2Vec as we envision it as a multilingual large-scale
model that produces a semantic vector representation for a given sign video.

Window

Time

Figure 2: Model architecture in Sign2Vec for DPC pretraining as proposed by Selvaraj et al. [2022]

As a backbone to train Sign2Vec, we choose a graph convolution network (GCN) based architecture.
For pose-based tasks GCN models are common, as pose keypoints can be considered as a graph
of nodes on which the convolution operation models the spatial relationship between connected
keypoints. In the case of isolated sign recognition where we have a sequence of pose frames, we also
need to model the temporal relation between keypoints. To this end, Spatio-Temporal convolutions on
3D graphs are used, which are referred to as ST-GCNs [Lin et al., 2020]. In our work, we specifically
choose Sign Language GCN as the backbone network, which was proposed by Jiang et al. [2021] for
modeling sign language pose representations. SL-GCN combines STC-attention with a model called
Decoupled-GCN [Cheng et al., 2020] from action recognition research and extends it to isolated sign
recognition. Decoupled GCN enables increased neural capacity while adding only few additional
parameters. We also include an attention-guided dropout mechanism called DropGraph [Cheng et al.,
2020], which avoids overfitting even when using many GCN layers.

When training a model on a labelled sign recognition task, an SL-GCN can directly be used to
classify between glosses. For pretraining, we need additional network components. We follow the
self-supervised technique called Dense Predictive Coding (DPC) [Han et al., 2019]. DPC has been
shown to be effective in capturing the temporal relations due to three key features. First, DPC does
not predict at the frame-level but instead at feature-level where the features represent compressed
and generalized latent representations of a segment of video. Second, DPC represents temporal
information across short time ranges instead of individual or neighbouring frames with high stochastic
variation. Third, DPC learns high-level semantics of future time frames instead of predicting masked
low-level representations, thereby avoiding modelling simple interpolation.

We now describe the model architecture with the SL-GCN backbone and support for DPC as shown
in Figure 2. The individual pose-frames pk from a video are grouped into non-overlapping contiguous
windows. Each such window xi spanning N frames is then passed to the shared SL-GCN network
denoted as f , which produces an embedding zi. These embeddings are passed sequentially to multiple
layers of Gated Recurrent Unit [Cho et al., 2014]. This GRU network g is responsible for modeling
the context-dependent representation ci. The training objective is to predict the representation of next
set of timesteps t+ 1, t+ 2, . . . given the contextual representation ct. More precisely, we predict
the contextless spatio-temporal embeddings ẑt+1, ẑt+2, . . . of the future windows xt+1, xt+2, . . . by
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passing the context vector ct, ct+1, . . . through a shared fully-connected layer ϕ auto-regressively at
each step. We also generate the actual embeddings zt+1, zt+2, . . . using the windows xt+1, xt+2,
. . . across the entire training batch. Then finally for each future timestep starting from t+ 1, we use
a variant of the loss function Noise-Contrastive Estimation which maximizes the lower-bound of
mutual information between relevant samples, called InfoNCE loss [Oord et al., 2018]. Specifically,
for a given predicted representation, say ẑt+1, we consider the actual representation zt+1 as the
positive sample, and use other representations from the same sequence (like zt+2) as the temporal
negative samples & samples from other sequences in the same batch as approximate spatial negative
samples. We then use the contrastive objective to minimize the distance between the positive samples
in the embedding space, and maximize that of negative samples.

In our implementation, we define a window as consisting of N = 10 frames. We use 10 layers of
GCN and the entire SL-GCN denoted f has 4.9M parameters. The embedding generated denoted by
z is a vector of 256 floating point numbers. The function g, implemented by GRUs consists of 0.25M
parameters. The function ϕ is implemented by a fully-connected layer with 0.1M parameters. More
details about the model implementation can be found in the Appendix.

5 Label-Aligned Multilingual Finetuning Dataset

In this section, we describe the contributions that we make in releasing labeled datasets. Specifically,
we explain the label-aligned datasets that we release for existing isolated sign recognition datasets of
different sign languages as well as new finger-spelling datasets that we curate.

5.1 MultiSign-ISLR: Vocabulary-Unified Multilingual ISLR Dataset

As shown in Table 1, we explore 11 different ISLR datasets across 7 sign languages. The languages in
which glosses for these datasets are written are based on the lingua franca of the respective countries
where those sign languages are standardized. As seen in the table, the written languages of the labels
of these datasets vary significantly. For a multilingual model trained on these datasets, there would be
more than 10K labels to predict. The larger number of labels not only makes classification harder but
also makes transfer between languages harder with distinct labels for each sign language. To address
this, we unify the glosses of all sign languages to a common representation. We choose English as
the common language, as it is widely spoken and because there are around 6K glosses in English
(in American and Indian SLs). First, we go through all the label sets in English and perform a few
normalization operations to convert them to a consistent format. For instance, we normalize "Thank
you" to "THANKS" for consistency. For the remaining 4K non-English glosses, we initially translate
them all to English using Google Translate. Then we manually verify if the translations are correct
by cross-checking against an online dictionary (Wiktionary) and performing corrections wherever
necessary. Finally, we combine all the glosses into a unique vocabulary set. This process reduces the
number of labels from 10,123 (actual representation) to 5,144 (unified representation), almost a 2×
reduction. For instance, labels implying "dog" (English) in different languages like "köpek" (Turkish),
"hund" (German), "perro" (Spanish), etc. were mapped to a single standard gloss "DOG". We release
these normalized and label-aligned glosses for all the 11 datasets studied in this work through the

OpenHands library. We also explain in the Appendix the set of all standard rules that we follow for
normalization of glosses and cross-lingual alignment. In addition, for each of the datasets we create
sequences of pose keypoints with MediaPipe as already described in Section 3.2. In the next section,
we demonstrate the utility of this unified multilingual dataset by training models based on this data.

5.2 MultiSign-FS: Multilingual Finger-Spelling Datasets

Another sign recognition problem is to identify individual characters in finger spelling (FS). To the
best of our knowledge, there is no existing label aligned multilingual dataset on FS. We create such a
dataset across 7 sign languages (the same ones as in the previous section) and call it MultiSign-FS.
Similar to SignCorpus, videos for MultiSign-FS are primarily collected from YouTube2. We manually
label each video for finger-spelt regions, crop them as short videos, and extract pose keypoints from
these videos. The label set for each language consists of all alphabets in the language and the 10

2In addition, we also collect a few videos from specific websites like SpreadTheSign and Gebärden lernen
for the languages that have inadequate data on YouTube.
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Sign
Language

Alphabets Numerals Total
Signs

Signers
per class

Train-set
size

Test-set
size

American 26 10 36 15.6 428 134
Argentine 27 10 37 4.0 111 37
Chinese 30 10 40 13.1 414 112
Greek 24 10 34 3.9 100 34
German 26 10 36 4.6 132 36
Indian 26 10 36 4.7 123 49
Turkish 32 10 42 3.9 122 42

Total Unique 59 10 69 - 1430 444

Table 3: Details of the finger-spelling datasets we curate in MultiSign-FS

numerals (0− 9). The alphabet size varies across languages, although most of them predominantly
overlap with the English-Roman alphabet. In the case of Chinese, we use the more commonly used
Pinyin Roman representation. The detailed alphabet list for each language is shown in the Appendix.
On average, we have 5 different signers for each finger spelled character. We split the dataset into
train and test sets roughly in the ratio of 4:1 while ensuring it is signer independent, i.e., videos in
the test set are signed by different signers than in the train set. The statistics of MultiSign-FS are
shown in Table 3. Upon unifying the character-set across all languages, there are 69 unique characters
including 10 numerals. Through the OpenHands library, we release all the character-sets along
with the extracted poses from the collected videos for all the 7 languages.

6 Experimental Results

In this section, we present results of pretraining on SignCorpus dataset, followed by fine-tuning for
both the label-aligned datasets MultiSign-ISLR and MultiSign-FS.

Following the network architecture and self-supervised training strategy described in Section 4, we
pretrain the SL-GCN model using the SignCorpus dataset. From the videos in SignCorpus, we
sample random clips of 70 frames mapping to time-intervals of about 3 seconds. To construct a
training batch, such clips are taken from different videos in SignCorpus. With a window of size 10
frames, we construct 7 windows from each sampled clip. Out of these, 4 windows are modelling the
context vector which then predict the represenations for the subsequent 3 windows in future steps.
We use a batch size of 128 and a learning rate of 10−4 using Adam Optimizer [Kingma and Ba, 2015]
for stochastic gradient descent. The training set consists of entire SignCorpus, whereas sampled
clips from MultiSign-ISLR are used as a validation set to monitor the progress of training and for
early-stopping. We pretrain the model for 1.2M iterations.

We now report results of fine-tuning Sign2Vec for MultiSign-ISLR and MultiSign-FS datasets. We
study two options for fine-tuning: (a) unilingual (UFT) where for each language we fine-tune only the
training set of that language, and (b) multilingual (MFT) where we fine-tune jointly for all languages
with all training sets combined. When training the MFT model, we encode the input sign language
as a One Hot Encoding (OHE) vector. The hyperparameters for all experiments are reported in the
Appendix. We also report baseline results on fine-tuning the model pretrained only on Indian Sign
Languages [Selvaraj et al., 2022] which we denote ISL. We also report state-of-the-art results reported
for each of the individual benchmarks.

For MultiSign-ISLR, we report results in Table 4. We make three observations. First, the benefit of
a larger and more diverse pretraining dataset is revealed by comparing ISL and UFT, which have
the same finetuning setup but differ in the pretraining corpus. On average, UFT has 3.5% higher
accuracy across datasets. The improvement is more significant for datasets with low accuracy such
as ASLLVD, MSASL, and WLASL. Notably, the accuracy on INCLUDE which is an ISL dataset
slightly improves even when diversifying the pretraining beyond ISL. Second, the benefit of aligned
multilingual dataset is revealed by comparing UFT and MFT. On average, MFT has significantly
higher accuracy by about 10%. In composition, multilingual pretraining and fine-tuning result in
13.4% improvements over results with ISL. Finally, we compare the SOTA results against MFT.
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Dataset SOTA ISL UFT MFT

ASLLVD 16.5 [de Amorim et al., 2019] 27.7 32.5 50.1
AUTSL 95.0 [an, 2021] 88.3 92.1 91.4
BosphorusSign22k 94.9 [Gökçe et al., 2020] 88.3 87.2 93.6
DEVISIGN 63.9 [Selvaraj et al., 2022] 59.4 62.2 79.3
INCLUDE 93.5 [Selvaraj et al., 2022] 94.7 94.9 96.3
LSA64 97.8 [Selvaraj et al., 2022] 96.3 97.5 95.9
MSASL (1000) 59.8 [Hu et al., 2021] 18.2 34.0 67.4
PHEONIX-W-S03 - 47.7 48.7 48.5
WLASL 47.5 [Hu et al., 2021] 27.4 31.0 46.6

Average (without Pheonix) 71.1 62.5 66.4 77.6

Average (with Pheonix) - 60.9 64.4 74.3

Table 4: Accuracy on MultiSign-ISLR dataset. ISL: Model pretrained on ISL data [Selvaraj et al.,
2022] and finetuned individually. UFT: Model pretrained on SignCorpus and finetuned individually.
MFT: Model pretrained on SignCorpus and finetuned jointly across all languages.

There is an average increase of 6.5% across datasets, excluding Pheonix. We note that SOTA results
sometimes train on validation sets [an, 2021] and use ensemble models [Gökçe et al., 2020], which
we did not perform for MFT. Further, this advantage of MFT is despite it being a single multilingual
model with just 5.1M parameters while SOTA results are usually on larger models individually
optimized for each dataset.

For MultiSign-FS we report results in Table 5. Since this is a new dataset, we create a baseline by
training SL-GCN model from scratch individually on all datasets. For the other two models we report
results only on multilingual finetuning, either using the model already pretrained on ISL data by
Selvaraj et al. [2022] or by pretraining on SignCorpus. The results show 0.5% increase (SL-GCN vs
ISL) in average accuracy by pretraining on a single language and a further improvement of 8% (ISL
vs SignCorpus) by pretraining on multiple languages. For both models, details of the training setup
and hyperparamters are in the Appendix.

Sign Language SL-GCN ISL SignCorpus

American 73.9 65.7 76.9
Argentine 62.2 54.1 64.9
Chinese 52.7 43.8 57.1
German 63.9 72.2 75.0
Greek 20.6 32.4 38.2
Indian 38.8 42.8 44.9
Turkish 42.9 47.6 57.1

Average 50.71 51.2 59.2

Table 5: Accuracy on the MultiSign-FS dataset. SL-GCN models finetuned from scratch for each
dataset. ISL: Pretrained on ISL data [Selvaraj et al., 2022] and finetuned jointly. SignCorpus:
Pretrained on SignCorpus and finetuned jointly.

7 Conclusions

To address the low resource nature of sign language datasets, we contributed three multilingual
datasets: SignCorpus, MultiSign-ISLR, and MultiSign-FS. Results on public benchmarks across 7
languages demonstrated effectiveness of both pretraining on a diverse multilingual dataset and joint
fine-tuning on multilingual label-aligned datasets. The pretrained and multilingual finetuned models
are also effective resources which can be finetuned for other sign recognition tasks and languages.
More generally, our efforts in data collection and model building strongly suggest effective strategies
of improving accuracy of sign language tools both for considered languages which have publicly
available small datasets and for the many other languages which have far fewer resources.

9



7.1 Limitations

One of the major limitations of our work include not being able to have a human evaluation setup for
the varied sign languages studied in our work. Our work does not involve manual verification of the
extracted pose videos to check if native signers are able to transcribe these keypoints sequences to
labels, as a proxy measure of assessing the integrity of RGB video to poses conversion. Also, with
respect to the vocabulary-unification performed in Section 5.1, we do not claim that the alignment
is 100% accurate since none of the authors in this work are native speakers (or signers) of those
non-English languages

With respect to self-supervised learning, we believe a lot more work needs to be done to explore
other pretraining strategies, and extensive benchmarking of different SSL methodologies is lacking
and essential to propose what concretely works in all cases. For example, in our work, we find that
accuracies do not improve upon pretraining for datasets like CSL [Huang et al., 2019] and GSL
[Adaloglou et al., 2021], for which we do not report any improvements in Table 4. We believe
that the pretraining method explored in this work is quite preliminary in nature, merely intended
to demonstrate the utility of large-scale unlabeled data for multilingual ISLR. Also, the results and
findings from this paper need to be extended and evaluated for continuous sign recognition, especially
the pretraining strategy. Although there are also works like BOBSL [Albanie et al., 2021] and
How2Sign [Duarte et al., 2021] which focus on aligning the sign language data from videos and
audio subtitles for creating an automated corpus to train CSLR models, our currently work focuses
only on collecting unlabeled videos for self-supervised pretraining.
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fusion for sign language recognition. ArXiv preprint, abs/2009.14139, 2020. URL https:
//arxiv.org/abs/2009.14139.

Samuel Albanie, Gül Varol, Liliane Momeni, Hannah Bull, Triantafyllos Afouras, Himel Chowdhury,
Neil Fox, Bencie Woll, Rob Cooper, Andrew McParland, and Andrew Zisserman. BOBSL:
BBC-Oxford British Sign Language Dataset. 2021.

Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram, Kenneth DeHaan, Florian
Metze, Jordi Torres, and Xavier Giro-i Nieto. How2Sign: A Large-scale Multimodal Dataset for
Continuous American Sign Language. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Gokul NC and Premkumar Selvaraj. OpenHands : Labelled ISLR datasets - Poses, 2021. URL
https://doi.org/10.5281/zenodo.6674324.

Manideep Ladi, Sumit Negi, Gokul NC, and Premkumar Selvaraj. OpenHands : Fingerspelling
datasets - Poses, 2022. URL https://doi.org/10.5281/zenodo.6813108.

13

https://aclanthology.org/W14-4012
https://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2103.08833
https://arxiv.org/abs/2009.14139
https://arxiv.org/abs/2009.14139
https://doi.org/10.5281/zenodo.6674324
https://doi.org/10.5281/zenodo.6813108


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.1.
(c) Did you discuss any potential negative societal impacts of your work? [No] We do not

find any.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The experimental
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