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Abstract

In this paper, we study the fundamental open question of finding the optimal high-
order algorithm for solving smooth convex minimization problems. Arjevani et al.
(2019) established the lower bound Ω

(
ϵ−2/(3p+1)

)
on the number of the p-th order

oracle calls required by an algorithm to find an ϵ-accurate solution to the problem,
where the p-th order oracle stands for the computation of the objective function
value and the derivatives up to the order p. However, the existing state-of-the-
art high-order methods of Gasnikov et al. (2019b); Bubeck et al. (2019); Jiang
et al. (2019) achieve the oracle complexity O

(
ϵ−2/(3p+1) log(1/ϵ)

)
, which does

not match the lower bound. The reason for this is that these algorithms require
performing a complex binary search procedure, which makes them neither optimal
nor practical. We fix this fundamental issue by providing the first algorithm with
O
(
ϵ−2/(3p+1)

)
p-th order oracle complexity.

1 Introduction

Let Rd be a finite-dimensional Euclidean space and let f(x) : Rd → R be a convex, p times
continuously differentiable function with Lp-Lipschitz p-th order derivatives. Our goal is to solve the
following convex minimization problem:

f∗ = min
x∈Rd

f(x). (1)

In this work, we assume access to the p-th order oracle associated with function f(x). That is, given
an arbitrary point x ∈ Rd, we can compute the function value and the derivatives of function f(x) up
to order p.

First-order methods. When p = 1, first-order methods, such as gradient descent, are typically
used for solving problem (1). The lower bound Ω(ϵ−1/2) on the number of the gradient evaluations
required by these algorithms to find an ϵ-accurate solution was established by Nemirovskij and Yudin
(1983); Nesterov (2003), while the optimal algorithm matching this lower bound is called Accelerated
Gradient Descent and was developed by Nesterov (1983).

Second-order methods. In contrast to the first-order methods, the understanding of the second-
order methods (p = 2) was developed relatively recently. Nesterov and Polyak (2006) developed
the cubic regularized variant of Newton’s method. This algorithm achieves global convergence with
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Table 1: Comparison of the first-order, second-order and high-order methods for smooth convex
optimization in the oracle complexities (see Definition 3), which depend on the smoothness constant
Lp (see Assumption 1), the distance to the solution R (see Assumption 2), and the accuracy ϵ (see
Definition 1).

Algorithm Reference Oracle Complexity Order

Nesterov (1983) O
((

L1R
2/ϵ
)1/2)

Lower Bound (Nemirovskij and Yudin, 1983) Ω
((

L1R
2/ϵ
)1/2)

Nesterov and Polyak (2006) O
((

L2R
3/ϵ
)1/2)

Nesterov (2008) O
((

L2R
3/ϵ
)1/3)

Monteiro and Svaiter (2013) O
((

L2R
3/ϵ
)2/7

log(1/ϵ)
)

Algorithm 4 (This Paper) O
((

L2R
3/ϵ
)2/7)

Lower Bound (Arjevani et al., 2019) Ω
((

L2R
3/ϵ
)2/7)

Nesterov (2021a) O
((

LpR
p+1/ϵ

)1/p)
Nesterov (2021a) O

((
LpR

p+1/ϵ
)1/(p+1)

)
Gasnikov et al. (2019b) O

((
LpR

p+1/ϵ
)2/(3p+1)

log(1/ϵ)
)

Algorithm 4 (This Paper) O
((

LpR
p+1/ϵ

)2/(3p+1)
)

Lower Bound (Arjevani et al., 2019) Ω
((

LpR
p+1/ϵ

)2/(3p+1)
)

First-Order
Methods
(p = 1)

Second-Order
Methods
(p = 2)

High-Order
Methods
(p ≥ 2)

the oracle complexity O(ϵ−1/2), which cannot be achieved with the standard Newton’s method.
Nesterov (2008) also developed an accelerated version of the cubic regularized Newton’s method
with O

(
ϵ−1/3

)
second-order oracle complexity. A few years later, Monteiro and Svaiter (2013)

developed the Accelerated Hybrid Proximal Extragradient (A-HPE) framework and combined it with
a trust region Newton-type method. The resulting algorithm, called Accelerated Newton Proximal
Extragradient (A-NPE), achieved the second-order oracle complexity of O

(
ϵ−2/7 log(1/ϵ)

)
. In 2018,

Arjevani et al. (2019) established the lower bound Ω
(
ϵ−2/7

)
on the number of the second-order

oracle calls required by an algorithm to find an ϵ-accurate solution5, which is almost achieved by the
A-NPE algorithm of Monteiro and Svaiter (2013), up to the logarithmic factor log(1/ϵ). However,
the optimal second-order algorithms for solving smooth convex minimization problems remain to be
unknown.

High-order methods. In the case when p > 2, the situation is very similar to the second-order
case. Nesterov (2021a) developed the generalization of the cubic regularized Newton method to the
high-order case and called them tensor methods. Nesterov (2021a) provided both non-accelerated
and accelerated p-th order tensor methods with the oracle complexity O

(
ϵ−1/p

)
and O

(
ϵ−1/(p+1)

)
,

respectively.6 Later, three independent groups of researchers (Gasnikov et al., 2019a; Bubeck et al.,
2019; Jiang et al., 2019) used the A-HPE framework to develop the near-optimal tensor methods with
the oracle complexity O

(
ϵ−2/(3p+1) log(1/ϵ)

)
. Similarly to the case p = 2, these algorithms match

the lower complexity bound Ω
(
ϵ−2/(3p+1)

)
of Arjevani et al. (2019), up to the logarithmic factor

log(1/ϵ).

5There is also a work of Agarwal and Hazan (2018), which provides the lower complexity bounds for
high-order optimization. However, their lower bounds are worse than the lower bounds of Arjevani et al. (2019).

6Nesterov (2021a) also provided the lower complexity bounds that coincide with the lower bounds of Arjevani
et al. (2019).
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1.1 Main Contribution: Optimal Second-Order and High Order Methods

The review of the second-order and high-order methods that we made above identifies the following
fundamental open question:

Can we design an optimal p-th order algorithm (p ≥ 2) for solving smooth convex minimization
problems with the oracle complexity matching the lower bounds?

The lack of an answer to this question reveals a significant gap in the understanding of the high-order
optimization compared to the first-order optimization. We give a positive answer to this question.
That is, we provide the first optimal high-order algorithm with the p-th order oracle complexity
O
(
ϵ−2/(3p+1)

)
that matches the lower bounds of Arjevani et al. (2019). This is the main contribution

of our work.

1.2 Related Work

High-order and second-order methods have attracted a lot of interest recently. Relevant works include
but are not limited to superfast second-order methods (Nesterov, 2021c), second-order methods
with gradient regularization (Mishchenko, 2021; Doikov et al., 2022; Doikov and Nesterov, 2021),
high-order methods for non-smooth optimization via smoothing technique (Bullins, 2020), and
ball-constrained optimization Carmon et al. (2020, 2021). A more detailed review of recent advances
in high-order optimization can be found in the work of Kamzolov et al. (2022).

High-order methods for variational inequalities. Monteiro and Svaiter (2012) also developed
second-order methods for solving monotone variational inequalities and inclusions problems for
operators with Lipschitz continuous derivatives, which were generalized to the high-order setting by
Bullins and Lai (2022); Jiang and Mokhtari (2022). However, similarly to the near-optimal high-order
methods for minimization problems (Monteiro and Svaiter, 2013; Gasnikov et al., 2019b), these
algorithms have additional logarithmic factors in the complexity that appear due to the requirement
of performing the binary search procedure.

Recently, Lin et al. (2022); Adil et al. (2022) removed the extra logarithmic factors and provided
high-order methods for solving monotone variational inequalities and inclusions problems without
any binary search procedures. Moreover, Lin et al. (2022) established lower complexity bounds that
matched the proposed algorithms. Hence, the problem of finding optimal high-order algorithms for
solving variational inequalities and inclusions problems is solved.

In our paper, we solve a similar problem of finding optimal high-order methods for solving smooth
convex minimization problems. Note that this problem is much more challenging because optimal
algorithms for solving variational inequalities and inclusion problems are typically much simpler and
do not require utilising acceleration techniques.

Concurrent work of Carmon et al. (2022). The question of finding optimal high-order methods
for solving smooth convex minimization problems was solved recently in the concurrent work of
Carmon et al. (2022). However, their approach is substantially different from the approach used in
this work, and their paper appeared on arXiv 11 days later than ours.

1.3 Paper Organization

Our paper is organized as follows: (i) in Section 2, we briefly introduce the tensor approximations and
provide necessary assumptions and definitions; (ii) in Section 3, we describe the existing near-optimal
high-order methods and identify their main flaws that prevent them from being optimal and practical
algorithms; (iii) in Section 4, we describe the development of our optimal high-order algorithm and
provide its theoretical convergence analysis.

2 Preliminaries

By ∥ · ∥ : Rd → R and ⟨·, ·⟩ : Rd × Rd → R, we denote the standard Euclidean norm and scalar
product on Rd. Given a p times continuously differentiable function g(x) : Rd → R and index
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i ∈ {1, 2, . . . , p}, by ∇ig(x)[h]i : Rd → R we denote the following homogeneous polynomial:

∇ig(x)[h]i =

d∑
j1,...,ji=1

∂ig

∂xj1 · · · ∂xji

(x) · hj1 · · ·hji , (2)

where x = (x1, . . . , xd) ∈ Rd, h = (h1, . . . , hd) ∈ Rd, and
∂ig

∂xj1 · · · ∂xji

(x) (3)

is the i-th order partial derivative of function g(x) at point x with respect to variables xj1 , . . . , xji .
For instance, if i = 1, then ∇1g(x)[h] = ⟨∇g(x), h⟩, where ∇g(x) ∈ Rd is the gradient of function
g(x); if i = 2, then ∇2g(x)[h] = ⟨∇2f(x)h, h⟩, where ∇2f(x) ∈ Rd×d is the Hessian of function
f(x). We can write the p-th order Taylor approximation of function g(x) at point z ∈ Rd:

Φp
g(x; z) = g(z) +

p∑
i=1

1

i!
∇ig(z)[x− z], (4)

It is well known that the Taylor polynomial Φp
g(x; z) approximates function g(x), if point x is close

enough to point z:
g(x) = Φg(x; z) +Rp

g(x; z)∥x− z∥p, (5)

where Rp
g(·; z) : Rd → R is a function that satisfies limx→z R

p
g(x; z) = 0.

As mentioned earlier, we assume that the objective function f(x) of the main problem (1) is p times
continuously differentiable and has Lp-Lipschitz p-th order derivatives. It is formalized via the
following definition.
Assumption 1. Function f(x) is p-times continuously differentiable, convex, and has Lp-Lipschitz
p-th order derivatives, i.e., for all x1, x2 ∈ Rd the following inequality holds:

max{|∇pf(x1)[h]−∇pf(x2)[h]| : h ∈ Rd, ∥h∥ ≤ 1} ≤ Lp∥x1 − x2∥.

Theorem 1 of Nesterov (2021a) implies that under Assumption 1, function f(x) has the following
convex upper bound:

f(x) ≤ Φp
f (x; z) +

pM

(p+ 1)!
∥x− z∥p+1, (6)

where M ≥ Lp and z ∈ Rd. Hence, an obvious approach to solving problem (1) is to perform the
minimization of this upper bound instead of minimizing the function f(x). This approach naturally
leads to the following iterative process:

xk+1 ∈ Argmin
x∈Rd

Φp
f (x;x

k) +
pM

(p+ 1)!
∥x− xk∥p+1. (7)

In the case p = 2, this iterative process is known as the cubic regularized Newton’s method of
Nesterov and Polyak (2006), and in the case p > 2, it is known as the tensor method of Nesterov
(2021a). Minimization procedures similar to (7) are widely used in high-order optimization methods.
It will also be used in the development of our optimal algorithm.

We also have the following assumption which requires problem (1) to have at least a single solution
x∗ ∈ Rd. It is a standard assumption for the majority of works on convex optimization.
Assumption 2. There exists a constant R > 0 and at least a single solution x∗ to problem (1),
such that ∥x0 − x∗∥ ≤ R, where x0 ∈ Rd is the starting point that we use as an input for a given
algorithm for solving the problem.

Finally, we have the following definitions that formalize the notions of ϵ-accurate solution of a
problem, p-th order oracle call, and oracle complexity of an algorithm.
Definition 1. We call vector x̂ ∈ Rd an ϵ-accurate solution of problem (1), if for a given accuracy
ϵ > 0 it satisfies f(x̂)− f∗ ≤ ϵ.
Definition 2. Given an arbitrary vector x ∈ Rd by the p-th order oracle call at x, we denote the
computation of the function value f(x) and the derivatives ∇1f(x)[·], . . . ,∇pf(x)[·].
Definition 3. By the p-th order oracle complexity of a p-th order algorithm for solving problem (1),
we denote the number of p-th order oracle calls required by the algorithm to find an ϵ-accurate
solution of the problem for a given accuracy ϵ > 0.
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Algorithm 1 A-HPE Framework
1: input: x0 = x0

f ∈ Rd

2: parameters: σ ∈ [0, 1], K ∈ {1, 2, . . .}
3: β−1 = 0
4: for k = 0, 1, 2, . . . ,K − 1 do
5: compute xk+1

f ∈ Rd, λk > 0 such that

∥∇f(xk+1
f ) + λ−1

k (xk+1
f − xk

g)∥ ≤ σλ−1
k ∥xk+1

f − xk
g∥, (8)

where xk
g ∈ Rd and αk ∈ (0, 1] are defined as

xk
g = αkx

k + (1− αk)x
k
f , αk = ηk/βk, (9)

and ηk > 0 and βk > 0 are defined by the following system:

βk−1 + ηk = βk, βkλk = η2k. (10)

6: xk+1 = xk − ηk∇f(xk+1
f )

7: end for
8: output: xK

f

3 Near-Optimal Tensor Methods

In this section, we revisit the state-of-the-art high-order optimization algorithms that include the
A-NPE method of Monteiro and Svaiter (2013) in the p = 2 case and the near-optimal tensor methods
of Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al. (2019) in the general p > 2 case. We
start with describing the key ideas behind the development of these algorithms to understand how
they work. Then, we identify the main flaws of the algorithms that prevent them from being optimal
and practical.

Note that the A-NPE method and near-optimal tensor methods have the following substantial similar-
ities: (i) both the A-NPE and near-optimal tensor methods are based on the A-HPE framework of
Monteiro and Svaiter (2013); (ii) the oracle complexity of the near-optimal tensor methods recovers
the oracle complexity of the A-NPE method in the case p = 2; (iii) these algorithms have the same
issue: the requirement to perform the complex binary search procedure at each iteration which
makes them neither optimal nor practical. Hence, we will further leave out the description of the
A-NPE method of Monteiro and Svaiter (2013) and consider only the near-optimal tensor methods of
Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al. (2019).

3.1 A-HPE Framework

The main component in the development of the near-optimal tensor methods of Gasnikov et al.
(2019a); Bubeck et al. (2019); Jiang et al. (2019) is the Accelerated Hybrid Proximal Extragradient
(A-HPE) framework of Monteiro and Svaiter (2013). This algorithmic framework can be seen
as a generalization of the Accelerated Gradient Descent of Nesterov (1983). It is formalized as
Algorithm 1. Next, we recall the main theorem by Monteiro and Svaiter (2013), which describes the
convergence properties of Algorithm 1.

Theorem 1 (Monteiro and Svaiter (2013)). The iterations of Algorithm 1 satisfy the following
inequality:

2βK−1(f(x
K
f )− f∗) + (1− σ2)

K−1∑
k=0

α−2
k ∥xk+1

f − xk
g∥2 ≤ R2. (11)

Note that Algorithm 1 requires finding xk+1
f satisfying condition (8) on line 5. This condition can be

rewritten as follows:

∥∇Aλk
(xk+1

f ;xk
g)∥ ≤ σλ−1

k ∥xk+1
f − xk

g∥, (12)
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Algorithm 2 Near-Optimal Tensor Method
1: input: x0 = x0

f ∈ Rd

2: parameters: M > 0, K ∈ {1, 2, . . .}
3: β−1 = 0
4: for k = 0, 1, 2, . . . ,K − 1 do

5: compute


λk > 0 satisfying (17)
xk+1
f ∈ Rd satisfying (15)

xk
g ∈ Rd, αk ∈ (0, 1] satisfying (9)

ηk, βk > 0 satisfying (10)
6: xk+1 = xk − ηk∇f(xk+1

f )
7: end for
8: output: xK

f

where function Aλ(·; z) : Rd → R for λ > 0 and z ∈ Rd is defined as

Aλ(x; z) = f(x) +
1

2λ
∥x− z∥2. (13)

3.2 Application to High-Order Minimization

In order to perform the computation on line 5 of Algorithm 1, we need to find xk+1
f ∈ Rd that

satisfies condition (8). As we mentioned earlier, condition (8) is equivalent to (12), which involves
the gradient norm ∥∇Aλk

(·;xk
g)∥ at point xk+1

f . Function Aλk
(·;xk

g) has Lp-Lipschitz p-th order
derivatives for p ≥ 2 due to its definition (13) and Assumption 1.7 Hence, it has the following upper
bound, thanks to Theorem 1 of Nesterov (2021a):

Aλk
(x;xk

g) ≤ Φp
Aλk

(·;xk
g)
(x;xk

g) +
pM

(p+ 1)!
∥x− xk

g∥p+1. (14)

It turns out that xk+1
f can be obtained by minimizing this upper bound:

xk+1
f = argmin

x∈Rd

Φp
Aλk

(·;xk
g)
(x;xk

g) +
pM

(p+ 1)!
∥x− xk

g∥p+1, (15)

where M > Lp.8 Indeed, by Lemma 1 of Nesterov (2021a), we have

∥∇Aλk
(xk+1

f ;xk
g)∥ ≤ pM + Lp

p!
∥xk+1

f − xk
g∥p. (16)

Hence, to satisfy condition (12), we choose λk in the following way:

σp!

2(pM + Lp)
∥xk+1

f − xk
g∥1−p ≤ λk ≤ σp!

(pM + Lp)
∥xk+1

f − xk
g∥1−p. (17)

Here, the upper bound on λk ensures condition (12), while the lower bound prevents stepsize λk from
being too small, which would hurt the convergence rate. The resulting near-optimal tensor method is
formalized as Algorithm 2. It has the following convergence rate:

f(xK
f )− f∗ ≤ const · Lp∥x0 − x∗∥p+1

K
3p+1

2

, (18)

where K is the number of iterations. The proof of this convergence rate involves condition (17) and
Theorem 1. It is given in the works of Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al.
(2019).

7∇pA(x;xk
g)[h] = ∇pf(x)[h] when p > 2, and ∇2A(x;xk

g)[h] = ∇2f(x)[h] + λ−1∥h∥2.
8We require the strict inequality to ensure the uniform convexity of upper bound (14), which implies the

uniqueness and the existence of the minimizer in (15).
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3.3 The Problems with the Existing Algorithms

Algorithm 2 requires finding λk satisfying condition (17) at each iteration. According to line 5 of
Algorithm 2, λk depends on xk+1

f via (17), which depends on xk
g via (15), which depends on ηk, βk

via (9), which depend on λk via (10). Hence, computation of stepsize λk depends on λk itself and
there is no explicit way to perform the computation on line 5.

The algorithms of Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al. (2019) use various binary
search procedures to find λk and perform the computation on line 5. However, such procedures are
costly and require many iterations to converge. For instance, Bubeck et al. (2019) show that their
variant of binary search requires the following number of p-th order oracle calls to find λk satisfying
condition (17):

O
(
log

LpR
p+1

ϵ

)
. (19)

The same complexity (up to constant factors) for similar binary search procedures was established in
the works of Nesterov (2021b); Jiang et al. (2019), and in the work of Monteiro and Svaiter (2013)
for the p = 2 case. Hence, the total oracle complexity of Algorithm 2 is O

(
ϵ−2/(3p+1) log(1/ϵ)

)
which does not match the lower bound of Arjevani et al. (2019).

The additional logarithmic factor in the oracle complexity of Algorithm 2 raises the question whether
it is superior to the accelerated tensor method of Nesterov (2021a) in practice. On the one hand,
Gasnikov et al. (2019a) provided an experimental study that showed the practical superiority of
Algorithm 2 over the algorithm of Nesterov (2021a). However, this experimental comparison is
utterly unfair because it considers only the iteration complexity of the algorithms, which does not
take into account the oracle complexity of the binary search procedure.

4 The First Optimal Tensor Method

In the previous section, we described the main issues with the existing high-order methods that
prevent them from being optimal and practical algorithms for solving problem (1). In this section,
we will show how to construct an algorithm that does not have those issues. More precisely, we will
develop the first optimal p-th order algorithm (p ≥ 2) for solving main problem (1).

4.1 The Key Idea

Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al. (2019) used the following approach while
creating their near-optimal algorithms: they fixed the procedure of computing xk+1

f on line 5 of
Algorithm 1 using formula (15) and then developed the procedure for computing λk, which turned
out to be inefficient. We will go the opposite way. That is, we choose parameters λk in advance in
such a way that they ensure the optimal convergence rate and then provide an efficient procedure for
finding xk+1

f satisfying condition (8). Let ηk be defined as follows:

ηk = η(1 + k)
3p−1

2 , (20)

where η > 0 is a parameter. Using (10), we can compute βk and λk as follows:

βk = η

k∑
l=0

(1 + l)
3p−1

2 , λk =
η(1 + k)3p−1∑k
l=0(1 + l)

3p−1
2

. (21)

The following lemma provides a lower bound on βk and an upper bound on λk.
Lemma 1. Parameters βk and λk defined by (21) satisfy the following inequalities:

βk ≥ 2η

(3p+ 1)
(k + 1)

3p+1
2 , λk ≤ η(3p+ 1)

2
(1 + k)

3(p−1)
2 . (22)

Lemma 1 and Theorem 1 immediately imply the convergence rate O(1/k(3p+1)/2), which matches
the lower bound of Arjevani et al. (2019). Hence, the only remaining question is how to compute
xk+1
f satisfying (8) efficiently. To be precise, we need to develop a procedure that can perform this

computation using O(1) of p-th order oracle calls.
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Algorithm 3 Tensor Extragradient Method
1: input: xk,0 = xk

g ∈ Rd, Ak(·) = Aλk
(·;xk

g)
2: parameters: M > 0
3: t = −1
4: repeat
5: t = t+ 1
6: compute xk,t+1/2 ∈ Rd as follows:

xk,t+1/2 = argmin
x∈Rd

Φp
Ak(x;x

k,t) +
pM

(p+ 1)!
∥x− xk,t∥p+1 (23)

7: xk,t+1 = xk,t −
(

M∥xk,t+1/2−xk,t∥p−1

(p−1)!

)−1

∇Ak(xk,t+1/2)

8: until ∥∇Ak(xk,t+1/2)∥ ≤ σλ−1
k ∥xk,t+1/2 − xk,0∥

9: T k = t+ 1
10: output: xk+1

f = xk,Tk−1/2

4.2 Tensor Extragradient Method for Gradient Norm Reduction

In this subsection, we develop an efficient procedure for computing xk+1
f satisfying condition (8). As

we mentioned earlier, condition (8) is equivalent to (12), which is an upper bound on the gradient
norm ∥∇Aλk

(·;xk
g)∥ at point xk+1

f . Hence, we need an algorithm for the gradient norm reduction in
the following smooth high-order convex minimization problem:

xk,∗ = argmin
x∈Rd

Aλk
(x;xk

g). (24)

In this subsection, we provide such an algorithm. We call the algorithm Tensor Extragradient Method.
It is formalized as Algorithm 3. In the case p = 1, this algorithm recovers the extragradient method
of Korpelevich (1976). Algorithm 3 can be seen as a generalization of the extragradient method for
high-order optimization.

One can observe that due to line 8 of Algorithm 3, xk+1
f = xk,Tk−1/2 satisfies condition (12), where

xk,Tk−1/2 is the output of Algorithm 3. This is exactly what we need. The following theorem
provides an upper bound on the number of iterations T k required by Algorithm 3 to terminate and
produce the output xk+1

f .
Theorem 2. Let M satisfy

M ≥ Lp. (25)
Then step (23) on line 6 of Algorithm 3 is well defined and the number of iterations T k performed by
Algorithm 3 is upper-bounded as follows:

T k ≤
(
λkCp(M,σ)∥xk

g − xk,∗∥p−1
)2/p

+ 1, (26)
where Cp is defined as

Cp(M,σ) =
ppMp(1 + σ−1)

p!(pM − Lp)p/2(pM + Lp)p/2−1
. (27)

Algorithm 3 and Theorem 2 will further be used for the construction of the optimal high-order
algorithm for solving problem (1). It is worth mentioning the potential alternatives to Algorithm 3
that we could use for gradient norm reduction. For instance, we could use the tensor method of
Nesterov (2021a). However, the upper bound on the number of iterations for this method would
involve the diameter of the level set of function Aλk

(·;xk
g) rather than the distance to the solution

∥xk
g − xk,∗∥. This would be an obstacle towards development of the optimal algorithm. Alternatively,

we could use the accelerated tensor method of Nesterov (2021a). It turns out that it would work
as we need. Moreover, the upper bound on the number of iterations would be even better than
(26). However, we find the accelerated tensor method of Nesterov (2021a) to be too complicated,
which could make the resulting optimal high-order method hard to implement. On the other hand, it
would not give us any benefits for the construction of the optimal high-order method compared to
Algorithm 3.
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Algorithm 4 Optimal Tensor Method
1: input: x0 = x0

f ∈ Rd

2: parameters: η > 0,M > 0, σ ∈ (0, 1), K ∈ {1, 2, . . .}
3: β−1 = 0
4: for k = 0, 1, 2, . . . ,K − 1 do
5: ηk = η(1 + k)(3p−1)/2

6: βk = βk−1 + ηk, λk = η2k/βk, αk = ηk/βk

7: xk
g = αkx

k + (1− αk)x
k
f

8: xk,0 = xk
g , t = −1

9: repeat
10: t = t+ 1
11: xk,t+1/2 = argminx∈Rd Φ

p
Aλk

(·;xk
g)
(x;xk,t) + pM

(p+1)!∥x− xk,t∥p+1

12: xk,t+1 = xk,t −
(

M∥xk,t+1/2−xk,t∥p−1

(p−1)!

)−1

∇Aλk
(xk,t+1/2;xk

g)

13: until ∥∇Aλk
(xk,t+1/2;xk

g)∥ ≤ σλ−1
k ∥xk,t+1/2 − xk,0∥

14: T k = t+ 1
15: xk+1

f = xk,Tk−1/2

16: xk+1 = xk − ηk∇f(xk+1
f )

17: end for
18: output: xK

f

4.3 Modification of the Analysis of A-HPE Framework

Unfortunately, we cannot use Theorem 1 for the analysis of our optimal algorithm. This is because
inequality (11) involves the distances ∥xk

g − xk+1
f ∥ on the right-hand side. Hence, inequality (11)

does not allow us to estimate the iteration complexity T k of Algorithm 3 using Theorem 2. Further,
we provide a new theorem that includes the analysis of the A-HPE framework and provides an upper
bound on the distances ∥xk

g − xk,∗∥.
Theorem 3. The iterations of Algorithm 1 satisfy the following inequality:

2βK−1(f(x
K
f )− f∗) +

1− σ

1 + σ

K−1∑
k=0

α−2
k ∥xk

g − xk,∗∥2 ≤ R2. (28)

4.4 The First Optimal Tensor Method

Now, we are ready to provide the first optimal high-order algorithm for solving problem (1). In
order to construct this algorithm, we use our Tensor Extragradient Method (Algorithm 3) to perform
the computations on line 5 of the A-HPE Framework (Algorithm 1). We also use our choice of
parameters ηk, βk and λk which is provided by (20) and (21). The resulting algorithm is formalized
as Algorithm 4.

Now, we are ready to prove that Algorithm 4 is an optimal algorithm. First, we need to establish an
upper bound on the number of iterations T k performed by the inner repeat-loop of Algorithm 4. This
is done by the following theorem.
Theorem 4. Let M satisfy (25). Then, the following inequality holds for Algorithm 4:

K−1∑
k=0

T k ≤ K + (1 +K)

(
η(3p+ 1)pCp(M,σ)Rp−1

2p
√
p

·
(
1 + σ

1− σ

) p−1
2

) 2
p

, (29)

where Cp is defined by (27).

Theorem 4 implies that with a proper choice of the parameter η, Algorithm 4 performs O(1) p-th
order oracle calls per iteration on average. Indeed, let η be chosen as follows:

η =

(
(3p+ 1)pCp(M,σ)Rp−1

2p
√
p

·
(
1 + σ

1− σ

) p−1
2

)−1

. (30)
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Then, Theorem 4 immediately implies

K−1∑
k=0

T k ≤ 2K + 1. (31)

Finally, the following theorem establishes the total p-th order oracle complexity of Algorithm 4.
Theorem 5. Let M = Lp and σ = 1/2. Let η be defined by (30). Then, to reach precision
f(xk

f )− f∗ ≤ ϵ, Algorithm 4 requires no more than the following number of p-th order oracle calls:

5Dp ·
(
LpR

p+1/ϵ
) 2

3p+1 + 7, (32)

where Dp is defined as follows:

Dp =

(
3

p+1
2 (3p+ 1)p+1pp(p+ 1)

2p+2√pp!(p2 − 1)
p
2

) 2
3p+1

. (33)

Theorem 5 shows that the total p-th order oracle complexity of Algorithm 4 is O
((

LpR
p+1/ϵ

) 2
3p+1

)
.

This oracle complexity matches the lower bounds of Arjevani et al. (2019) up to a universal constant
that does not depend on R, Lp and ϵ. Hence, Algorithm 4 is indeed the first optimal high-order
algorithm for solving smooth convex minimization problems.

4.5 Practical Performance

In this paper we provide an experimental comparison of the proposed optimal high-order algorithm
for solving smooth convex minimization problems (Algorithm 4) with the existing near-optimal
high-order method of Gasnikov et al. (2019a); Bubeck et al. (2019); Jiang et al. (2019) (Algorithm 2).
In summary, the experiments show that the proposed optimal Algorithm 4 is indeed a practical
algorithm which significantly outperforms the existing near-optimal Algorithm 2. The details can be
found in Appendix F.
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