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1 Method Details1

1.1 Keypoint-Free SfM2

Reference nodes selection strategy. The proposed keypoint-free SfM establishes 3D structures3

in a coarse-to-fine manner. It first reconstructs a complete 3D model leveraging the semi-dense4

matches of the coarse-level LoFTR, then refines the initial 3D model to higher accuracy. We refine5

the initial point cloud by refining “keypoints” in the coarse feature tracks to sub-pixel accuracy and6

optimize the point cloud based on the refined feature tracks. The fine-level LoFTR is used for coarse7

feature track refinement, which refines all points in a feature track with Transformers with reference8

to a fixed reference point.9

We find that the fine-level LoFTR is robust and insensitive to the reference point selection strategy.10

This is reasonable since the fine-level LoFTR is exactly trained to find a sub-pixel correspondence11

on a local feature patch for an arbitrarily given feature point. Consequently, we design the reference12

node selection strategy mainly for the ease of implementation and lower memory consumption. To13

refine all feature tracks with the fine-level LoFTR, we need to extract fine-level CNN feature maps14

for all images and store them for further use. This would take a ton of storage, varied according to15

the total number of frames, which can hardly fit into the RAM of consumer-grade GPUs.16

To make our reconstruction pipeline broadly usable, we treat an image, instead of a feature track,17

as the minimum processing unit. More specifically, we recursively select the frame containing the18

maximum number of “keypoints” (i.e., involved in the most feature tracks), and select all “keypoints”19

in this frame as the fixed reference nodes of their belonging feature tracks. All feature tracks in the20

selected frame are then refined, and marked as processed. We repeat this process untill all feature21

tracks are refined. This strategy avoids the need to store dense feature maps of all frames and22

minimizes the number of frames whose feature maps are repeatedly extracted.23

1.2 Object Pose Estimation24

Positional encoding. We apply positional encoding modules on top of the coarse 3D features25

F̃3D ∈ RN×Dc and 2D feature maps F̃2D to make them position-dependent, which is proved to26

boost the matching performance [7, 10]. Because the 2D-3D matching involves two modalities,27

we use the standard sinusoidal encoding for the 2D feature maps and leverage a learned positional28

encoding for the 3D features. More specifically, for the 3D features, we embed the normalized 3D29

coordinates x3D ∈ RN×3 into a high-dimensional vector with an MLP:30

F̃′
3D = F̃3D +MLPpe(x3D). (1)
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For the 2D feature maps, we use a 2D extension of the standard sinusoidal positional encoding31

proposed in Transformers following DETR [1]:32

PE i
x,y = f(x, y)i :=


sin (ωk · x) , i = 4k
cos (ωk · x) , i = 4k + 1
sin (ωk · y) , i = 4k + 2
cos (ωk · y) , i = 4k + 3,

(2)

where ωk = 1
100002k/d , d is the number of feature channels on which positional encoding is applied,33

i is the index of the feature channel.34

The positional encoding modules enable the later attention modules to jointly reason about visual35

appearances and positions, benefiting 2D-3D matching. Note that the positional encodings are only36

applied once before the first attention module.37

Attention module. Directly using the vanilla Transformer [12] to our model is not applicable be-38

cause its computation cost grows quadratically with the length of input features. Following [10],39

we use the Linear Transformer [2] to efficiently transform 2D and 3D features. It reduces the com-40

putational complexity of the Transformer [12] from O(N2) to O(N) by substituting the exponential41

kernel with an alternative kernel function sim(Q,K) = ϕ(Q) · ϕ(K)T,where ϕ(·) = elu(·) + 1.42

Please refer to the original paper [2] for more details.43

We denote a set of self- and cross-attention layers as an attention block:44 
F′(l+1)

2D = SelfAtten(F
(l)
2D,F

(l)
2D),

F′(l+1)
3D = SelfAtten(F

(l)
3D,F

(l)
3D),

F
(l+1)
2D ,F

(l+1)
3D = CrossAtten(F′(l+1)

2D ,F′(l+1)
3D ).

(3)

The indices of intermediate features are indicated by ·(l). F′ represents an intermediate feature45

processed by a self-attention layer. Our attention module sequentially performs the attention block46

Nc = 3 times to transform the 3D and 2D features.47

Supervision. We jointly train the coarse and fine modules in our 2D-3D matching framework with48

different supervisions. We project the observable 3D points to the 2D frame to build the ground-truth49

2D-3D correspondences Mf
gt for our fine matching module. For the coarse matching module, we50

round the projected 2D points to their nearest grid points to obtain the ground-truth coarse 2D-3D51

correspondences Mc
gt. We optimize the coarse module by minimizing the focal loss [4] between the52

predicted matching probability matrix Pc and the ground truth Pc
gt constructed with Mc

gt similar53

to [7, 10]:54

Lc =
1

|Pc
gt|

∑
j,q

FL(Pc(j, q)) (4)

55

FL(Pc(j, q)) =

{
−α(1− Pc(j, q))γ log(Pc(j, q)), if Pc

gt(j, q) = 1

−(1− α)Pc(j, q)γ log(1− Pc(j, q)), if Pc
gt(j, q) ̸= 1.

For the fine module, we use a ℓ2 loss to minimize the distances between the predicted 2D coordinates56

ûq and the ground truth ûq
gt. Following [13, 10], we make our loss uncertainty-weighted with a57

variance term σ2(q):58

Lf =
1

|Mf |
∑

q∈Mf

1

σ2(q)

∥∥ûq − ûq
gt

∥∥
2
, (5)

Notably, we detach σ2(q) during training to prevent the network from decreasing the loss by increas-59

ing the variance. The total loss is the weighted sum of the coarse and fine losses L = ωcLc +ωfLf .60

In the experiment, α is 0.5, γ is 2.0, ωc is 1.0 and ωf is 1.0.61

2 OnePose-HARD Dataset62

In this section, we provide more details of the proposed OnePose-HARD evaluation dataset. This63

dataset contains 80 sequences of 40 household low-textured objects. For each object, two video64

sequences with object poses and annotated object 3D bounding boxes are provided. The video65
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Figure 1: CAD models from the proposed OnePose-HARD dataset. We capture CAD models
for a subset of ten objects from the OnePose-HARD dataset. These CAD models can be used to train
instance-level methods such as PVNet [6] and CDPN [3] and enable further comparisons between
CAD-model-free methods and CAD-model-based methods.

sequences of each object are captured with different backgrounds, simulating the real-world using66

scenario. Each video is recorded at 30 fps for about 30 seconds in 1920× 1440 resolution.67

The data capture and annotation pipeline follow the setup of OnePose [11]. The camera poses68

provided by ARKit can be transformed into the object-centric coordinate system induced from the69

user-annotated object 3D bounding boxes. Following [11], we align multiple captured sequences70

of an object with the annotated object 3D bounding boxes. Then, we perform a bundle adjustment71

with COLMAP to reduce the pose drift of ARKit and inconsistency between 3D bounding box72

annotations in multiple sequences. This offline optimization process leads to more consistent 3D73

bounding box annotations across sequences and more accurate object poses.74

To compare with instance-level methods such as PVNet [6] and CDPN [3], we additionally capture75

high-quality 3D CAD models for a selected subset of ten objects from the OnePose-HARD dataset.76

We use the SHINING(R) scanner for the CAD model capturing. Fig. 1 illustrates all captured CAD77

models.78

3 Experiment Details79

3.1 Training Details80

Our model is trained on the OnePose [11] training set, which contains 49 objects. We first recon-81

struct the semi-dense object point cloud with our keypoint-free SfM for each object using all training82

sequences with 5x downsampled video frames. Then we leverage the 2D-3D correspondences com-83

puted from the annotated poses and the reconstructed 3D model to train our sparse-to-dense 2D-3D84

matching module. Note that we compute the rough 2D object bounding boxes from the annotated 3D85

bounding boxes in the dataset and use the cropped images for reconstruction and training, following86

OnePose [11].87

3.2 Metrics88

We use the commonly used cm-degree pose error, the ADD(s) and the Proj2D metrics to evaluate89

the estimated object poses. We follow PixSfM [5] to evaluate the reconstructed object point cloud.90

cm-degree metric. For a predicted pose, the rotation error and translation error are computed91

separately. A predicted pose is considered correct if both its rotation error and translation error are92

less than a threshold.93
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Table 1: More ablation results.
OnePose dataset OnePose-HARD Time1cm-1deg 3cm-3deg 5cm-5deg 1cm-1deg 3cm-3deg 5cm-5deg

Full(Nc = 3, Nf = 1, use all 3D points) 50.7 80.0 87.0 16.3 55.4 70.3 88ms
w/o Position Encoding 49.6 79.4 86.4 15.6 53.4 68.7 87ms

Large model(Nc = 6, Nf = 2) 50.6 79.9 87.0 16.3 53.8 68.4 133ms
Sample 7000 3D points 49.1 79.3 86.3 15.5 52.8 68.1 57ms
Sample 3000 3D points 47.7 78.4 85.8 14.7 50.7 65.6 42ms

Proj2D metric. The Proj2D metric computes the mean distance between the projection of 3D94

model points with given predicted and ground truth object poses. The estimated pose is considered95

correct if the mean projection distance is less than 5 pixels.96

ADD metric. We first transform the 3D model points with the ground truth and the predicted poses.97

Then we compute the ADD metric using the mean distance between two transformed point sets. The98

pose is regarded as correct if the mean distance is less than 10% of the object diameter. Note that99

for symmetric objects, we use the ADD(S) [14] metric for evaluation.100

Point cloud accuracy. We evaluate the point cloud accuracy in the ablation studies, following the101

metric in [5, 9]. The accuracy is defined as the percentage of reconstructed points which are within102

a distance threshold(e.g., 3mm) with reference to the ground truth point cloud. We use vertices of103

the scanned object meshes as the ground truth point clouds.104

3.3 Runtime Analyses of Keypoint-Free SfM105

We evaluate the runtime of each part in the proposed keypoint-free SfM. The experiment is con-106

ducted on a server with two Intel(R) Xeon Gold 6146 CPU and an NVIDIA-V100-32GB GPU. We107

illustrate the runtime analyses with only one object instance below. The overall runtime varies ac-108

cording to several factors, such as image resolutions, the number of images used for reconstruction,109

and the number of successfully built coarse matches. For a video sequence with 193 images in110

512× 512 resolution, it takes 135s to perform sequential coarse matching on 1436 image pairs, and111

40s to load all coarse matches and perform the triangulation [8]. Then, we perform fine matching112

between 1122 image pairs from the scene graph of coarse reconstructions to refine the feature tracks,113

which takes 171s. Finally, we optimize the object point cloud, which only consumes 1.03s.114

3.4 More Ablation Results115

We further conduct additional ablation studies on variants of the 2D-3D matching network architec-116

tures and different numbers of 3D points used for pose estimation.117

Ablation on 2D-3D matching network architectures. The results of a large model with more118

attention layers and a model without positional encoding are shown in Tab 3.3. Increasing the119

number of attention layers by twice barely changes the results.120

Different numbers of 3D points. We evaluate the effect of using different numbers of 3D points121

for object pose estimation. The results are illustrated in Tab 3.3. Our full model uses all recon-122

structed 3D object points for pose estimation, obtaining the highest accuracy. Decreasing the number123

of points with subsampling leads to minorly degraded pose estimation accuracy and faster inference124

speed.125
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