
A Implementation and additional empirical results

Here we summarize implementation details and experimental results that were removed from the main
body of the paper due to space constraints. All of the empirical work in our paper is fully reproducible.
Code may be found in our git repository: http://bitbucket.org/gramacylab/tricands.

A.1 Classical GP implementation details

The GP surrogate for the Goldstein–Price and Hartman 6 examples (Section 3 and Appendix A.2,
respectively) used the laGP package for R [Gramacy, 2016, Gramacy and Sun, 2018] on CRAN
with separable/automatic-relevance determination lengthscales in a Gaussian kernel using gradient-
based MLE. We supplied our own EI function, following the prototype provided in Chapter 7 of
Gramacy [2020], modified to keep track of the number of evaluations. Finite-differencing was used
to approximate gradients. For Latin hypercube samples we used the lhs [Carnell, 2018] package for
R. “Raw” comparators L-BFGS-B and Nelder–Mead [Nelder and Mead, 1965] local optimizers were
facilitated via the optim function in R.

The heteroskedastic GP surrogate used for ATO (Section 3.2) was via hetGP [Binois and Gramacy,
2021] for R. The built-in EI capability in that package, which supports both numerical optimization
(via analytic gradients) and candidates, unfortunately could not easily be modified to keep track of
the number of evaluations. Simulations, which require Matlab, were run in R through the R.matlab
interface [Bengtsson, 2018]. The input space for ATO is discrete, in {1, . . . , 20}8, which is different
from the real-valued inputs of our other examples. The only modification we made to accommodate
this nuance was to “snap” acquisitions to that grid, implemented in coded units. Sometimes this
resulted in replications in the design. No additional consideration was given to replicates, despite
findings that they are beneficial in similar contexts [Binois et al., 2019].

Details for the surrogates used in Section 4 are provided therein.

A.2 Hartmann 6

As a second example of conventional GP-based BO, consider the six-dimensional Hartmann function.
Again, see Picheny et al. [2012] for more on this benchmark. Our experimental setup is identical the
Goldstein–Price experiment in Section 3 except here we use the default Nsub = 100d = 600. Figure
6 summarizes results. Even with this high Nsub, tricands still result in many fewer acquisition criteria
evaluations than numerically optimized EI (right panel), which must search more aggressively for the
local optimum in such high dimension.

0 10 20 30 40 50

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

Hartmann 6, no noise

n: blackbox evaluations

m
ed

ia
n

be
st

 o
bs

er
ve

d
va

lu
e

initial

Nelder−Mead
BFGS

EI
EI−tri
EI−lhs
TS−tri
TS−lhs

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

30th evaluation

be
st

 o
bs

er
ve

d
va

lu
e

EI

EI
−t

ri

EI
−l

hs

TS
−t

ri

TS
−l

hs N
M

BF
G

S

●

●

●●

●●

●

●

●●●

●
●
●

●●●

●

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

final evaluation

be
st

 o
bs

er
ve

d
va

lu
e

of candidates/criteria evals
54587 20779 22800 20808 22800

EI

EI
−t

ri

EI
−l

hs

TS
−t

ri

TS
−l

hs N
M

BF
G

S

Figure 6: Analog of Figure 4 for the Hartmann 6 function.

The results are broadly similar to our earlier 2d Goldstein–Price example shown in Figure 4. Tricands-
based EI yields equivalent, or better, BOV despite many fewer criteria evaluations. This is true, but to
a lesser extent, with TS. It is notable that tricands came from behind in the case of EI. For the first

15

http://bitbucket.org/gramacylab/tricands

twenty or so acquisitions, numerically optimized EI bests its tricands analog. Geometric bias towards
exploration may be less desirable in early acquisitions, but pays off by the end of the search.

A.3 Michaelwicz

As a second example of abruptly changing regimes, continuing from Section 4.1, consider the
Michaelwicz function. Like G&L, the surface has large flat areas, but it also has a continuum of
ridges of local minima which intersect to create deeper valleys of local minima, and ultimately one
global minimum where the deepest of those ridges intersect. A nice feature of the Michaelwicz
function is that it is defined in arbitrary input dimension. Here we use it in 4d, which makes for a
very difficult surface to model and optimize. To cope, we take the search out to nend = 75 and allow
up to two hundred candidates per acquisition. Otherwise the setup is similar to earlier examples.

0 20 40 60

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

Michalewicz 4d, no noise

n: blackbox evaluations

m
ed

ia
n

be
st

 o
bs

er
ve

d
va

lu
e

TGP−lhs
TGP−tri
hyb−lhs
hyb−tri
DGP−lhs
DGP−tri

●

●

●

−3
−2

−1
0

40th evaluation

be
st

 o
bs

er
ve

d
va

lu
e

TG
P−

lh
s

TG
P−

tri

hy
b−

lh
s

hy
b−

tri

D
G

P−
lh

s

D
G

P−
tri

●●

●

●

−3
−2

−1
0

final evaluation

be
st

 o
bs

er
ve

d
va

lu
e

TG
P−

lh
s

TG
P−

tri

hy
b−

lh
s

hy
b−

tri

D
G

P−
lh

s

D
G

P−
tri

Figure 7: Michaelwicz function in 4d with MCMC-based comparators.

Figure 7 shows the results, which are largely similar to G&L, except revealing of these additional
challenges. Tricands uniformly dominate LHS via median BOV. Although noise is high across all
boxplots, reflecting variability in solution quality over random re-initialization, the patterns are clear
in a pairwise analysis. For example, the red boxplots in the right panel look similar but, at the 75th
evaluation, 75/100 tricands-based BOVs were below their LHS counterpart. As in the G&L example,
TGP bests DGP. Abrupt regime changes are at odds with the DGP’s smooth warping of inputs.

B Additional discussion

When reflecting on tricands’ value, it is important to remember some stylized facts about BO. One is
that the theory (under stringent regularity conditions) guarantees convergence to the global minimum
“eventually,” in the sense that with enough samples you’ll explore everywhere [e.g., Bull, 2011].
That’s not much help in practice, because exploring everywhere isn’t practical. Another is that EI and
TS are greedy; their scope is the next acquisition. Contemplating a remaining budget and entertaining
optimal decisions through that lens can be caricatured as a herculean effort with marginal gains
[Gonzalez et al., 2016, Frazier et al., 2008, Lam et al., 2016, Gramacy and Lee, 2011]. These are
not bad ideas, but they haven’t moved the needle on the modus operandi because they’ve not been
incorporated into accessible libraries, and are too involved for bespoke implementation in practice.

Both theory and aggressively scoped acquisition can lose sight of the real goal. What’s important in
BO, and active learning in general, is creating a virtuous cycle between data acquisition and learning.
Anyone who has tried knows that there is a fine line between vicious and virtuous when it comes to
implementation details, despite the best of intentions and theoretical “guarantees”. EI and TS are
simple to implement because GP libraries are in abundance, code evaluating criteria is a few lines
long, and there are many examples to cut-and-paste from. Barriers to application are low, but it’s
easy to get carried away to disappointment. This is what makes tricands attractive. It is motivated
by simple principles: the solution is in-between your current runs, so look there. It is plug-n-play

16

wherever candidates are an option. This means they can be applied in situations where numerical
differentiation is not available (e.g., with MC integrated surrogate). Evaluation of the acquisition
criteria can be massively parallelized with candidates, say on a GPU, whereas local numerical solvers
are inherently sequential.

That’s not to say that tricands are a panacea. Some of our boxplots indicated that improvements over
alternatives on best-observed-value (BOV) in 90/100 MC repetitions may have come at the expense
of the worst case performance of the remaining 10%. This may have simply been bad luck. But if not,
the deterministic nature of tricands could be to blame: not enough opportunity to be surprised. As
mentioned in the main body of the paper, one can always augment tricands with random/space-filling
candidates. This could be especially beneficial when N , the number of tricands for a given n, is lower
than the desired budget of candidates. Entertaining tuning parameters for some of our hard-coded
settings, like the distance between fringe candidates and the boundary (Section 2.2), could help. That
distance could even be chosen at random. We could likewise randomly choose a location for interior
candidates (Section 2.1), within each triangle, rather than taking the barycenter. When randomly
downsampling (Section 2.3), we could guarantee a certain proportion of fringe candidates like we did
for ones adjacent to fmin

n .

Although the important subroutines of Delaunay triangulation and convex hulls are off-loaded to
libraries, they can (at times) be computationally demanding. When n is large and d is modest,
calculating N locations in the thousands (see Figure 3) could be cumbersome. Of course, the whole
goal of BO is to limit n. In our experiments with n 75, all of our triangulation/hull calculations
took fractions of a second. But with big n they can take minutes (Figure 2, right panel), and that
could be prohibitive. However, after each acquisition the number of new sites only increases by one
(n ! n + 1), and thus affects only a small, local part of the triangulation/hull. The Qhull library
does not support this, but there are incremental algorithms for triangle/hull augmentation which are
very fast relative to starting from scratch. For more details, see Su and Drysdale [1997].

Such a strategy might be valuable in higher dimensional BO settings. Continuous optimization theory
tells us that gradient-based methods have local convergence rates independent of dimension, which
has made L-BFGS-B and similar optimizers the tool of choice in solving for acquisitions. This,
together with the exponential growth of input space volume, might at first blush suggest that tricands’
performance is limited to low/modest dimension. However, in practice, the highly nonconvex nature
of the acquisition surface significantly cheapens the theoretical results associated with gradient-based
optimization. Indeed, recent work has achieved state-of-the-art performance in high d using candidate
sets focused within a certain region of the input space [Eriksson et al., 2019, Wang et al., 2020,
Daulton et al., 2021], though still built on traditional space-filling points such as LHS. It would be
interesting to see whether replacing these space-filling points with tricands would be as beneficial in
that setting as we have found it to be in modest d. Furthermore, a popular approach in scaling BO to
high dimension is to reduce the input space by screening input variables or finding linear or nonlinear
embedding spaces, rendering the problem a low dimensional one (see Binois and Wycoff [2021] for
an overview). The aim of such an approach is in part to make solving the acquisition problem easier,
and there’s no reason to believe this wouldn’t extend to tricands.

Our surrogates were GP-centric, extended to handle non-stationarity via treed partitioning and smooth
(deep GP) input-warping. It would be interesting to explore the value of tricands paired with more
unconventional surrogates based on trees, such as random forests [Breiman, 2001] or tree-structure
Parzen estimators [Bergstra et al., 2011], where inner-optimization via gradient-based local search
is a non-starter. We presented results with EI and TS-based acquisition criteria, and of course there
are a litany of other heuristics. Our early experiments additionally included the upper-confidence
bound [UCB; Srinivas et al., 2009] and probability of improvement (PI) criteria. The former, for most
settings of the tuning parameter, mirrored our EI results whereas the latter was dominated by EI. To
reduce clutter, we decided not to include them in our presentation here.

Our ATO example in Section 3.2 involved a stochastic simulator with input-dependent noise. Sur-
rogate modeling and active learning for stochastic simulation is still very much on the frontier of
the computer experiments landscape [Baker et al., 2020]. In such settings, the acquisition space
should be extended to include the possibility of obtaining a replicate run, exactly duplicating one of
the n existing design elements [Binois et al., 2019]. Replication can be advantageous in separating
signal from noise in generic active learning tasks, and specifically in the context of BO [Binois and
Gramacy, 2021, Section 4.2]. Rather than entertaining a hybrid search between a continuum of novel

17

locations and a discrete set of replicate sites, tricands could be leveraged to make the entire set of
candidates discrete, vastly simplifying the inner optimization search.

Batch acquisition, acquiring several new runs at once, is a common paradigm in some settings. Ideas
with modified EI go back at least to Ginsbourger et al. [2007] with several following thereafter [e.g.,
Taddy et al., 2009, Chevalier and Ginsbourger, 2013]. One, more recent approach involves penalizing
regions of the input space near earlier acquisitions in the batch [González et al., 2016]. This spirit
could be ported to a tricands setting: simply rule out any candidates which are in triangles Tj adjacent
to those acquired earlier in the batch.

Finally, although we have emphasized BO, other active learning criteria could benefit from candidates
well-spaced relative to the current design. Perhaps the most common is for active learning targeting
reduced integrated mean-squared prediction error [IMSPE, e.g., Leatherman et al., 2017, Binois
et al., 2019, Zhang et al., 2020a]. High input variance locations, such as between design sites, are
natural candidates for reducing IMSPE. Another recently popular active learning topic in computer
experiments is contour/level set finding [Ranjan et al., 2008, Bect et al., 2012, Chevalier et al., 2014,
Marques et al., 2018, Azzimonti et al., 2020, Cole et al., 2021]. Many of the criteria suggested in
these works involve predictive entropy from a GP surrogate, which is famously myopic; entropy
(defined via a classification above and below a level set) tends to be higher near training data already
near partition boundaries, leading to a clumping of acquisitions unless explicit measures are taken
to spread out candidates, or to otherwise deter a numerical inner-optimizer. Tricands could offer a
geometric spread of future acquisitions away from existing training data locations.

18

	Introduction
	Delaunay triangulation candidates
	Interior candidates
	Fringe candidates
	Targeted sub-sampling
	Implementation and software

	Classical GP benchmarking
	Goldstein–Price
	Assemble to order (ATO)

	Sampling-based surrogates
	Abrupt changes
	Smooth changes

	Discussion
	Implementation and additional empirical results
	Classical GP implementation details
	Hartmann 6
	Michaelwicz

	Additional discussion

