
Appendices
A Derivation of storage capacity scaling

A.1 Optimal storage: The scaling of effective input dimensionality

Suppose that the kernel is a homogeneous polynomial of degree p ⌧ N , meaning K(xi,xj) =
(x>

i xj)p. This implies that the associated feature map �(x) contains all monomials of degree p
composed of the entries in x. Moreover, given that each entry xi is ±1, each monomial in � can be
written as an interaction term of the form xp1

1 xp2
2 · · ·xpN

N , where pi 2 {0, 1} and
PN

i pi p (i.e., no
factor xi has an exponent higher than 1 and the sum of exponents is p). The reason for this is that

xni
i =

(
1 , if ni even
xi , if ni odd .

(25)

The number of unique interaction terms of precisely degree p (the highest degree) is
�N
p

�
. As the

binomial coefficient is known to be bounded according to
✓
N

p

◆p

✓
N

p

◆

✓
Ne

p

◆p

(26)

we obtain
�N
p

�
⇠ O(Np), for p fixed. Thus, the effective dimensionality of � scales like O(Np).

For the exponential kernel K(xi,xj) = exp(x>
i xj) =

P1
p=0(x

>
i xj)p/p!, we first note that the

monomials in � now will be interaction terms of all degrees p = 0, . . . , N . No monomial of degree
p > N will be possible. The total number of unique interaction terms will therefore be

NX

p=0

✓
N

p

◆
= 2N = eN log 2 (27)

where the first equality can be found in [7, p. 14]. This gives us an effective dimensionality of � that
scales like O(eN).

A.2 One-shot storage: The scaling of the support vector proliferation regime

As shown recently in [4], support vector proliferation for an SVM trained on M random patterns
drawn uniformly from {±1}N occurs in the regime N & 2M logM . Solving for M gives us the
scaling

M . N

2W0(
N
2)

(28)

where W0 is the principal branch of the Lambert function. The largest number of patterns that can be
stored in this regime is thus

Mmax ⇡
N

2W0(
N
2)

. (29)

Using the property W0(x) = log x� log log x+ o(1), we can write

W0

✓
N

2

◆
⇠ O(logN) (30)

which yields

Mmax ⇠ O

✓
N

2 logN

◆
. (31)

1

B Kernel of an infinite SDM on the hypersphere

B.1 Derivation of Eq. 17.

We follow the same steps as [8], with additional simplifications towards the end. As stated in the
main text, we seek to calculate the overlapping area of two hyperspherical caps. A formula for this
can be found in [38], and can be written as

A\ = AO(R,↵min,↵2) +AO(R,↵v � ↵min,↵1) (32)

where

AO(R,↵min,↵2) =
⇡

Nin�1
2

�(Nin�1
2)

RNin�1

Z ↵2

↵min

sin(')Nin�2I
1� tan2(↵min)

tan2(')

Nin � 2

2
,
1

2

�
d' (33)

where R is the radius, I is the regularized incomplete Beta function, and

↵1 = ↵2 = arccos(b) (34)

↵v = arccos(x>
i xj) (35)

↵min = arctan

✓
cos(↵1)

cos(↵2) sin(↵v)
�

1

tan(↵v)

◆
(36)

R = 1 . (37)

We insert Eq. 34 in 36 and obtain

↵min = arctan

✓
1

sin(↵v)
�

cos(↵v)

sin(↵v)

◆
= arctan

tan

✓
↵v

2

◆!
=

↵v

2
(38)

where we have used tan(↵/2) = (1� cos(↵))/ sin(↵). Eq. 38 also follows from the symmetry of
the problem. This result yields

A\ = AO(R,↵min,↵2) +AO(R,↵v � ↵min,↵1) = 2AO(R,↵min,↵1) . (39)

We rewrite the regularized incomplete Beta function as

I
1� tan2(↵min)

tan2(')

Nin � 2

2
,
1

2

�
=

�(Nin�1
2)

�(Nin�2
2)�(12)

B

"
1�

tan2(↵min)

tan2(')
;
Nin � 2

2
,
1

2

#
(40)

where B is the incomplete Beta function. The area of an (Nin � 1)-dimensional hypersphere is

A� =
2⇡

Nin
2

�(Nin
2)

RNin�1 . (41)

We insert Eq. 40 in 33 and use the result in Eq. 39. Using the notation ↵b = ↵1 and ↵x = ↵min, and
the identities

�(Nin
2)

�(Nin�2
2)

=
Nin � 2

2
, �

✓
1

2

◆
=

p
⇡ , (42)

the ratio between the overlapping area of the hyperspherical caps and the complete are of the
hypersphere can now be calculated as

A\
A�

=
Nin � 2

2⇡

Z ↵b

↵x

sin(')Nin�2B

"
1�

tan2(↵x)

tan2(')
;
Nin � 2

2
,
1

2

#
d' . (43)

B.2 Derivation of Eq. 18.

For a large bias b & 0.9, which is equivalent to a small angle ↵b = arccos(b), the hyperspherical caps
surrounding xi and xj will be very small in relation to the whole hypersphere. In this case, we can
neglect the curvature of the hyperspherical surface and project the area of the hyperspherical cap to
the plane that cuts through the rims of the cap. This projection is a (Nin � 1)-dimensional hyperball

2

A B

Figure B.1: Plot of the kernel of an infinite SDM on the hypersphere, KSDM(xi,xj), as a function
of (A) the angle between xi and xj , and (B) the bias b. Solid lines represent the exact solution
in Eq. 43, and dashed lines the approximation in Eq. 48. Parameter values: (A) Nin = 50; (B)
arccos(x>

i xj) = arccos(b).

(we will refer to it as a mini-ball). In three dimensions, for example, the projection of a spherical cap
to the plane constitutes a disk, which is a 2-dimensional ball. The radius of each mini-ball is

b̂ = sin(arccos(b)) (44)

and the half-distance between the centers of the mini-balls is

� =
1

2
kxi � xjk2 . (45)

We estimate the overlapping area of the hyperspherical caps by calculating the overlapping volume of
the mini-balls in (Nin � 1) dimensions. A formula for the overlapping volume of two hyperballs can
be found in [39] and is

V\ =
⇡

Nin�1
2

�(Nin+1
2)

b̂Nin�1I
1�

⇣
�
b̂

⌘2

Nin

2
,
1

2

�
. (46)

We rewrite the regularized incomplete Beta function as

I
1�

⇣
�
2b̂

⌘2

Nin

2
,
1

2

�
=

�(Nin+1
2)

�(Nin
2)�(12)

B

"
1�

✓
�

b̂

◆2

;
Nin

2
,
1

2

#
(47)

and insert Eq. 47 in 46. The ratio between the overlapping area of the hyperspherical caps and the
complete area of the hypersphere can now be estimated as

A\
A�

⇡
V\
A�

=
b̂Nin�1

2⇡
B

"
1�

✓
�

b̂

◆2

;
Nin

2
,
1

2

#
. (48)

A comparison of the exact solution in Eq. 43 and the approximation in Eq. 48 can be seen in Fig. B.1.

C Iterative learning in an SVM network

We will in this section compare the noise tolerance of a single neuron in an SVM network when
trained with an iterative learning rule, and when configured according to the MHN. First, we choose
to equip the neuron with the feature map �pairs(x), which consists of all unique pairs of cross-terms
xixj , i 6= j. This yields a storage capacity scaling of O(N2), and we therefore parameterize the
storage load as M/N2. We train the weights of the neuron either with the stochastic batch perceptron

3

Figure C.1: Plot of the noise tolerance � (mean ± s.e.m. over 20 simulations) as a function of
the storage load for a single SVM neuron with N = 102 inputs, trained with the stochastic batch
perceptron (SBP) and the modern Hopfield rule. The SBP uses the feature map �pairs, while the
modern Hopfield rule is applied to both �pairs and �poly2, corresponding to the kernel K(xi,xj) =
(x>

i xj)2. SBP hyperparameters: learning rate = 10�5, iterations = 20M .

rule [14] or with the one-shot learning rule of the MHN, which is obtained by setting ↵µ = 1, 8µ, in
Eq. 4, that is

w =
MX

µ

⇠µout�(⇠
µ
in) . (49)

Finally, we quantify the noise tolerance as the smallest Euclidean distance between the neuron’s
decision boundary and the patterns {⇠µin}

M
µ=1. This is equivalent to the minimum classification margin,

defined as

� = min
µ

⇠µout(w
>⇠µin)

kwk2
. (50)

We are only interested in the performance regime where all patterns are correctly recalled (i.e.,
correctly classified). This means that we only compare positive margins, since a negative margin
indicates that there is one or more patterns that no longer can be correctly recalled. The results are
plotted in Fig. C.1, and demonstrate that the margin for the MHN quickly drops with increasing
load, while the iterative learning rule achieves a margin close to the theoretical optimum derived by
Gardner [22]. Moreover, as the maximum storage capacity Mmax of each learning rule can be found
at the intersection between the margin curve and the line � = 0, the capacity of the online rule can be
estimated to ⇠0.7N2, which is more than an order of magnitude higher than that of the MHN, which
is ⇠0.05N2.

D Generalized pseudoinverse rule

When the network is linear and underdetermined, meaning M < N , we can make sure that all
patterns are attractors by modeling each neuron as a least-squares SVM [60] instead of a conventional
SVM, so that the weights satisfy

min
w

kwik2 s. t. w>
i ⇠

µ = ⇠µi , 8µ, i . (51)

This is a minimum-norm interpolation problem, and yields the solution

s(t+1) = sgn
h
XK†X>s(t)

i
= sgn

h
XX†s(t)

i
(52)

where K = X>X is the kernel matrix and K† its Moore-Penrose pseudoinverse, and where we have
used the property K†X> = (X>X)†X> = X†. This is the pseudoinverse learning rule [50].

4

The derivation can be extended to MHNs by performing interpolation on the feature map �(⇠µ).
Assuming that the problem is still underdetermined, so that M < N�, we aim to find the weights

min
w

kwik2 s. t. w>
i �(⇠

µ) = ⇠µi , 8µ, i (53)

which, analogously to the linear case, produces the optimal state update

s(t+1) = sgn
h
XK†K(X, s(t))

i
(54)

where K = K(X,X) = �(X)>�(X). This can, again, be simplified to

s(t+1) = sgn
h
X�(X)†�(s(t))

i
(55)

where we can identify the weight matrix W = X�(X)†. This is the generalized pseudoinverse
learning rule. Note that, if the feature-expanded patterns {�(⇠µ)}Mµ=1 are linearly independent, the
kernel matrix is invertible and we have K† = K�1.

E The kernel memory network for continuous patterns

E.1 Minimum norm interpolation and attractor basin size

Proof of Property 4. In the most general variant of this setting, each neuron i is modeled as a linear
regressor with a neuron-specific feature map �i and a state si which is updated according to

s(t+1)
i = w>

i �i(s
(t)) . (56)

All patterns X are guaranteed to be fixed points of the dynamics by finding the weights that satisfy

⇠µi = w>
i �i(⇠

µ), 8µ, i . (57)

In order for each pattern to also be an attractor, the weights must satisfy the additional constraint

kJsk2

���
s(t)=⇠µ

< 1, 8µ (58)

where Js is the Jacobian of the state update rule with respect to the input s(t). The meaning of Eq. 58
is that the spectral norm of the Jacobian must be less than 1 when evaluated at each pattern. The reason
for this is that the update rule, which computes s(t+1) as a function of s(t) (either synchronously or
asynchronously) is continuously differentiable with respect to s(t) and therefore satisfies the mean
value inequality, so that ���s(t+1)

1 � s(t+1)
2

���
2
 Ĵs

���s(t)1 � s(t)2

���
2

(59)

where Ĵs is an upper bound of the spectral norm, meaning

kJsk2 Ĵs . (60)

If Ĵs < 1 at a pattern ⇠µ, it is also possible to find a neighborhood around ⇠µ where Ĵs < 1 holds
as well, due to the continuity of the state update rule. Given this, the Banach fixed point theorem
ensures that the state update rule is a contractive map in a region surrounding ⇠µ and, equivalently,
that ⇠µ is a stable attractor [56]. While the complete basin of attraction of ⇠µ might be difficult to
compute exactly, we can define a subset of the basin as the set of points Sµ in the open neighborhood
of ⇠µ satisfying

S
µ = {s(t) : kJsk2 < 1} . (61)

Given that the spectral norm of the Jacobian is upper bounded by the Frobenius norm, that is

kJsk2 kJskF , (62)

we can obtain a lower bound of the extent of the basin of attraction with the set
bSµ = {s(t) : kJskF < 1} . (63)

We can write Js as
Js = W · J� (64)

5

where

W =

0

BBB@

w>
1 0 · · · 0
0 w>

2 · · · 0
...

...
. . .

...
0 0 · · · w>

N

1

CCCA
, J� =

0

BBB@

J�1

J�2

...
J�N

1

CCCA
(65)

and where J�i is the Jacobian of �i(s(t)) with respect to s(t). This gives us

kJskF = kW · J�kF kWkF · kJ�kF (66)

where the last expression is given by the Cauchy-Schwartz inequality. Since kJ�kF depends only on
the kernel, which is fixed, the right-hand side of Eq. 66 can only be minimized by finding a set of
weights that minimize kWkF . By first rewriting this norm as

kWk
2
F =

NX

i

kwik
2
2 (67)

we see that its minimum is obtained by minimizing kwik2, 8i. Combining this requirement with Eq.
57 is equivalent to performing a minimum norm interpolation, that is

min
wi

kwik2 s. t. ⇠µi = w>
i �i(⇠

µ), 8µ, i . (68)

If we now assume, as in the binary case, that all neurons use the same feature map, so that �i = �,
8i, the solution can be compactly written as in Eq. 20. This maximizes a lower bound of the attractor
basin size, as defined by S

µ, for each pattern ⇠µ. ⇤

E.2 Normally distributed patterns

E.2.1 Kernel at zero temperature

Proof of Property 5.1. Using the notation � = k⇠µ � ⇠⌫k2, we have that

lim
�!1

✓
�

r

◆�

=

8
><

>:

0 , � < r
1 , � = r
1 , � > r

(69)

from which it follows that

lim
�!1

exp

"
�

✓
�

r

◆�
#
=

8
><

>:

1 , � < r
e�1 , � = r
0 , � > r

(70)

which is equivalent to ⇥(r ��) with ⇥(0) = e�1. We combine this with the assumption that the
patterns are unique and that minµ,⌫ 6=µk⇠µ � ⇠⌫k2 > r and obtain

lim
�!1

Kexp� (⇠
µ, ⇠⌫) = ⇥(r � k⇠µ � ⇠⌫k2) =

(
1 , µ = ⌫
0 , µ 6= ⌫

(71)

which can be written compactly as

lim
�!1

Kexp� = IM . (72)

It directly follows that
lim
�!1

K�1
exp�

= I�1
M = IM (73)

and, therefore,
lim
�!1

XK�1
exp�

Kexp� (X, s(t)) = X⇥(r2 � kX� s(t)k22) . (74)

⇤

6

E.2.2 Noise robustness

Proof of Property 6. With s(0) = ⇠µ + ✏, we have

k⇠µ � s(0)k22 = k✏k22 = k�✏0k
2
2 = �2

k✏0k
2
2 (75)

where ✏0 ⇠ N (0, IN), from which it follows that k✏0k22 is a random variable with a �2(N) distribu-
tion. According to the central limit theorem, we also have

lim
N!1

k✏0k22 �N
p
2N

⇠ N (0, 1) (76)

where we have used the fact that each term in k✏0k22 is �2(1)-distributed, and has mean 1 and variance
2. We will therefore make the approximation k✏0k22 ⇠ N (N, 2N) for large N . This gives us

�2
k✏0k

2
2 ⇠ N (�2N, 2�4N) . (77)

The original pattern ⇠µ will only be recovered if r2 � k⇠µ � s(0)k22 � 0, which is satisfied in at least
50% of trials if r2 � �2N . The maximum variance with which this type of recovery still holds is
thus

�2
max = r2/N . (78)

⇤

E.2.3 Storage capacity

Proof of Property 7. In the limit � ! 1, the boundary of the basin of attraction surrounding each
pattern is sharp. In this setting, we are guaranteed that each pattern can be recalled without errors
as long as mini,j 6=ik⇠i � ⇠jk2 > 2r. We will therefore estimate the storage capacity by calculating
the number of patterns, on average, that can be loaded into the network before at least two attractor
basins overlap and the condition above is violated (see Fig. E.1).

We begin by observing that for two random patterns ⇠i, ⇠j ⇠ N (0, IN), we have
1

2
k⇠i � ⇠jk22 ⇠ �2(N) (79)

which, using the central limit theorem as in Eq. 76, can be approximated as N (N, 2N) for large N ,
thereby yielding

k⇠i � ⇠jk22 ⇠ N (2N, 8N) . (80)
We now assume that the squared Euclidean distance between each pair of patterns ⇠i, ⇠j in a set
of M given patterns {⇠µ}Mµ=1 is an independent sample of a random variable, denoted �2, which
is distributed as in Eq. 80. This is, of course, an approximation which neglects that the pairwise
distances between any set of points are inter-dependent. Nonetheless, for relatively large N and M ,
the approximation accurately describes the empirical distance distribution.

Relying on this assumption, the process of drawing M random patterns becomes equivalent to
drawing M(M � 1)/2 unique pairwise distances �2 from the distance distribution. The probability
of drawing a sample �2

 4r2 can be calculated using the cumulative distribution function for the
standard normal distribution, given by �(x) = 1

2 erfc(�x), according to

P(�2
 4r2) =

1

2
erfc

N � 2r2

2
p
N

!
. (81)

The average number of samples of �2 one needs to draw before a sample satisfies �2
 4r2 is given

by P(�2
 4r2)�1. This determines the maximum number of patterns that the network, on average,

can store, according to
Mmax(Mmax � 1)

2
=

1

P(�2 4r2)
. (82)

We combine this expression with the approximation Mmax(Mmax � 1) ⇡ M2
max (which holds for

large Mmax) and Eq. 81, and obtain

Mmax = 2 erfc

N � 2r2

2
p
N

!�1/2

. (83)

7

N
20 40 60

M�
��

10¹

10²

10³
� = 0.45
� = 0.5
� = 0.55
� = 0.6

Figure E.1: Plot of the storage capacity of the Exp� network at � ! 1 with normally distributed
patterns. Dots represent means (± s.e.m.) over 1000 simulations, in which the capacity is determined
by the number of patterns sampled until one of the pairwise distances is smaller than 2r. The standard
error is too small to be visible. Lines correspond to the bound in Eq. 87. Note that the plot is
log-linear, so the linear increase indicates that Mmax scales exponentially in N .

We now parameterize the radius r in terms of the largest tolerable noise amplitude, according to Eq.
78. This gives us

Mmax = 2 erfc

 p
N(1� 2�2

max)

2

!�1/2

. (84)

Given that the erfc function can be well approximated using the asymptotic expansion

erfc(x) ⇡
e�x2

p
⇡x

1X

n=0

(�1)n
(2n� 1)!!

(2x2)n
(85)

for large arguments x, we can obtain a tight lower bound of erfc�1 as long as N is large and
�2
max . 1/2 with the inverse zeroth order expansion, thereby obtaining

erfc(x)�1
�

p
⇡xex

2

. (86)
We insert Eq. 86 in 84 and finally obtain

Mmax �

q
2
p

⇡N(1� 2�2
max) exp

"
N(1� 2�2

max)
2

8

#
. (87)

⇤

E.3 Patterns on the hypersphere

E.3.1 Storage capacity

Property 8 (Storage capacity: patterns on the hypersphere). At � ! 1, the average maximum
number of patterns that the Exp� network can store and recall without errors is lower-bounded by

Mmax �

q
p

8⇡N(1� 2r2) exp

"
N(1� 2r2)2

4

#
(88)

when each pattern is randomly drawn from SN�1.

8

Proof. We begin by observing that for two random patterns ⇠i, ⇠j 2 SN�1, we have

k⇠µ � ⇠⌫k22 = 2(1� ⇠µ>⇠⌫) . (89)

The probability distribution for the inner product ! = ⇠µ>⇠⌫ can be found in [62], and is given by

! ⇠
1
p
⇡

�(N2)

�(N�1
2)

(1� !2)
N�3

2 (90)

which, for large N , can be approximated as

! ⇠ N (0,
1

N
) . (91)

We use Eq. 91 in 89 and obtain

�2
⇠ N (2,

4

N
) . (92)

The probability of placing a pair of random points on SN�1 with �2
 4r2 is thus

P(�2
 4r2) =

1

2
erfc

 p
N(1� 2r2)

p
2

!
. (93)

The average number of samples of �2 one needs to draw before a sample satisfies �2
 4r2 is given

by P(�2
 4r2)�1, and the maximum number of patterns that the network, on average, can store, is

therefore

Mmax = 2 erfc

 p
N(1� 2r2)

p
2

!�1/2

. (94)

We use the lower bound in Eq. 86 in 94 and finally obtain

Mmax �

q
p

8⇡N(1� 2r2) exp

"
N(1� 2r2)2

4

#
. (95)

E.4 Bipolar patterns

E.4.1 Noise robustness

Property 9.1 (Robustness to flipped bits). Assume that we are given a set of unique patterns
⇠1, . . . , ⇠M 2 {±1}N with minµ,⌫ 6=µk⇠µ � ⇠⌫k2 > 2r, and that the Exp� network is initialized in a
distorted pattern s(0) = ⇠µ � ✏, where ✏ 2 {±1}N , with P(✏i = �1) = ⇢, 8i. Then, at � ! 1, the
maximum bit-wise error probability ⇢max with which ⇠µ can be recovered in at least 50% of trials is

⇢max = r2/4N . (96)

Proof. With s(0) = ⇠µ � ✏, we have

k⇠µ � s(0)k22 = k2✏Bk
2
2 = 4k✏Bk

2
2 (97)

where ✏B 2 {0, 1}N , with each entry being a random variable distributed as (✏B)i ⇠ Bernoulli(⇢).
This implies that k✏Bk22 ⇠ Binomial(N, ⇢), which can be approximated as N (⇢N, ⇢(1� ⇢)N) for
large N . This gives

4k✏Bk
2
2 ⇠ N (4⇢N, 16⇢(1� ⇢)N) . (98)

Again, the original pattern ⇠µ will only be recovered if r2 � k⇠µ � s(0)k22 � 0, which is satisfied in
at least 50% of trials if r2 � 4⇢N . The maximum bit-wise error probability with which this type of
recovery still holds is thus

⇢max = r2/4N . (99)

In Eq. 78, � roughly quantifies the maximum noise fluctuation around a pattern that is tolerable with
a given radius r, while still being able to recover the pattern in a majority of trials. In the case of Eq.
99, ⇢ instead quantifies the maximum tolerable bit-wise error probability.

9

E.4.2 Storage capacity

Property 9.2 (Storage capacity: bipolar patterns). At � ! 1, the average maximum number of
bipolar patterns with sparseness f that the Exp� network can store and recall without errors is
lower-bounded by

Mmax � 2

⇡N

2f̃(1� f̃)

!1/4⇣
f̃ � 4⇢max

⌘1/2
exp

"
N(f̃ � 4⇢max)2

4f̃(1� f̃)

#
(100)

where f̃ = 2f(1� f) and ⇢max is the maximum bit-wise error probability tolerated by the network.

Proof. This proof is, again, a slightly modified variant of the proof of Property 7. First, we observe
that for two random patterns ⇠µ, ⇠⌫ 2 {±1}N with sparseness f , so that P(xµ,⌫

i =1) = f , it is true
that

1

4
k⇠µ � ⇠⌫k22 ⇠ Binomial(N, f̃) (101)

where f̃ = 2f(1� f) denotes the probability that ⇠µ and ⇠⌫ differ at any given entry. For large N ,
we can again approximate Binomial(N, f̃) with N (f̃N, f̃(1� f̃)N), which gives us

k⇠µ � ⇠⌫k22 ⇠ N (4f̃N, 16f̃(1� f̃)N) . (102)

We use this to compute the upper bound of the probability of drawing a distance �2 which satisfies
�2

 4r2, as in Eq. 81. The result is

P(�2
 4r2) =

1

2
erfc

0

B@
f̃N � r2q
2f̃(1� f̃)N

1

CA . (103)

Following the same derivations used to produce Eqs. 82 and 83, we arrive at

Mmax = 2 erfc

0

B@
f̃N � r2q
2f̃(1� f̃)N

1

CA

�1/2

. (104)

As before, we parameterize the radius r in terms of the maximum tolerable bit-wise error probability
according to Eq. 99 and yield

Mmax = 2 erfc

0

B@
p
N(f̃ � 4⇢max)q

2f̃(1� f̃)

1

CA

�1/2

. (105)

We finally replace erfc with the lower bound in Eq. 86. This is valid for large N and when ⇢ . f̃/4.
We obtain

Mmax � 2

⇡N

2f̃(1� f̃)

!1/4⇣
f̃ � 4⇢max

⌘1/2
exp

"
N(f̃ � 4⇢max)2

4f̃(1� f̃)

#
. (106)

F Comparison to neuron models with active dendrites

To demonstrate how single neurons in kernel memory networks are generalizations of abstract neuron
models with active dendrites, we begin by considering a neuron in the feature form (Eq. 5). We will
here use the Heaviside activation function with threshold ✓, denoted ⇥✓, instead of sgn, and assume
that patterns and states are in {0, 1}N , where N is the number of inputs. This, however, does not
change the fundamental properties of our model, as SVMs can be formulated for binary data with
minor modifications. Assuming a polynomial feature map � of degree p, the feature vector will

10

consist of all possible monomials of degree p composed of the states of its input neurons. Setting,
for example, p = 2 gives us

�(x) = (1,
p
2x1, . . . ,

p
2xN ,

p
2x1x2, . . . ,

p
2x1xN ,

p
2x2x3, . . . ,

p
2xN�1xN ,

x2
1, . . . , x

2
N) .

(107)

By limiting the feature map to only include a subset of all terms, our model is reduced to the 2-degree
sigma-pi unit [58, p. 73], which can be written as

sout = ⇥✓

2

4
X

i

wi

Y

j2Ci

sin,j

3

5 (108)

where wi is the weight of cluster i, which consists of a product of all inputs sin,j whose indices j are
contained in the set Ci. From a neurophysiological perspective, each product represents the cross-talk
between a set of synapses. By including such multiplicative interactions, synapses can both gate and
amplify each other, to generate supra-linear input currents.

If we now further constrain this model to include only a subset of the cross-terms xixj , i 6= j, and
parameterize each cross-term weight as wij = wiwj , our neuron model is reduced to the clusteron
[43], which can be written as

sout = ⇥✓

2

4
NX

i

X

j2Ci

wiwjsin,isin,j

3

5

= ⇥✓

2

64
NX

i

wisin,i

0

@
X

j2Ci

wjsin,j

1

A

3

75

(109)

where Ci now is the set describing all inputs j that input i should be paired with.

We now consider a neuron in the kernel form (Eq. 6) with an inner-product kernel K(xi,xj) =
k(x>

i xj). By setting ⇠µout = 1, 8µ, and assuming binary inputs, our model is reduced to

sout = ⇥✓

2

64
MX

µ

↵µk

0

@
NX

i

⇠µin,isin,i

1

A

3

75 (110)

which is equivalent to the pyramidal cell as a 2-layered neural network, as defined in [53]. According
to the original interpretation, this neuron model is comprised of M subunits, which can represent,
for example, separate parts of a dendritic tree. All subunits receive the inputs and produce separate
outputs which are all summed in the soma. Each subunit µ is characterized by the input weights
⇠µin (which serves as a mask), the output weight ↵µ (which determines how strongly the subunit
influences the response at the soma), and the activation function k.

11

	Introduction
	Our contribution
	Related work

	Background
	Kernel memory networks for binary patterns
	Hetero-associative memory as a feed-forward SVM network
	Auto-associative memory as a recurrent SVM network
	Kanerva's sparse distributed memory is a feed-forward SVM network
	The modern Hopfield network is a recurrent SVM network

	Kernel memory networks for continuous patterns
	Auto-associative memory as a recurrent interpolation network
	A recurrent interpolation network with exponential capacity

	Discussion
	Derivation of storage capacity scaling
	Optimal storage: The scaling of effective input dimensionality
	One-shot storage: The scaling of the support vector proliferation regime

	Kernel of an infinite SDM on the hypersphere
	Derivation of Eq. 17.
	Derivation of Eq. 18.

	Iterative learning in an SVM network
	Generalized pseudoinverse rule
	The kernel memory network for continuous patterns
	Minimum norm interpolation and attractor basin size
	Normally distributed patterns
	Kernel at zero temperature
	Noise robustness
	Storage capacity

	Patterns on the hypersphere
	Storage capacity

	Bipolar patterns
	Noise robustness
	Storage capacity

	Comparison to neuron models with active dendrites

