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A Pre-training Stage Settings1

A.1 Datasets2

In Section 4.1, we list all the subsets of the total 143M dataset, and here we introduce them in detail.3

SBU [1] is a relatively small image-text dataset, which contains 1 million image-text pairs obtained4

from Flickr. YFCC15M [2] is a commonly used subset of YFCC100M [2] and there are mainly two5

versions of YFCC15M, V1 and V2. YFCC15M-V1 is obtained by applying the same filtering rule on6

YFCC100M as CLIP [3], while YFCC15M-V2 is collected by DeCLIP [4] with a different filtering7

strategy. In addition to a subset of YFCC, the V2 dataset also contains some additional data crawled8

from the Internet and is of higher quality than V1. CC3M [5] and CC12M [6] conduct the same9

image-text filter pipeline on Internet webpage sources, and the difference is that the filtering method10

of the latter is more relaxed. LAION400M [7] is one of the largest openly available image-text11

datasets. We rank the image-text pairs by their similarity scores, which are pre-computed by the12

producer using a pre-trained CLIP model, and pick up a 99M subset with the highest similarity scores.13

Combining all the above datasets, we finally have a dataset of 143M image-text pairs. During the14

training process, we randomly shuffle the training sequence of datasets at the beginning of each15

training epoch, then train our model on these datasets one by one.16

A.2 Implementation Details17

Model Architectures We follow the same architecture design as CLIP [3] for PyramidCLIP-18

ResNet50/ViT-B32/ViT-B16, except that we incorporate a depth-wise convolution into the Feed-19

Forward module of ViT, namely, LeFF. The input resolution of image encoder is 224×224 and the20

maximum context length of text encoder is 77. The final image and text features are projected to the21

same dimension, which is 1024 for PyramidCLIP-ResNet50 and 512 for PyramidCLIP-ViT, followed22

by L2 normalization before interaction.23

Details of the Object-attribute Detector The object-attribute detector, adopting the framework of24

Faster R-CNN [8], is pre-trained by VinVL [9]. And image is resized to the resolution of 640× 64025

before entering the detector. We take 10 objects with the highest confidence from the detector to26

obtain the corresponding ROI features and category descriptions with attribute information.27

Pre-training Setup We train our PyramidCLIP using an AdamW [10] optimizer and the cosine28

learning rate scheduler with a linear warmup. Specifically, the learning rate linearly increases from 029

to the peak value within 10% of the total steps, and then decreases with a cosine anneal strategy. The30

weight decay rate of AdamW is set to 0.2. To save GPU memory, automatic mixed-precision [11] is31

used. The models are trained from scratch for either 8 or 32 epochs in our experiments, i.e., 8 epochs32

for ablation and 32 epochs for comparison. When training on 15M datasets, including YFCC15M-V1,33

V2 and LAION15M, the batch size is set to 4096 and the peak learning rate is set to 2× 10−3. While34

on the 143M large-scale dataset, the batch size is set to 8192 and the peak learning rate is set to35
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5× 10−4. Besides, PyramidCLIP-ResNet50/ViT-B32 takes 64 V100 GPUs to train on 143M data,36

while PyramidCLIP-ViT-B16 takes 128 A100 GPUs.37

B Downstream Settings38

B.1 Datasets for Downstream Classification Task39

Besides ImageNet [12], we also evaluate the transferability of our model on other 10 downstream40

classification datasets including Oxford-IIIT Pets [13], CIFAR-10 [14], CIFAR-100 [14], Describable41

Textures [15], Stanford Cars[16], Food-101 [17], Oxford Flowers 102 [18], FGVC Aircraft [19],42

SUN397 [20] and Caltech-101 [21]. The details of each dataset are listed in Table 1 and we follow43

the same data split and evaluation metric as CLIP for fair comparison.44

Table 1: Datasets for downstream classification task.

Dataset Abbreviation Classes Train Size Test Size Evaluation Metric
CIFAR-10 C10 10 50,000 10,000 accuracy
CIFAR-100 C100 100 50,000 10,000 accuracy

Describable Textures DTD 47 3,760 1,880 accuracy
Stanford Cars CARS 196 8,144 8,041 accuracy

Food-101 F101 101 75,750 25,250 accuracy
Oxford-IIIT Pets PETS 37 3,680 3,669 mean per class

Oxford Flowers 102 FLOW 102 2,040 6,149 mean per class
FGVC Aircraft AIR 100 6,667 3,333 mean per class

SUN397 SUN 397 19,850 19,850 accuracy
Caltech-101 CAL 102 3,060 6,085 mean per class
ImageNet IN 1000 1,281,167 50,000 accuracy

B.2 Implementation Details45

Downstream Zero-shot Image Classification Due to the fact that the labels of common classification46

datasets are mostly nouns rather than natural language descriptions, we adopt the same prompt setting47

as used in CLIP, that is, for every single class name, we generate 80 different textual descriptions48

with 80 prompt templates (such as “a photo of label”). The ensembles of these textual representations49

are used in computing similarities between images and label names.50

Downstream Zero-shot Image-text Retrieval The image-text retrieval task can be split into two51

sub-tasks, i.e., image retrieval and text retrieval, according to the target modality. We evaluate the52

zero-shot image-text retrieval capabilities on Flickr30K and MS-COCO dataset, which is performed53

by ranking image-text pairs according to their similarity scores.54

Downstream Image Linear Probe To implement linear probe evaluation, we follow CLIP [3] to55

train a logistic regression classifier on the frozen visual features extracted by the image encoder.56

Specifically, we train the logistic regression classifier using L-BFGS algorithm provided by scikit-57

learn with maximum 1,000 iterations, and report the corresponding metric for each dataset. Moreover,58

the L2 regularization strength C is determined using hyperparameter sweep on the validation sets.59

Downstream Object Detection and Instance Segmentation Following [22, 23], for the downstream60

object detection and instance segmentation tasks, all the parameters are fine-tuned. For detection task61

on PASCAL VOC, the detector is trained for 24k steps with a batch size of 40, and the initial learning62

rate is 0.02 with 100 warm-up iterations and decays by 10 at 18k, 22k steps. The scale of image is63

randomly sampled from [480, 800] with interval 32 during training and is set to 800 for inference.64

For the detection and instance segmentation on COCO, the model is trained for 90k iterations with65

the initial learning rate 0.02, and the scales of images are randomly sampled from [600, 800] during66

training and is also set to 800 for inference.67

Downstream Image End-to-end Fine-tuning In addition to the five downstream tasks mentioned68

in the main text, following MAE [24], we also conduct the end-to-end fine-tuning experiments on69

downstream classification task. Here, we elaborate the implementation details of this setting, and the70

corresponding results can be seen in Appendix E. For downstream end-to-end fine-tuning, we first71
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fine-tune the classifier layer alone while freezing the others for 8 epochs to endow the model a proper72

initialization. Then we fine-tune all the parameters in the usual manner. AdamW is used as optimizer,73

and the learning rate is set to 1e-3 and adjusted by a cosine learning rate scheduler without warmup.74

We totally fine-tune the model for 128 epochs, including the initialization stage.75

C Fair Comparison on YFCC15M-V1 and LAION15M76

In this section, we compare our PyramidCLIP against CLIP under the same amount of pre-training77

data, i.e., YFCC15M-V1 and LAION15M. The results on downstream zero-shot image-text retrieval78

task and ImageNet classification are shown in Table 2 and Table 3. It can be seen that PyramidCLIP79

surpasses CLIP regardless of the distribution of pre-training dataset, demonstrating the superiority80

of our pre-training method. Furthermore, we validate the effectiveness of proposed method on81

downstream object detection and instance segmentation tasks, and the results are shown in Table 4. It82

can be seen that the weights of our model exceeds that of CLIP model on both object detection task83

and instance segmentation task. Noting, on object detection task, the improvement on PASCAL VOC84

is more obvious than that on MS-COCO, since the amount of PASCAL VOC is smaller than COCO85

and the effect of weight initialization is more conspicuous.86

Table 2: Zero-shot image-text retrieval results on MS-COCO and zero-shot top1 accuracy on ImageNet. All the
models are pre-trained on YFCC15M-V1 for 32 epochs, except SLIP [25] for 100 epochs.

Method Image
Encoder

MS-COCO ImageNet

I2T R@1 I2T R@5 T2I R@1 T2I R@5 ZS Top1

CLIP⋄ ResNet50 29.8 56.9 19.3 40.9 36.8
PyramidCLIP ResNet50 39.9 66.2 24.9 49.3 43.7

CLIP⋄ ViT-B/32 24.2 48.3 14.0 33.1 31.2
PyramidCLIP ViT-B/32 34.2 60.2 21.1 44.0 41.7

CLIP⋄ ViT-B/16 30.3 56.1 18.9 40.0 36.9
SLIP† [25] ViT-B/16 33.9 60.0 22.5 45.4 45.0

PyramidCLIP ViT-B/16 38.2 65.0 25.0 49.3 46.0
⋄ Our Implementation
† Tested with released model: https://github.com/facebookresearch/SLIP#vit-base

Table 3: Zero-shot image-text retrieval results on MS-COCO and zero-shot top1 accuracy on ImageNet. All the
models are pre-trained on LAION15M for 32 epochs.

Method Image
Encoder

MS-COCO ImageNet

I2T R@1 I2T R@5 T2I R@1 T2I R@5 ZS Top1

CLIP⋄ ResNet50 31.5 57.0 18.9 39.8 35.6
PyramidCLIP ResNet50 33.3 60.4 24.4 48.4 41.9

CLIP⋄ ViT-B/32 25.9 49.8 15.6 34.8 32.6
PyramidCLIP ViT-B/32 28.5 55.5 21.2 43.7 39.9

CLIP⋄ ViT-B/16 31.4 56.2 19.2 40.6 38.3
PyramidCLIP ViT-B/16 32.2 60.7 25.6 49.8 45.3
⋄ Our Implementation

D Downstream Task: Linear Probe87

We first validate the transferability of our method on downstream classification task via linear probe.88

The results are exhibited in Table 5. It can be seen that when the image encoder is ViT-B/32, the89

average accuracy of PyramidCLIP pre-trained on 143M data exceeds that of CLIP using 400M data.90

Furthermore, regardless of the image encoder used, our method outperforms CLIP on more than half91

of the small datasets, noting that the amount of pre-training data we used is only about 36% of that92

used by CLIP, further demonstrating the effectiveness of the proposed method.93
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Table 4: Fair comparison on object detection and instance segmentation tasks with ResNet50 as backbone.

Initialized
Weights

Pre-train
Dataset

Object Detection Instance Segmentation

VOC COCO COCO

AP bb AP bb
50 AP bb

75 AP bb AP bb
50 AP bb

75 APmk APmk
50 APmk

75

CLIP⋄ YFCC15M-V1 46.0 74.0 48.2 35.4 54.8 37.9 30.9 51.5 32.7
PyramidCLIP YFCC15M-V1 49.8 77.7 53.5 37.1 57.1 39.9 32.3 53.4 34.1

CLIP⋄ LAION15M 46.8 74.9 49.5 35.5 54.9 37.9 30.9 51.4 32.4
PyramidCLIP LAION15M 49.7 77.7 53.3 36.5 56.1 38.9 31.9 52.7 33.5
⋄ Our Implementation

Table 5: Linear probe accuracy on 10 datasets. C10/100/F101/FLOW/CAL/AIR is CIFAR-10/CIFAR-
100/Food101/Flowers/Caltech/Aircraft. AVG represents average accuracy across 10 datasets.

Method Image
Encoder

Pretrain
Dataset PETS C10 C100 DTD CARS F101 FLOW AIR SUN CAL AVG

CLIP⋆ ViT-B/32 400M 85.3 95.1 80.5 76.5 81.8 88.8 96.9 52.0 76.6 93.0 82.7
PyramidCLIP ViT-B/32 143M 87.8 96.0 82.5 77.3 82.6 83.3 93.9 50.2 77.5 96.4 82.8

CLIP⋆ ViT-B/16 400M 93.1 96.2 83.1 79.2 86.7 92.8 98.1 59.5 78.4 94.7 86.2
PyramidCLIP ViT-B/16 143M 90.3 96.5 83.5 79.3 86.9 88.1 95.6 56.5 79.9 96.5 85.3
⋆ Tested with the released model: https://github.com/openai/CLIP#api

E Downstream Task: End-to-end Fine-tuning94

On the basis of linear probe, we further validate the transferability of our method via end-to-end95

fine-tuning. The results are shown in Table 6. We compare PyramidCLIP against CLIP and supervised96

counterpart. It can be seen that PyramidCLIP pre-trained on 143M data exceeds both CLIP and97

supervised ResNet50. Also, it is worth noting that compared to CLIP, we use only 36% pre-training98

data, and compared with ResNet50 trained on manually-labeled ImageNet-1K, we didn’t use any99

manually-labeled data.100

Table 6: End-to-end fine-tuning accuracy on 11 downstream classification datasets with ResNet50 backbone.
C10/C100/F101/FLOW/CAL/AIR/IN is CIFAR-10/CIFAR-100/Food101/Flowers/Caltech/Aircraft/ImageNet1k.
AVG represents average accuracy across 11 datasets. Supervised(IN1K) denotes the model is supervised trained
on ImageNet-1K dataset.

Method Pretrain
Dataset PETS C10 C100 DTD CARS F101 FLOW AIR SUN CAL IN AVG

Supervised(IN1K)† 1.2M 93.0 94.0 77.8 68.4 65.6 81.3 89.7 60.0 62.3 90.8 76.2 78.1
CLIP⋆ 400M 74.5 95.0 69.4 70.4 73.4 86.4 88.4 57.8 65.4 89.7 76.6 77.0

PyramidCLIP 143M 75.4 95.2 74.8 72.0 77.7 86.7 87.7 58.4 68.6 92.0 78.0 78.8
⋆ Initialized with the released model: https://github.com/openai/CLIP#api
† Initialized with model from torchvision: https://download.pytorch.org/models/resnet50-0676ba61.pth

F More Ablation101

In this section, we supplement the ablation study of some important components in PyramidCLIP.102

All the ablation experiments are conducted on YFCC15M-V1 and trained for 8 epochs.103

F.1 Supplementary Ablation of PyramidCLIP Components104

Ablation of Each Component on Other Downstream Tasks In Section 4.6, we only provide ablation105

study of each component on ImageNet zero-shot classification. Here we list the corresponding ablation106

results on MS-COCO zero-shot image-text retrieval and PASCAL VOC object detection in Table 7,107

which indicate that on the basis of the peer-level alignment, all the other components in PyramidCLIP108

can still bring accuracy improvement individually on the two downstream tasks.109
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Table 7: Ablation study of each component on MS-COCO zero-shot image-text retrieval and PASCAL VOC
object detection. “Soften” means all the objectives are softened.

Image
Encoder

Components MS-COCO PASCAL VOC

Lpeer Lglobal
cross Llocal

cross Soften LeFF I2T R@1 T2I R@1 AP bb AP bb
50

ResNet50

✓ - 28.5 16.6 45.7 74.3
✓ ✓ - 31.9(+3.4) 18.5(+1.9) 46.5(+0.8) 75.1(+0.8)
✓ ✓ ✓ - 34.6(+6.1) 19.6(+3.0) 47.0(+1.3) 75.6(+1.3)
✓ ✓ ✓ ✓ - 36.4(+7.9) 21.1(+4.5) 47.4(+1.7) 76.0(+1.7)

ViT-B/32

✓ 24.3 13.4 - -
✓ ✓ 27.9(+3.6) 16.0(+2.6) - -
✓ ✓ ✓ 29.3(+5.0) 17.7(+4.3) - -
✓ ✓ ✓ ✓ 31.4(+7.1) 18.2(+4.8) - -
✓ ✓ ✓ ✓ ✓ 31.7(+7.4) 18.8(+5.4) - -

Figure 1: Zero-shot performance with differ-
ent settings of Ls.

The Influence of Different Ls Settings We further probe110

into the influence of the transformer layers Ls in the front111

part of ViT-based image encoder on zero-shot ImageNet112

classification task. Note that the total number of trans-113

former layers L in ViT is 12. The corresponding results114

with different Ls values are shown in Figure 1. It can be115

found that Ls = 9 achieves the best result, hence Ls is set116

to 9 in our experiments. Besides, Ls = 0 represents that117

the feature sequence F is feed into the first transformer118

layer of ViT and all the 12 layers are without LeFF. While119

Ls = 12 indicates that all the 12 layers are with LeFF and120

the raw sequence F is directly input to the final projec-121

tor without being processed by transformer, which is the122

reason why Ls = 12 shows such poor performance.123

F.2 Ablation of Other Possible Alignments124

In addition to the current six loss terms of PyramidCLIP described in the main text, i.e., the peer-level125

semantics alignment LGS and LLT, the global-relation cross-level alignment LGA and LRS, and the126

local-relation cross-level alignment LLA and LRT, there are three other possible losses that are LRA,127

LGT and LLS, corresponding to (vr, la), (vg , lt) and (vl, ls) respectively, as depicted in Figure 2(a).128

Note that LRA belongs to the peer-level alignment, and LGT and LLS are semantically mismatched.129

Among them, LGT is actually the original CLIP loss, shown in Figure 2(b). We will discuss the130

influence of these three losses in next two parts and explain why they are not incorporated into our131

PyramidCLIP paradigm.132

Figure 2: Schematic diagram of various losses. (a) Other three possible losses besides PyramidCLIP. (b) The
original CLIP loss. (c) Peer-level alignment. LRA also belongs to it but is not included in PyramidCLIP. (d)
Adding semantically mismatched alignment LGT and LLS into PyramidCLIP.

Granular Ablation of Peer-level Alignment In this part, we explore the influence of each sub-133

component belonging to the peer-level alignment, including LGS, LLT and LRA, shown in Figure 2(c),134

and compared with original CLIP loss. As listed in Table 8, reducing the image random crop ratio of135
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CLIP can improve the model performance, i.e., using LLT rather than LGT (see yellow rows), since136

the local view statistically removes some redundant information in the image, i.e., some sub-regions137

not described in the text. That is why we use the image local view and the original text as a pair to138

construct the peer-level local contrast. Besides, it can be seen that the addition of global contrast LGS139

also brings significant improvement. However, there is no further gain when bringing into LRA (see140

blue rows), hence it is not included in PyramidCLIP. And we attribute this to the inherent precise141

alignment between the ROI feature sequence R and the object-attribute description TOA, since the142

feature and category with attributes of each salient object in the image are extracted in pairs by the143

pre-trained powerful object-attribute detector.144

Table 8: Granular ablation results of peer-level alignment compared to the original CLIP loss.

Image
Encoder Method

ImageNet MS-COCO PASCAL VOC

ZS Top1 I2T R@1 T2I R@1 AP bb AP bb
50

ResNet50

LGT (CLIP) 30.0 26.0 13.5 44.6 73.4
LLT 30.8(+0.8) 26.5(+0.5) 14.0(+0.5) 44.9(+0.3) 73.5(+0.1)
LLT + LGS 32.8(+2.8) 28.5(+2.5) 16.6(+3.1) 45.7(+1.1) 74.3(+0.9)
LLT + LGS + LRA 32.7 28.5 16.7 45.7 74.4

ViT-B/32

LGT (CLIP) 24.1 19.4 9.8 - -
LLT 25.7(+1.6) 21.6(+2.2) 11.3(+1.5) - -
LLT + LGS 28.8(+4.7) 24.3(+4.9) 13.4(+3.6) - -
LLT + LGS + LRA 29.0 24.1 13.5 - -

Ablation of Semantically Mismatched Alignment On the basis of PyramidCLIP paradigm, we145

further study on the additional effect of LGT and LLS, termed as semantically mismatched alignment,146

shown in Figure 2(d). The ablation results are listed in Table 9, which reveal that adding semantically147

mismatched alignment cannot bring stable benefits, even degrades the performance in most cases.148

Therefore LGT and LLS are not attached to the PyramidCLIP paradigm, which is consistent with our149

motivation, i.e. addressing the semantics mismatch problem.150

Table 9: Ablation results of semantics mismatched alignment on the basis of current PyramidCLIP paradigm.

Image
Encoder Method

ImageNet MS-COCO PASCAL VOC

ZS Top1 I2T R@1 T2I R@1 AP bb AP bb
50

ResNet50

Baseline (PyramidCLIP) 38.6 36.4 21.1 47.4 76.0
w/ LGT 38.3 36.1 20.9 47.1 75.2
w/ LLS 38.4 35.7 20.8 46.9 75.7
w/ LGT + LLS 38.4 36.3 21.1 46.5 75.1

ViT-B/32

Baseline (PyramidCLIP) 35.9 31.7 18.8 - -
w/ LGT 35.6 32.2 18.7 - -
w/ LLS 35.5 29.6 17.8 - -
w/ LGT + LLS 35.5 30.9 18.1 - -

G More Visualizations151

In this section, more Grad-CAM heatmaps are visualized through text-to-image retrieval on MS-152

COCO. We utilize codes provided in [26] to implement Grad-CAM visualization. As shown in153

Figure 3, CLIP is more likely to focus on the scene or background areas in the images corresponding154

to the scene descriptions in query texts, while PyramidCLIP pay more attention to salient objects,155

which benefits from the introduce of cross-level relation alignment. For example, in Figure 3(b),156

CLIP focuses on areas corresponding to "green field" in the query text, while PyramidCLIP on157

"horse". In Figure 3(d), CLIP focuses on areas corresponding to "mountain", while PyramidCLIP158

on "skier with a red jacket". And the same phenomenon can also be seen in Figure 3(a)(c).159
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Figure 3: More Grad-CAM visualizations through text-to-image retrieval on MS-COCO. From left to right are
images from rank1 to rank5. Red box indicates the groundtruth image matched with the query text.
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