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Abstract

As part of the effort to understand implicit bias of gradient descent in over-
parametrized models, several results have shown how the training trajectory on
the overparametrized model can be understood as mirror descent on a different
objective. The main result here is a characterization of this phenomenon under
a notion termed commuting parametrization, which encompasses all the previ-
ous results in this setting. It is shown that gradient flow with any commuting
parametrization is equivalent to continuous mirror descent with a related Legendre
function. Conversely, continuous mirror descent with any Legendre function can
be viewed as gradient flow with a related commuting parametrization. The latter
result relies upon Nash’s embedding theorem.

1 Introduction

Implicit bias refers to the phenomenon in machine learning whereby the solution obtained from loss
minimization has special properties that were not implied by value of the loss function and instead
arose from the optimization’s trajectory through the parameter space. Quantifying implicit bias nec-
essarily has to go beyond the traditional black-box convergence analyses of optimization algorithms.
Implicit bias can explain how choice of optimization algorithm can affect generalization [61, 42, 41].

Many existing results about implicit bias view training (in the limit of infinitesimal step size) as
a differential equation or process {x(t)}t≥0 ⊂ RD. To show the implicit bias of x(t), the idea
is to show for another (more intuitive or better understood) process {w(t)}t≥0 ⊂ Rd that x(t) is
simulating w(t), in the sense that there exists a mapping G : RD → Rd such that w(t) = G(x(t)).
Then the implicit bias of x(t) can be characterized by translating the special properties of w(t) back
to x(t) through G. A related term, implicit regularization, refers to a handful of such results where
particular update rules are shown to lead to regularized solutions; specifically, x(t) is simulating w(t)
where w(t) is solution to a regularized version of the original loss.

The current paper develops a general framework involving optimization in the continuous-time
regime of a loss L : Rd → R that has been re-parametrized before optimization as w = G(x)
for some G : RD → Rd. Then the original loss L(w) in the w-space induces the implied loss

∗Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



(L ◦G)(x) ≡ L(G(x)) in the x-space, and the gradient flow in the x-space is given by2

dx(t) = −∇(L ◦G)(x(t))dt. (1)

Using w(t) = G(x(t)) and the fact that ∇(L ◦G)(x) = ∂G(x)⊤∇L(G(x)) where ∂G(x) ∈ Rd×D
denotes the Jacobian of G at x, the corresponding dynamics of (1) in the w-space is

dw(t) = ∂G(x(t))dx(t) = −∂G(x(t))∂G(x(t))⊤∇L(w(t))dt. (2)

Our framework is developed to fully understand phenomena in recent papers [26, 58, 64, 4, 61, 5, 8],
which give examples suggesting that gradient flow in the x-space could end up simulating a more
classical algorithm, mirror descent (specifically, the continuous analog, mirror flow) in the w-
space. Recall that mirror flow is continuous-time limit of the classical mirror descent, written as
d∇R(w(t)) = −∇L(w(t))dt where R : Rd → R ∪ {∞} is a strictly convex function [49, 10],
which is called mirror map or Legendre function in literature. Equivalently it is Riemannian gradient
flow with metric tensor ∇2R, an old notion in geometry:

dw(t) = −∇2R(w(t))−1∇L(w(t))dt. (3)

If there exists a Legendre function R such that ∂G(x(t))∂G(x(t))⊤ = ∇2R(w(t))−1 for all t,
then (2) becomes a simple mirror flow in the w-space. Many existing results about implicit bias
indeed concern reparametrizations G that satisfy ∂G(x)∂G(x)⊤ = ∇2R(w)−1 for a strictly convex
function R, and the implicit bias/regularization is demonstrated by showing that the convergence
point satisfies the KKT conditions needed for minimizing R among all minimizers of the loss
L. A concrete example is that wi(t) = Gi(x(t)) = (xi(t))

2 for all i ∈ [d], so here D = d.
In this case, the Legendre function R must satisfy (∇2R(w(t)))−1 = ∂G(x(t))∂G(x(t))⊤ =
4diag((x1(t))

2, . . . , (xd(t))
2) = 4diag(w1(t), . . . , wd(t)) which suggestsR is the classical negative

entropy function, i.e., R(w) =
∑d
i=1 wi(lnwi − 1).

However, in general, it is hard to decide whether gradient flow for a given parametrization G can
be written as mirror flow for some Legendre function R, especially when D > d and G is not an
injective map. In such cases, there could be multiple x’s mapping to the same G(x) yet having
different ∂G(x)∂G(x)⊤. If more than one of such x can be reached by gradient flow, then the desired
Legendre function cannot exist.3 If only one of such x can be reached by gradient flow, we must
decide which x it is in order to decide the value of ∇2R using ∂G∂G⊤. Conversely, [5] raises the
following question: for what Legendre function R can the corresponding mirror flow be the result of
gradient flow after some reparametrization G? Answering the questions in both directions requires a
deeper understanding of the impact of parametrizations.

The following are the main contributions of the current paper:

• In Section 4, building on classic study of commuting vector fields we identify a notion of when a
parametrization w = G(x) is commuting (Definition 4.1) and use it to give a sufficient condition
(Theorem 4.8) and a slightly weaker necessary condition (Theorem 4.9) of when the gradient
flow in the x-space governed by −∇(L ◦ G) is simulating a mirror flow in the w-space with
respect to some Legendre function R : Rd → R. This condition encompasses all the previous
results [26, 58, 64, 4, 61, 5, 8]. Moreover, the Legendre function is independent of the loss L and
depends only on the initialization xinit and the parametrization G.

• We recover and generalize existing implicit bias results for underdetermined linear regression as
implications of the above characterization (Corollary 4.17). We also give new convergence analysis
in such settings (Theorem 4.15), filling the gap in previous works [26, 61, 8] where parameter
convergence is only assumed but not proved.

• In the reverse direction, we use the famous Nash’s embedding theorem to show that every mirror
flow in the w-space with respect to some Legendre function R simulates a gradient flow with
commuting parametrization under some embedding x = F (w) where F : Rd → RD and the

2Two examples from recent years, where G does not change expressiveness of the model, involve (a)
overparametrized linear regression where the parameter vector w is reparametrized (for example as w =
u⊙2 − v⊙2 [61]) and (b) deep linear nets [6] where a matrix W is factorized as W = W1W2 · · ·WL where
each Wℓ is the weight matrix for the ℓ-th layer.

3To avoid such an issue, [5] has to assume all the preimages of G at w have the same ∂G(∂G)⊤ and a recent
paper [23] assumes that G is injective.
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parametrization G is the inverse of F (Theorem 5.1). This provides an affirmative and fully general
answer to the question of when such reparametrization functions exist, giving a full answer to
questions raised in a more restricted setting in [5].

2 Related work

Implicit bias. With high overparametrization as used in modern machine learning, there usually
exist multiple optima, and it is crucial to understand which particular solutions are found by the
optimization algorithm. Implicit bias of gradient descent for classification tasks with separable data
was studied in [55, 24, 46, 35, 45, 34] and for non-separable data in [32, 33], where the implicit bias
appears in the form of margin maximization. The implicit bias for regression problems has also been
analyzed by leveraging tools like mirror descent [61, 24, 64, 58, 4, 5], later generalized in [8].

The sharp contrast between the so-called kernel and rich regimes [61] reflects the importance of the
initialization scale, where a large initialization often leads to the kernel regime with features barely
changing during training [30, 16, 20, 19, 2, 1, 65, 7, 62, 31], while with a small initialization, the
solution exhibits richer behavior with the resulting model having lower complexity [25, 26, 39, 52,
6, 15, 41, 43, 44, 53, 56, 22]. Recently [63] gave a complete characterization on the relationship
between initialization scale, parametrization and learning rate in order to avoid kernel regime.

There are also papers on the implicit bias of other types of optimization algorithms, e.g., stochastic
gradient descent [40, 11, 29, 42, 18, 66] and adaptive and momentum methods [51, 60, 59, 36], to
name a few.

Understanding mirror descent. In the continuous-time regime, the mirror flow is equivalent to a
Riemannian gradient flow with the metric tensor induced by the Legendre function. [27] showed that
a partial discretization of the latter gives rise to the classical mirror descent. Assuming the existence
of some reparametrization function, [5] showed that a particular mirror flow can be reparametrized
as a gradient flow. Our paper shows that such reparametrization always exists by using Nash’s
embedding theorem. [23] generalized the equivalence result of [5] to discrete updates.

3 Preliminaries and notations

Notations. We denote N as the set of natural numbers. For any n ∈ N, we denote {1, 2, . . . , n}
by [n]. For any vector u ∈ RD, we denote its i-th coordinate by ui. For any vector u, v ∈ RD
and α ∈ R, we define u ⊙ v = (u1v1, . . . , uDvD)

⊤ and u⊙α = ((u1)
α, . . . , (uD)

α)⊤. For any
k ∈ N ∪ {∞}, we say a function f is Ck if it is k times continuously differentiable, and use Ck(M)
to denote the set of all Ck functions from M to R. We use ◦ to denote the composition of functions,
e.g., f ◦ g(x) = f(g(x)). For any convex function R : RD → R ∪ {∞}, we denote its domain by
domR = {w ∈ RD|R(w) <∞}. For any set S, we denote its interior by int(S) and its closure by
S.

We assume that the model has parameter vector w ∈ Rd and C1 loss function L : Rd → R. Training
involves a reparametrized vector x ∈ RD, which is a reparametrization of w such that w = G(x)
for some differentiable parametrization function G, and the objective is L(G(x)). From now on, we
follow the convention that d is the dimension of the original parameter w and D is the dimension of
the reparametrized x. We also refer to Rd as the w-space and RD as the x-space.

In particular, we are interested in understanding the dynamics of gradient flow under the objective
L ◦G on some submanifold M ⊆ RD. Most of our results also generalize to the following notion of
time-dependent loss.

Definition 3.1 (Time-dependent loss). A time-dependent loss Lt(w) is a function piecewise constant
in time t and continuously differentiable in w ∈ Rd, that is, there exist k ∈ N, 0 = t1 < t2 < · · · <
tk+1 = ∞ and C1 loss functions L(1), L(2), . . . , L(k) such that for each i ∈ [k] and all t ∈ [ti, ti+1),

Lt(w) = L(i)(w), ∀w ∈ Rd.

We denote the set of such time-dependent loss functions by L.
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3.1 Manifold and vector field

Vector fields are a natural way to formalize the continuous-time gradient descent (a good reference
is [38]). Let M be any smooth submanifold of RD. A vector field X on M is a continuous map from
M to RD such that for any x ∈ M , X(x) is in the tangent space of M at x, which is denoted by
TxM . Formally, TxM := {dγ

dt

∣∣
t=0

| ∀ smooth curves γ : R →M,γ(0) = x}.

Definition 3.2 (Complete vector field; p.215, [38]). Let M be a smooth submanifold of RD and X
be a vector field on M . We say X is a complete vector field on M if for any initialization xinit ∈M ,
the differential equation dx(t) = X(x(t))dt has a solution on (−∞,∞) with x(0) = xinit.

Equipping the smooth submanifold M ⊆ RD with a metric tensor g, we then have a Riemannian
manifold (M, g), where for each x ∈M , gx : TxM × TxM → R is a positive definite bilinear form.
In particular, the standard Euclidean metric g corresponds to gx(u, v) = u⊤v for each x ∈M and
u, v ∈ TxM , under which the length of any arc on M is given by its length as a curve in RD.

For any differentiable function f :M → R, we denote by ∇gf its gradient vector field with respect
to metric tensor g. More specifically, ∇gf(x) is defined as the unique vector in RD such that
∇gf(x) ∈ TxM and df(γ(t))

dt

∣∣
t=0

= gx
(
∇f(x), dγ(t)dt

∣∣
t=0

)
for any smooth curve γ : R →M with

γ(0) = x. Throughout the paper, we assume by default that the metric on the submanifold M ⊆ RD
is inherited from (RD, g), and we will use ∇f as a shorthand for ∇gf . If M is an open set of RD,
∇f is then simply the ordinary gradient of f .

For any x ∈M and C1 function f :M → R, we denote by ϕtf (x) the point on M reached after time
t by following the vector field −∇f starting at x, i.e., the solution at time t (when it exists) of

dϕtf = −∇f(ϕtf )dt, ϕ0f (x) = x.

We say ϕtf (x) is well-defined at time t when the above differential equation has a solution at time t.
Moreover, for any differentiable function X :M → Rd, we define its Jacobian by

∂X(x) = (∇X1(x),∇X2(x), . . . ,∇Xd(x))
⊤.

Definition 3.3 (Lie bracket). Let M be a smooth submanifold of RD. Given two C1 vector fields
X,Y on M , we define the Lie bracket of X and Y as [X,Y ](x) := ∂Y (x)X(x)− ∂X(x)Y (x).

3.2 Parametrizations

We use the term parametrization to refer to differentiable maps from a smooth submanifold of
RD (x-space) to Rd (w-space). We reserve G to denote parametrizations, and omit the dependence
on G for notations of objects related to G when it is clear from the context.

The following notion of regular parametrization plays an important role in our analysis, and it is
necessary for our main equivalence result between mirror flow and gradient flow with commuting
parametrization. This is because if the null space of ∂G(x) is non-trivial, i.e., it contains some vector
u ̸= 0, then the gradient flow with parametrization G obviously cannot simulate any mirror flow with
nonzero velocity in the direction of u.
Definition 3.4 (Regular parametrization). Let M be a smooth submanifold of RD. A regular
parametrization G :M → Rd is a C1 parametrization such that ∂G(x) is of rank d for all x ∈M .

Note that a regular parametrization G can become irregular when its domain is changed. For example,
G(x) = x2 is regular on R+, but it is not regular on R as ∂G(0) = 0.

Given a C2 parametrization G :M → Rd, for any x ∈M and µ ∈ Rd, we define

ψ(x;µ) := ϕµ1

G1
◦ ϕµ2

G2
◦ · · · ◦ ϕµd

Gd
(x) (4)

when it is well-defined, i.e., the corresponding integral equation has a solution. For any x ∈M , we
define the domain of ψ(x; ·) as

U(x) =
{
µ ∈ Rd | ψ(x;µ) is well-defined

}
. (5)

When every ∇Gi is a complete vector field on M as in Definition 3.2, we have U(x) = Rd. However,
such completeness assumption is relatively strong, and most polynomials would violate it. For
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example, consider G(x) = x⊙3 for x ∈ Rd, then the solution to dxi(t) = 3xi(t)
2dt explodes in

finite time for each i ∈ [d]. To relax this, we consider parametrizations such that the domain of the
flows induced by its gradient vector fields is pairwise symmetric. More specifically, we define

Uij(x) =
{
(s, t) ∈ R2 | ϕsGi

◦ ϕtGj
(x) is well-defined

}
for any x ∈M and i, j ∈ [d], and we make the following assumption.

Assumption 3.5. Let M be a smooth submanifold of RD and G : M → Rd be a parametrization.
We assume that for any x ∈M and i ∈ [d], ϕtx(x) is well-defined for t ∈ (T−, T+) such that either
limt→T+

∥ϕtx(x)∥2 = ∞ or T+ = ∞ and similarly for T−. Also, we assume that for any x ∈M and
i, j ∈ [d], it holds that Uji(x) = {(t, s) ∈ R2 | (s, t) ∈ Uij(x)}, i.e., ϕsGi

◦ ϕtGj
(x) is well-defined if

and only if ϕtGj
◦ ϕsGi

(x) is.

Indeed, under Assumption 3.5, we can show that for any x ∈M , U(x) is a hyperrectangle in Rd, i.e,

U(x) = I1(x)× I2(x)× · · · × Id(x) where each Ij(x) ⊂ R is an open interval. (6)

See Lemma C.1 and its proof in Appendix C. Next, for any initialization xinit ∈ M , the set of
points that are reachable via gradient flow under some time-dependent loss (see Definition 3.1) with
parametrization G is a subset of M that depends on G and xinit.

Definition 3.6 (Reachable set). Let M be a smooth submanifold of RD. For any C2 parametrization
G :M → Rd and any initialization xinit ∈M , the reachable set Ωx(xinit;G) is defined as

Ωx(xinit;G) =
{
ϕµ1

L1◦G ◦ ϕµ2

L2◦G ◦ · · · ◦ ϕµk

Lk◦G(xinit)
∣∣∣ ∀k ∈ N,∀i ∈ [k], Li ∈ C1(Rd), µi ≥ 0

}
.

It is clear that the above definition induces a transitive “reachable” relationship between points on M ,
and it is also reflexive since for all L ∈ C1(Rd) and t > 0, ϕtL◦G ◦ϕt(−L)◦G is the identity map on the
domain of ϕt−L◦G. In this sense, the reachable sets are orbits of the family of gradient vector fields
{∇(L ◦G) | L ∈ C1(Rd)}, i.e., the reachable sets divide the domain M into equivalent classes. The
above reachable set in the x-space further induces the corresponding reachable set in the w-space
given by Ωw(xinit;G) = G(Ωx(xinit;G)).

In most natural examples, the parametrization G is smooth (though this is not necessary for our
results), and by Sussman’s Orbit Theorem [57], each reachable set Ωx(xinit;G) is an immersed
submanifold of M . Moreover, it follows that Ωx(xinit;G) can be generated by {∇Gi}di=1, i.e.,
Ωx(xinit;G) = {ϕµ1

Gj1
◦ ϕµ2

Gj2
◦ · · · ◦ ϕµk

Gjk
(xinit) | ∀k ∈ N,∀i ∈ [k], ji ∈ [d], µi ≥ 0}.

3.3 Mirror descent and mirror flow

Next, we introduce some basic notions for mirror descent [49, 10]. We refer the readers to Appendix B
for more preliminaries on convex analysis.

Definition 3.7 (Legendre function and mirror map). LetR : Rd → R∪{∞} be a differentiable convex
function. We sayR is a Legendre function when it satisfies that (1)R is strictly convex on int(domR),
and (2) for any sequence {wi}∞i=1 going to the boundary of domR, limi→∞ ∥∇R(wi)∥2 = ∞. In
particular, we callR a mirror map ifR further satisfies that the gradient map ∇R : int(domR) → Rd
is surjective (see p.298 in [13]).

Given a Legendre function R : Rd → R ∪ {∞}, for any initialization w0 = winit ∈ int(domR),
mirror descent with step size η updates as follows:

∇R(wk+1) = ∇R(wk)− η∇L(wk). (7)

Usually ∇R is required to be surjective so that after a discrete descent step in the dual space, it can
be projected back to the primal space via (∇R)−1. Nonetheless, as long as ∇R(wk)− η∇L(wk) is
in the range of ∇R, the above discrete update is well-defined. In the limit of η → 0, (7) becomes the
continuous mirror flow:

d∇R(w(t)) = −∇L(w(t))dt. (8)
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−∇Gi ti

−∇Gj
tj

−∇Gj
tj

−∇Giti

x

ϕtiGi
(x)

ϕ
tj
Gj

(x)

ϕtiGi
◦ ϕtjGj

(x) = ϕ
tj
Gj

◦ ϕtiGi
(x)

Figure 1: Illustration of commuting parametrizations. Suppose G : M → Rd is a commuting
parametrization satisfying Assumption 3.5, then starting from any x ∈M , first moving along −∇Gi
for time ti then moving along −∇Gj for time tj yields the same result as first moving along −∇Gj
for time tj then moving along −∇Gi for time ti does, i.e., ϕtiGi

◦ ϕtjGj
(x) = ϕ

tj
Gj

◦ ϕtiGi
(x).

Given a differentiable function R, the corresponding Bregman divergence DR is defined as

DR(w,w
′) = R(w)−R(w′)− ⟨∇R(w′), w − w′⟩.

We recall a well-known implicit bias result for mirror flow [24] (which holds for mirror descent as
well), which shows that for a specific type of loss, if mirror flow converges to some optimal solution,
then the convergence point minimizes some convex regularizer among all optimal solutions.
Theorem 3.8. Given any data Z ∈ Rn×d and corresponding label Y ∈ Rn, suppose the loss L(w)
is in the form of L(w) = L̃(Zw) for some differentiable L̃ : Rn → R. Assume that initialized at
w(0) = winit, the mirror flow (8) converges and the convergence point w∞ = limt→∞ w(t) satisfies
Zw∞ = Y , then DR(w∞, w0) = minw:Zw=Y DR(w,w0).

See Appendix C for a proof. The above theorem is the building block for proving the implicit bias
induced by any commuting parametrization in overparametrized linear models (see Theorem 4.16).

4 Every gradient flow with commuting parametrization is a mirror flow

4.1 Commuting parametrization

We now formalize the notion of commuting parametrization. We remark that M is a smooth
submanifold of RD, and it is the domain of the parametrization G.
Definition 4.1 (Commuting parametrization). Let M be a smooth submanifold of RD. A C2

parametrization G :M → Rd is commuting in a subset S ⊆M if and only if for any i, j ∈ [d], the
Lie bracket [∇Gi,∇Gj ](x) = 0 for all x ∈ S. Moreover, we say G is a commuting parametrization
if it is commuting in the entire M .

In particular, when M is an open subset of Rd, {∇Gi}di=1 are ordinary gradients in RD, and the
Lie bracket between any pair of ∇Gi and ∇Gj is given by [∇Gi,∇Gj ](x) = ∇2Gj(x)∇Gi(x)−
∇2Gi(x)∇Gj(x). This provides an easy way to check whether G is commuting or not.

The above definition of commuting parametrizations builds upon the differential properties of the
gradient vector fields {∇Gi}di=1, where each Lie bracket [∇Gi,∇Gj ] quantifies the change of ∇Gj
along the flow generated by ∇Gi. Indeed, the above characterization of ‘commuting’ is further
equivalent to another characterization in the integral form (Theorem 4.2), as illustrated in Figure 1.
Theorem 4.2. Let M be a smooth submanifold of RD and G : M → Rd be a C2 parametrization
satisfying Assumption 3.5. For any i, j ∈ [d], [∇Gi,∇Gj ](x) = 0 for all x ∈ M if and only if for
any x ∈M , it holds that ϕsGi

◦ ϕtGj
(x) = ϕtGj

◦ ϕsGi
(x) for all (s, t) ∈ Ii(x)× Ij(x), where Ii(x)

and Ij(x) are the time domains of ϕsGi
(x) and ϕtGj

(x) as defined in (6).

The commuting condition clearly holds when each Gi only depends on a different subset of coordi-
nates of x, because we then have ∇2Gi(·)∇Gj(·) ≡ 0 for any distinct i, j ∈ [d] as ∇2Gi and ∇Gj
live in different subspaces of RD. We call such G separable parametrizations4, and this case covers
all the previous examples [26, 58, 4, 61, 5]. Another interesting example is the quadratic parametriza-
tion: We parametrize w ∈ Rd by G : RD → Rd where for each i ∈ [d], there is a symmetric matrix

4We further discuss the existence of non-separable commuting parametrizations in Appendix A.2.
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Ai ∈ RD×D such that Gi(x) = 1
2x

⊤Aix. Then each [∇Gi,∇Gj ](x) = (AjAi −AiAj)x, and thus
G is a commuting parametrization if and only if matrices {Ai}di=1 commute.

For concreteness, we analyze two examples below. The first one is both a separable parametrization
and a commuting quadratic parametrization, while the second one is quadratic but non-commuting.
Example 4.3 (u⊙2 − v⊙2 parametrization, [61]). Parametrize w ∈ Rd by w = u⊙2 − v⊙2. Here
D = 2d, and the parametrization G is given by G(x) = u⊙2 − v⊙2 for x =

(
u
v

)
∈ RD. Since

each Gi(x) involves only ui and vi, G is a separable parametrization and hence a commuting
parametrization. Meanwhile, each Gi(x) is a quadratic form in x, and it can be directly verified that
the matrices underlying these quadratic forms commute with each other.
Example 4.4 (Matrix factorization). As a counter-example, consider two parametrizations for matrix
factorization: G(U) = UU⊤ and G(U, V ) = UV ⊤, where U, V ∈ Rd×r and d ≥ 2, r ≥ 1.
These are both non-commuting quadratic parametrizations. Here we only demonstrate for the
parametrization G(U) = UU⊤, and G(U, V ) = UV ⊤ follows a similar argument. For each
i, j ∈ [d], we define Eij ∈ Rd as the one-hot matrix with the (i, j)-th entry being 1 and the rest
being 0, and denote Eij = 1

2 (Eij + Eji). For r = 1, we have Gij(U) = UiUj = U⊤EijU for any
i, j ∈ [d], so G is a quadratic parametrization. Note that EiiEij = 1

2Eij ̸=
1
2Eji = EijEii for all

distinct i, j ∈ [d], which implies that [∇Gij ,∇Gii] ̸= 0, so G is non-commuting. More generally,
we can reshape U as a vector

−→
U := [U⊤

:1 , . . . , U
⊤
:r ]

⊤ ∈ Rrd where each U:j is the j-th column of U ,
and the resulting quadratic form for the (i, j)-entry of G(U) corresponds to a block-diagonal matrix:

Gij(U) = (
−→
U )⊤diag(Eij , . . . , Eij)

−→
U .

Therefore, ∇2Gij does not commute with ∇2Gii due to the same reason as in the rank-1 case.
Remark 4.5. This non-commuting issue for general matrix factorization does not conflict with
the theoretical analysis in [26] where the measurements are commuting, or equivalently, only
involve diagonal elements, as {Gii}di=1 are indeed commuting parametrizations. [26] is the first to
identify the above non-commuting issue and conjectured that the implicit bias result for diagonal
measurements can be extended to the general case.

4.2 Main equivalence result

Next, we proceed to present our analysis for gradient flow with commuting parametrization. The
following two lemmas highlight the special properties of commuting parametrizations. Lemma 4.6
shows that the point reached by gradient flow with any commuting parametrization is determined by
the integral of the negative gradient of the loss along the trajectory.
Lemma 4.6. Let M be a smooth submanifold of RD and G :M → Rd be a commuting parametriza-
tion. For any initialization xinit ∈ M , consider the gradient flow for any time-dependent loss
Lt ∈ L as in Definition 3.1: dx(t) = −∇(Lt ◦ G)(x(t))dt, x(0) = xinit. Further define
µ(t) =

∫ t
0
−∇Lt(G(x(s)))ds. Suppose µ(t) ∈ U(xinit) for all t ∈ [0, T ) where T ∈ R ∪ {∞},

then it holds that x(t) = ψ(xinit;µ(t)) for all t ∈ [0, T ).

Based on Lemma 4.6, the next key lemma reveals the essential approach to find the Legendre function.
Lemma 4.7. Let M be a smooth submanifold of RD and G :M → Rd be a commuting and regular
parametrization satisfying Assumption 3.5. Then for any xinit ∈M , there exists a Legendre function
Q : Rd → R ∪ {∞} such that ∇Q(µ) = G(ψ(xinit;µ)) for all µ ∈ U(xinit). Moreover, let R be
the convex conjugate of Q, then R is also a Legendre function and int(domR) = Ωw(xinit;G) and
∇2R(G(ψ(xinit;µ))) =

(
∂G(ψ(xinit;µ))∂G(ψ(xinit;µ))

⊤)−1
for all µ ∈ U(xinit).

Next, we present our main result on characterization of gradient flow with commuting parametrization.
Theorem 4.8. Let M be a smooth submanifold of RD and G :M → Rd be a commuting and regular
parametrization satisfying Assumption 3.5. For any initialization xinit ∈M , consider the gradient
flow for any time-dependent loss function Lt : Rd → R:

dx(t) = −∇(Lt ◦G)(x(t))dt, x(0) = xinit.

Define w(t) = G(x(t)) for all t ≥ 0, then the dynamics of w(t) is a mirror flow with respect to the
Legendre function R given by Lemma 4.7, i.e.,

d∇R(w(t)) = −∇Lt(w(t))dt, w(0) = G(xinit).
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Moreover, this R only depends on the initialization xinit and the parametrization G, and is indepen-
dent of the loss function Lt.

Theorem 4.8 provides a sufficient condition for when a gradient flow with certain parametrization
G is simulating a mirror flow. The next question is then: What are the necessary conditions on the
parametrization G so that it enables the gradient flow to simulate a mirror flow? We provide a (partial)
characterization of such G in the following theorem.
Theorem 4.9 (Necessary condition on smooth parametrization to be commuting). Let M be a smooth
submanifold of RD and G :M → Rd be a smooth parametrization. If for any xinit ∈M , there is a
Legendre function R such that for all time-dependent loss Lt ∈ L, the gradient flow under Lt ◦G
initialized at xinit can be written as the mirror flow under Lt with respect to R, then G must be a
regular parametrization, and it also holds that for each x ∈M ,

Lie≥2(∂G)
∣∣
x
⊆ ker(∂G(x)), (9)

where Lie≥K(∂G) := span
{
[[[[∇Gj1 ,∇Gj2 ], . . .],∇Gjk−1

],∇Gjk ] | k ≥ K,∀i ∈ [k], ji ∈ [d]} is
the subset of the Lie algebra generated by {∇Gi}di=1 only containing elements of order higher than
K, and ker(∂G(x)) is the orthogonal complement of span({∇Gi(x)}di=1) in RD.

Note the necessary condition in (9) is weaker than assuming that G is a commuting parametrization,
and we conjecture that it is indeed sufficient.
Conjecture 4.10. The claim in Theorem 4.8 still holds, if we relax the commuting assumption to
that Lie≥2(∂G)

∣∣
x
⊆ ker(∂G(x)) for all x ∈M .

With the above necessary condition (9), we can formally refute the possibility that one can use mirror
flow to characterize the implicit bias of gradient flow for matrix factorization in general settings, as
summarized in Corollary 4.11. It is also worth mentioning that [40] constructed a concrete counter
example showing that the implicit bias for commuting measurements, that gradient flow finds the
solution with minimal nuclear norm, does not hold for the general case, where gradient flow could
prefer the solution with minimal rank instead.
Corollary 4.11 (Gradient flow for matrix factorization cannot be written as mirror flow). For any
d, r ∈ N, let M be an open set in Rd×r and G :M → Rd×d be a smooth parametrization given by
G(U) = UU⊤. Then there exists a initial point Uinit ∈ M and a time-dependent loss Lt such that
the gradient flow under Lt ◦G starting from Uinit cannot be written as a mirror flow with respect to
any Legendre function R under the loss Lt.

The following corollary shows that gradient flow with non-commuting parametrization cannot be
mirror flow, when the dimension of the reachable set matches that of the w-space.
Corollary 4.12. Let M be a smooth submanifold of RD whose dimension is at least d. Let G :M →
Rd be a regular parametrization such that for any xinit ∈M , (1) Ωx(xinit;G) is a submanifold of
dimension d, and (2) there is a Legendre function R such that for any time-dependent loss Lt ∈ L,
the gradient flow governed by −∇(Lt ◦G) with initialization xinit can be written as a mirror flow
with respect to R. Then G must be a commuting parametrization.

Next, we establish the convergence of w(t) = G(x(t)) when x(t) is given by some gradient flow with
the commuting parametrization G. Here we require that the convex function R given by Lemma 4.7
is a Bregman function (see definition in Appendix B). The proofs of Theorem 4.13, Corollary 4.14
and Theorem 4.15 are in Appendix D.
Theorem 4.13. Under the setting of Theorem 4.8, further assume that the loss L is quasi-convex,
∇L is locally Lipschitz and argmin{L(w) | w ∈ domR} is non-empty where R : Rd → R ∪ {∞}
is the convex function given by Lemma 4.7. Suppose R is a Bregman function, then as t→ ∞, w(t)
converges to some w∗ such that ∇L(w∗)⊤(w − w∗) ≥ 0 for all w ∈ domR. Moreover, if the loss
function L is convex, then w(t) converges to a minimizer in domR.
Corollary 4.14. Under the setting of Theorem 4.13, if the reachable set in the w-space satisfies
Ωw(xinit;G) = Rd, then R is a Bregman function and all the statements in Theorem 4.13 hold.
Theorem 4.15. Under the setting of Theorem 4.13, consider the commuting quadratic parametrization
G : RD → Rd where each Gi(x) = 1

2x
⊤Aix, for symmetric matrices A1, A2, . . . , Ad ∈ RD×D

that commute with each other, i.e., AiAj − AjAi = 0 for all i, j ∈ [d]. For any xinit ∈ RD, if
{∇Gi(xinit)}di=1 = {Aixinit}di=1 are linearly independent, then the following holds:

8



(a) For all µ ∈ Rd, ψ(xinit;µ) = exp(
∑d
i=1 µiAi)xinit where exp(·) is the matrix exponential

defined as exp(A) :=
∑∞
k=0

Ak

k! .
(b) For each j ∈ [d] and all µ ∈ Rd, Gj(ψ(xinit;µ)) = 1

2xinit
⊤ exp(

∑d
i=1 2µiAi)Ajxinit.

(c) Q(µ) = 1
4 ∥ψ(xinit;µ)∥

2
2 is a Legendre function with domain Rd.

(d) R is a Bregman function with domR = range∇Q where range∇Q is the range of ∇Q,
and thus all the statements in Theorem 4.13 hold.

4.3 Solving underdetermined linear regression with commuting parametrization

Next, we specialize to underdetermined linear regression problems to showcase our framework.

Setting: underdetermined linear regression. Let {(zi, yi)}ni=1 ⊂ Rd × R be a dataset of size n.
Given any parametrization G, the output of the linear model on the i-th data is z⊤i G(x). The goal is
to solve the regression for the label vector Y = (y1, y2, . . . , yn)

⊤. For notational convenience, we
define Z = (z1, z2, . . . , zn) ∈ Rd×n.

We can apply Theorem 3.8 to show the implicit bias of gradient flow with commuting parametrization.
Theorem 4.16. LetM be a smooth submanifold of Rd andG :M → Rd be a commuting and regular
parametrization satisfying Assumption 3.5. Suppose the loss function L satisfies L(w) = L̃(Zw) for
some differentiable L̃ : Rn → R. For any initialization xinit ∈M , consider the gradient flow

dx(t) = −∇(L ◦G)(x(t))dt, x(0) = xinit.

There exists a convex function R (given by Lemma 4.7, depending only on xinit and G), such that for
any dataset {(zi, yi)}ni=1 ⊂ Rd × R, if w(t) = G(x(t)) converges as t → ∞ and the convergence
point w∞ = limt→∞ w(t) satisfies Zw∞ = Y , then R(w∞) = minw:Zw=Y R(w), that is, gradient
flow implicitly minimizes the convex regularizer R among all interpolating solutions.

Note that the identity parametrization w = G(x) = x is a commuting parametrization. Therefore, if
we run the ordinary gradient flow on w itself and it converges to some interpolating solution, then
the convergence point is closest to the initialization in Euclidean distance among all interpolating
solutions. This recovers the well-known implicit bias of gradient flow for underdetermined regression.

Furthermore, we can recover the results on the quadratically overparametrized linear model studied in
a series of papers [26, 61, 8], as summarized in the following Corollary 4.17. Note that their results
assumed convergence in order to characterize the implicit bias, whereas our framework enables us to
directly prove the convergence as in Theorem 4.15. The convergence guarantee here is also more
general than existing convergence results for Example 4.3 in [50, 42].
Corollary 4.17. Consider the underdetermined linear regression problem with data Z ∈ Rd×n and
Y ∈ Rn. Let L̃ : Rn → R be a differentiable loss function such that L̃ is quasi-convex, ∇L̃ is locally
Lipschitz, and Y ∈ Rn is its unique global minimizer. Consider solving minw L̃(Zw) by running
gradient flow on L(w) = L̃(Zw) with the quadratic parametrization w = G(x) = u⊙2 − v⊙2 where
x =

(
u
v

)
∈ R2d

+ , for any initialization xinit ∈ R2d
+ : dx(t) = −∇(L ◦ G)(x(t))dt, x(0) = xinit.

Then as t → ∞, w(t) = G(x(t)) converges to some w∞ such that Zw∞ = Y and R(w∞) =
minw:Zw=Y R(w) where R is given by

R(w) =
1

4

∑d

i=1

(
wi arcsinh

( wi
2u0,iv0,i

)
−

√
w2
i + 4u20,iv

2
0,i − wi ln

u0,i
v0,i

)
.

5 Every mirror flow is a gradient flow with commuting parametrization

For any smooth Legendre function R : Rd → R ∪ {∞}, recall the corresponding mirror flow:
d∇R(w(t)) = −∇L(w(t))dt.

Note that int(domR) is a convex open set of Rd, hence a smooth manifold (see Example 1.26 in [38]),
and ∇2R is a continuous positive-definite metric on int(domR). As discussed previously in (3), the
above mirror flow is the Riemannian gradient flow on the Riemannian manifold (int(domR),∇2R).
The goal is to find a parametrization G : U → Rd, where U is an open set of RD, such that the
dynamics ofw(t) = G(x(t)) can be induced by the gradient flow on x(t) governed by −∇(L◦G)(x).
Formally, we have the following result:
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Theorem 5.1. Let R : Rd → R ∪ {∞} be a smooth Legendre function. There exist a smooth
submanifold of RD denoted by M , an open neighborhood U of M and a smooth and regular
parametrization G : U → Rd such that for the mirror flow under any time-dependent loss Lt with
any initialization winit ∈ int(domR)

d∇R(w(t)) = −∇Lt(w(t))dt, w(0) = winit, (10)
it holds that w(t) = G(x(t)) for all t ≥ 0 where x(t) is given by the gradient flow under Lt ◦G:

dx(t) = −∇(Lt ◦G)(x(t))dt, x(0) = xinit (11)
where xinit satisfies G(xinit) = winit. Moreover, let G|M be the restriction of G on M , then G|M is
a commuting and regular parametrization and ∂G = ∂G|M on M , which implies x(t) ∈M for all
t ≥ 0. If R is further a mirror map, then {∇Gi|M}di=1 are complete vector fields on M .

The proof of Theorem 5.1 can be found in Appendix E. To illustrate the idea, let us first suppose
such a smooth and regular parametrization G exists and is a bijection between the reachable set
Ωx(xinit;G) ⊂ RD and int(domR), and denote its inverse by F . It turns out that we can show

∂F (w)⊤∂F (w) = (∂G(F (w))∂G(F (w))⊤)−1 = ∇2R(w)

where the second equality follows from the relationship between R and G as discussed in the
introduction on (2). Note that this corresponds to expressing the metric tensor ∇2R using an explicit
map F , which is further equivalent to embedding the Riemannian manifold (int(domR),∇2R) into
a Euclidean space (RD, g) in a way that preserves its metric. This refers to a notion called isometric
embedding in differential geometry.
Definition 5.2 (Isometric embedding). Let (M, g) be a Riemannian submanifold of Rd. An isometric
embedding from (M, g) to (RD, g) is a differentiable injective map F :M → RD that preserves the
metric, i.e., for any two tangent vectors v, w ∈ TxM it holds that gx(v, w) = gx(∂F (x)v, ∂F (x)w).

Nash’s embedding theorem is a classic result in differential geometry that guarantees the existence of
isometric embedding of any Riemannian manifold into a Euclidean space with a plain geometry. See
Appendix A.1 for additional discussion on construction of G given a Legendre function R.
Theorem 5.3 (Nash’s embedding theorem, [47, 48, 28]). Any d-dimensional Riemannian manifold
has an isometric embedding to (RD, g) for D = max{d(d+ 5)/2, d(d+ 3)/2 + 5}.

As another way to understand Theorem 4.8, note that ∇2R(w)−1∇L(w) is the Riemannian gradient
of L on the Riemannian manifold (int(domR),∇2R). It is well-known that gradient flow is invariant
under isometric embedding, and thus we can use Nash’s embedding theorem to rewrite the Riemannian
gradient flow on (int(domR), gR) as that on (RD, g).

6 Conclusion

We presented a framework that characterizes when gradient descent with proper paramterization
becomes equivalent to mirror descent. In the limit of infinitesimal step size, we identify a notion
named commuting parametrization such that any gradient flow (i.e., the continuous analog of gradient
descent) with a commuting parametrization is equivalent to a mirror flow (i.e., the continuous analog
of mirror descent) in the original parameter space with respect to a Legendre function that depends
only on the initialization and the parametrization. Conversely, we use Nash’s embedding theorem
to show that any mirror flow can be characterized by a gradient flow in the reparametrized space
with a commuting parametrization. Using our framework, we recover and generalize results on the
implicit bias of gradient descent in a series of existing works, including a rigorous and general proof
of convergence. We also provide a necessary condition for the parametrization such that gradient
flow in the reparametrized space is equivalent to a mirror flow in the original space. However, the
necessary condition is slightly weaker than the commuting condition and it is left for future work to
close the gap.
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A Additional Results

We provide additional results summarized as follows. We discuss how to construct the parametrization
G from a given Legendre function R in Appendix A.1. We discuss the existence of non-separable
commuting parametrization in Appendix A.2.

A.1 Examples of constructing G from a given Legendre function R

Since the construction of the isometric embedding in Nash’s embedding theorem is not explicit and
infeasible to compute in general, the corresponding parametrization G given by Theorem 5.1 does
not admit an analytic formula for general mirror map R. However, in many cases involving standard
convex functions R which are separable, it is indeed tractable to explicitly compute the corresponding
parametrization G.

For example, for Burg entropy (R(w) = −
∑d
i=1 logwi) and negative entropy (R(w) =∑d

i=1 wi logwi), it is easy to verify that we can choose w = G(x) = (ex1 , . . . , exd) and
w = G(x) = (x21/4, . . . , x

2
d/4) respectively, where in both cases x has the same dimension as

w does. (See also Example 2 and 4 in [5].) More generally, suppose R satisfies that ∇2R(w) is
always diagonal, it suffices to find a Fi : R → R such that F ′

i (wi) =
√
∂iiR(wi),∀wi ∈ R, which

can be solved easily by integral. Once we have Fi, the parametrization G : Rd → Rd defined by
Gi = F−1

i is the desired commuting parametrization with respect to which gradient flow can be
written as mirror flow with respect to R. (Note Gi is well-defined because Fi is monotone increasing)
This is because ∂G(G−1(w))∂G(G−1(w))⊤ = (∂G−1(w)∂G−1(w)⊤)−1 = (∇2R(w))−1.

Finally, we also want to remark that in our application of Nash’s embedding theorem, the Riemannian
metric is given by the Hessian of a mirror map, and it is not clear if this would endow a more explicit
and tractable construction of the isometric embedding. We are not aware of such results to the best of
our knowledge.

A.2 Existence of non-separable commuting parametrization

Despite the recent line of works on the connection between mirror descent and gradient descent [24,
4, 5, 8, 23], so far we have not seen any concrete example of non-separable parametrization (in the
sense of Definition A.1) such that the reparametrized gradient flow can be written as a mirror flow. In
this subsection, we discuss how we can use Theorem 5.1 to construct non-separable, yet commuting
parametrizations.

Definition A.1 (Generalized separable parametrization). Let M be an open subset of RD. We
say a function G : M → Rd is a generalized separable parametrization if and only if there
exist d projection matrices {Pi}di=1 satisfying

∑d
i=1 Pi = Id, PiPj = 1{i = j} · Pi, a function

Ĝ :M → Rd satisfying Ĝi(x) = Ĝi(Pix), a matrix A ∈ Rd×d and a vector b ∈ Rd, such that

G(x) = AĜ(x) + b, ∀x ∈M.

Given the above definition, it is easy to check that Ĝ is a commuting parametrization as ∇2Ĝi∇Ĝj =
Pi∇2ĜiPi · Pj∇Ĝj ≡ 0 for all i ̸= j, so each Lie bracket [∇Gi,∇Gj ] is also 0 by the linearity.

As a concrete example, for matrix sensing with commutable measurement A1, . . . , Am ∈ Rd×d
(see Example 4.4 and Remark 4.5), let V = (v1, . . . , vd) ∈ Rd×d be a common eigenvector matrix
for {Ai}mi=1 such that we can write Ai = V ΣiV

⊤ =
∑d
j=1 σi,jvjv

⊤
j for each i ∈ [m]. For

parametrization G : Rd×r → d where each Gi(U) = v⊤i UU
⊤vi, we can write ⟨Ai, UU⊤⟩ =∑d

j=1 σi,jGj(U).

However, the bad news is that separable commuting parametrizations can express only a restricted
class of Legendre functions. It is easy to see ∂Ĝ(x)∂Ĝ(x)⊤ must be diagonal for every x. Thus
∂G(x)∂G(x)⊤ is simultaneously diagonalizable for all x, and so is the Hessian of the corresponding
Legendre function (given by Lemma 4.7). Yet there are interesting Legendre functions whose
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Hessians are not simultaneously diagonalizable, such as

R(w) =

d∑
i=1

wi(lnwi − 1) +

(
1−

d∑
i=1

wi

)(
ln

(
1−

d∑
i=1

wi

)
− 1

)
,

where each wi > 0 and
∑d
i=1 wi < 1. We can check that ∇R(w) =

∑d
i=1 ln

wi

1−
∑d

i=1 wi
and

∇2R(w) = diag(w⊙(−1)) + 1d1
⊤
d . Indeed, it is proposed as an open problem by [5] whether we

can find a parametrization G such that the reparametrized gradient flow in the x-space simulates the
mirror flow in the w-space with respect to the aforementioned Legendre function R.

Our Theorem 5.1 answers the open problem by [5] affirmatively since it shows every mirror flow can
be written as some reparametrized gradient flow. According to the previous discussion, every mirror
flow for Legendre function whose Hessian cannot be simultaneously diagonalized always induces a
non-separable commuting parametrization. But this type of construction has two caveats: First, the
construction of the Legendre function uses Nash’s Embedding theorem, which is implicit and hard
to implement; second, the parametrization given by Theorem 5.1, though defined on an open set in
RD, is only commuting on the reachable set, which is a d-dimensional submanifold of RD. This is
different from all the natural examples of commuting parametrizations that are commuting on an
open set, leading to the following open question.

Open Question: Is there any smooth, regular, commuting, yet non-separable (in the sense of
Definition A.1) parametrization from an open subset of RD to Rd, for some integers D and d?
Theorem A.2. All smooth, regular and commuting parametrizations are non-separable when D = 1.

Proof of Theorem A.2. Note that [∇Gi,∇Gj ] ≡ 0 implies that allGi share the same set of stationary
points, i.e., {x ∈ R | ∇Gi(x) = 0} is the same for all i ∈ [d]. Since D = 1, without loss of
generality, we can assume G′

i(x) = ∇Gi(x) > 0 for all x ∈M and i ∈ [d] since G is regular. Then
it holds that sign(G′

i)(ln |G′
i|)′ = sign(G′

j)(ln |G′
j |)′, which implies that |G′

i|/|G′
j | is equal to some

constant independent of x. This completes the proof.

Remark A.3. We note that the assumption that the parametrization is regular is necessary for the
open question to be non-trivial. Otherwise, consider the following example with D = 1 and d = 2:
Let f1, f2 : R → R be any smooth function supported on (0, 1) and (1, 2) respectively. Define
Gi(x) =

∫ x
0
fi(t)dt for all x ∈ R. Then parametrization G is non-separable.

B Related basics for convex analysis

We first introduce some additional notations. For any function f , we denote its range (or image) by
range f . For any set S, we use S to denote its closure. For any matrix Λ ∈ Rd×D and set S ⊆ RD,
we define ΛS = {Λx | x ∈ S} ⊆ Rd.

Below we collect some related basic definitions and results in convex analysis. We refer the reader
to [54] and [9] as main reference sources. In particular, Sections 2, 3 and 4 in [9] provide a clear
summary of the related concepts.

Here we consider a convex function f : Rd → R ∪ {∞} whose domain is dom f = {w ∈ Rd |
f(w) <∞}. From now on, we assume by default that f is continuous on dom f , the interior of its
domain int(dom f) is non-empty, and f is differentiable on int(dom f).

The notions of essential smoothness and essential strict convexity defined below describe certain nice
properties of a convex function (see Section 26 in [54]).
Definition B.1 (Essential smoothness and essential strict convexity). If for any sequence {wn}∞n=1 ⊂
int(dom f) going to the boundary of dom f as n→ ∞, it holds that ∥∇f(wn)∥ → ∞, then we say
f is essentially smooth. If f is strictly convex on every convex subset of int(dom f), then we say f
is essentially strictly convex.

The concept of convex conjugate is critical in our derivation. Specifically, given a convex function
f : Rd → R ∪ {∞}, its convex conjugate f∗ is defined as

f∗(w) = sup
y∈Rd

⟨w, y⟩ − f(y).
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The following results characterize the relationship between a convex function and its conjugate.
Theorem B.2 (Theorem 26.3, [54]). A convex function f is essentially strictly convex if and only if
its convex conjugate f∗ is essentially smooth.
Proposition B.3 (Proposition 2.5, [9]). If f is essentially strictly convex, then range ∂f =
int(dom f∗) = dom∇f∗, where ∂f is the subgradient of f .
Lemma B.4 (Corollary 2.6, [9]). If f is essentially strictly convex, then it holds for all w ∈
int(dom f) that ∇f(w) ∈ int(dom f∗) and ∇f∗(∇f(w)) = w.

The class of Legendre functions defined in Definition 3.7 contains convex functions that are both
essentially smooth and essentially strictly convex.
Theorem B.5 (Theorem 26.5, [54]). A convex function f is a Legendre function if and only if its
conjugate f∗ is. In this case, the gradient mapping ∇f : int(dom f) → int(dom f∗) satisfies
(∇f)−1 = ∇f∗.

Next, we introduce the notion of Bregman function [12, 14]. It has been shown in [9] that the
properties of Bregman functions are crucial to prove the trajectory convergence of Riemannian
gradient flow where the metric tensor is given by the Hessian of some Bregman function f .
Definition B.6 (Bregman functions; Definition 4.1, [3]). A function f is called a Bregman function if
it satisfies the following properties:

(a) dom f is closed. f is strictly convex and continuous on dom f . f is C1 on int(dom f).

(b) For any w ∈ dom f and α ∈ R, {y ∈ dom f | DR(w, y) ≤ α} is bounded.

(c) For any w ∈ dom f and sequence {wi}∞i=1 ⊂ int(dom f) such that limi→∞ wi = w, it
holds that limi→∞DR(w,wi) → 0.

The following theorem provides a special sufficient condition for f to be a Bregman function.
Theorem B.7 (Theorem 4.7, [3]). If f is a Legendre function with dom f = Rd, then dom f∗ = Rd
implies that f is a Bregman function.

The following theorem from [3] provides a convenient tool for proving the convergence of a Rieman-
nian gradient flow.
Theorem B.8 (Theorem 4.2, [3]). Suppose f : Rd → R ∪ {∞} is a Bregman function and also a
Legendre function, and satisfies that f is twice continuously differentiable on int(dom f) and ∇2f is
locally Lipschitz. Consider the following Riemannian gradient flow:

dw(t) = −∇2f(w(t))−1∇L(w(t))dt, w(0) = winit ∈ int(dom f)

where the loss L : Rd → R satisfies that L is quasi-convex, ∇L is locally Lipschitz, and
argmin{L(w) | w ∈ dom f} is non-empty. Then as t → ∞, w(t) converges to some w∗ ∈ dom f
such that ⟨∇L(w∗), w − w∗⟩ ≥ 0 for all w ∈ dom f . If the loss L is further convex, then w∗ is a
minimizer of L on dom f .

C Omitted proofs in Section 3

Here we first present the result and its proof for the domain of the flow induced by G.
Lemma C.1. Let M be a smooth submanifold of RD and G : M → Rd be a C2 parametrization
satisfying Assumption 3.5. Then for any x ∈ M , U(x) is a hyperrectangle, i.e., U(x) can be
decomposed as

U(x) = I1(x)× I2(x)× · · · × Id(x)

where Ij(x) := {x′j | x′ ∈ U(x)} is an open interval.

Proof of Lemma C.1. Fix any x ∈M . For each i ∈ [d], let Ii(x) be the domain of ϕtGj
(x) in terms

of t. If ∇Gi is a complete vector field on M as in Definition 3.2, then Ii(x) = Rd, otherwise ϕtGj
(x)

is defined for t in an open interval containing 0 (see, e.g., Theorem 2.1 in [37]). Then we claim
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that for any distinct j1, j2, . . . , jk ∈ [d] where k ∈ [d], the set of all (µj1 , . . . , µjk) ∈ Rk such that
ϕ
µj1

Gj1
◦ · · · ◦ ϕµjk

Gjk
(x) is well-defined is a hyperrectangle given by Ij1(x)× Ij2(x)× · · · × Ijk(x).

Then the desired result can be obtained by letting (j1, j2, . . . , jd) = (1, 2, . . . , d). We prove the
claim by induction over k ∈ [d].

The base case for k = 1 has already been established above. Next, assume the claim holds for
1, 2, . . . , k − 1 where k ≥ 3, and we proceed to show it for k. By the claim for k − 2, ϕµj3

Gj3
◦ · · · ◦

ϕ
µjk

Gjk
(x) is well-defined for (µj3 , . . . , µjk) ∈ Ij3(x) × · · · × Ijk(x). For any such (µj3 , . . . , µjk),

ϕtGj1
◦ ϕµ3

Gj3
◦ · · · ◦ ϕµjk

Gjk
(x) is well-defined for t in and only in the open interval Ij1(x) by applying

the claim for k − 1, and similarly ϕtGj2
◦ ϕµ3

Gj3
◦ · · · ◦ ϕµjk

Gjk
(x) is also well-defined for t in and only

in the open interval Ij2(x). Note that for any (s, t) ∈ Ij1(x)× Ij2(x),
ϕsGj1

◦ ϕ−tGj2
◦ ϕtGj2

◦ ϕµj3

Gj3
◦ · · · ◦ ϕµjk

Gjk
(x)

is well-defined, so by Assumption 3.5, we see that
ϕ−tGj2

◦ ϕsGj1
◦ ϕtGj2

◦ ϕµj3

Gj3
◦ · · · ◦ ϕµjk

Gjk
(x)

is also well-defined, which further implies that ϕsGj1
◦ ϕtGj2

◦ ϕµj3

Gj3
◦ · · · ◦ ϕµjk

Gjk
(x) is well-defined.

Therefore, we conclude that ϕµj1

Gj1
◦ · · · ◦ ϕµjk

Gjk
(x) is well-defined for and only for (µj1 , . . . , µjk) ∈

Ij1(x)× · · · × Ijk(x). This completes the induction and hence finishes the proof.

Next, we provide the proof for the implicit bias of mirror flow summarized in Theorem 3.8. We need
the following lemma that characterizes the KKT conditions for minimizing a convex function R in a
linear subspace.
Lemma C.2. For any convex functionR : Rd → R∪{∞} andZ ∈ Rn×d, suppose ∇R(w∗) = Z⊤λ
for some λ ∈ Rn, then

R(w∗) = min
w:Z(w−w∗)=0

R(w).

Proof of Lemma C.2. Consider another convex function defined as R̃(w) = R(w)− w⊤Z⊤λ, then
∇R̃(w∗) = ∇R(w∗)− Z⊤λ = 0, which implies that

R̃(w∗) = min
w∈Rd

R(w)− w⊤Z⊤λ

≤ min
w:Z(w−w∗)=0

R(w)− w⊤Z⊤λ

= min
w:Z(w−w∗)=0

R(w)− w∗⊤Z⊤λ.

Since R̃(w∗) = R(w∗)− w∗⊤Z⊤λ, it follows that
R(w∗) ≤ min

w:Z(w−w∗)=0
R(w),

and the equality is achieved at w = w∗. This finishes the proof.

We can then prove Theorem 3.8 by using Lemma C.2.

Proof of Theorem 3.8. Since L(w) = L̃(Zw − Y ), the mirror flow (8) can be further written as

d∇R(w(t)) = −Z⊤∇L̃(Zw(t)− Y )dt.

Integrating the above yields that for any t ≥ 0,

∇R(w(t))−∇R(w0) = −Z⊤
∫ t

0

∇L̃(Zw(s)− Y )ds ∈ span(X⊤),

which further implies that ∇R(w∞)−∇R(w0) ∈ span(Z⊤). Therefore,
∇DR(w,w0)|w=w∞ = ∇R(w∞)−∇R(w0) ∈ span(Z⊤).

Then applying Lemma C.2 yields
DR(w∞, w0) = min

w:Z(w−w∞)=0
DR(w,w0).

This finishes the proof.
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D Omitted proofs in Section 4

Here we provide the omitted proofs in Section 4, including four main parts:

(1) Properties of commuting parametrizations (Appendix D.1);
(2) Necessary condition for a smooth parametrization to be commuting (Appendix D.2);
(3) Convergence for gradient flow with commuting parametrization (Appendix D.3);
(4) Results for the underdetermined linear regression (Appendix D.4).

D.1 Properties of commuting parametrizations

We first recall the following result on the characterization of commuting vector fields from [38].
Theorem D.1 (Adapted from Theorem 9.44 in [38]). Let M be a smooth submanifold of RD
and G : M → Rd be a C2 parametrization. For any i, j ∈ [d], [∇Gi,∇Gj ](x) = 0 for all
x ∈ M if and only if for any x ∈ M , whenever both ϕsGi

◦ ϕtGj
(x) and ϕtGj

◦ ϕsGi
(x) are well-

defined for all (s, t) in some rectangle I1 × I2 where I1, I2 ⊆ R are open intervals, it holds that
ϕsGi

◦ ϕtGj
(x) = ϕtGj

◦ ϕsGi
(x) for all (s, t) ∈ I1 × I2.

Proof of Theorem 4.2. Note that under Assumption 3.5, Lemma C.1 implies that the domain of
ϕsGi

◦ ϕtGj
(x) is exactly Ii(x)× Ij(x), and the statement of Theorem 4.2 immediately follows.

Next, we prove the representation formula for gradient flow with commuting parametrization given
in Lemma 4.6.

Proof of Lemma 4.6. Let µ(t) be given by the following differential equation:

dµ(t) = −∇Lt(G(ψ(xinit;µ(t))))dt, µ(0) = 0.

For any µ ∈ U(x) and j ∈ [d], µ+ δej ∈ U(x) for all sufficiently small δ, thus

∂

∂µj
ψ(xinit;µ) = lim

δ→0

ψ(xinit;µ+ δej)− ψ(xinit;µ)

δ

= lim
δ→0

ϕδGj
(ψ(xinit;µ))− ψ(xinit;µ)

δ
= ∇Gj(ψ(xinit;µ))

where the second equality follows from the assumption that G is a commuting parametrization and
Theorem 4.2. Then we have ∂ψ(xinit;µ)

∂µ = ∂G(ψ(xinit;µ))
⊤ for all µ ∈ U(xinit), and thus when

µ(t) ∈ U(xinit),

dψ(xinit;µ(t)) =
∂ψ(xinit;µ(t))

∂µ(t)
dµ(t)

= −∂G(xinit;µ(t))∇Lt(G(ψ(xinit;µ(t))))dt
= −∇(Lt ◦G)(ψ(xinit;µ(t)))dt.

Then since ψ(xinit;µ(0)) = xinit and ψ(xinit;µ(t)) follows the same differential equation and has
the same initialization as x(t), we have x(t) ≡ ψ(xinit;µ(t)) for all t ∈ [0, T ). Therefore,

µ(t) = µ(0) +

∫ t

0

−∇Lt(G(ψ(xinit;µ(s))))ds =
∫ t

0

−∇Lt(G(x(s)))ds

for all t ∈ [0, T ), which completes the proof.

Next, to prove Lemma 4.7, we need the following lemma which provides a sufficient condition for a
vector function to be gradient of some other function.
Lemma D.2. Let Ψ : C → Rd be a differentiable function where C is a simply connected open
subset of Rd. If for all w ∈ C and any i, j ∈ [d], ∂

∂wj
Ψi(w) =

∂
∂wi

Ψj(w), then there exists some
function Q : C → R such that Ψ = ∇Q.
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Proof of Lemma D.2. This follows from a direct application of Corollary 16.27 in [38].

Based on the above results, we proceed to prove Lemma 4.7.

Proof of Lemma 4.7. By Lemma C.1, U(xinit) is hyperrectangle, and hence is convex. Next, recall
that by the proof of Lemma 4.6, we have ∂ψ(xinit;µ)

∂µ = ∂G(ψ(xinit;µ))
⊤ for all µ ∈ U(xinit).

Denoting Ψ(µ) = G(ψ(xinit;µ)), we further have

∂Ψ(µ) =
∂G(ψ(xinit;µ))

∂ψ(xinit;µ)

∂ψ(xinit;µ)

∂µ
= ∂G(ψ(xinit;µ))∂G(ψ(xinit;µ))

⊤, ∀µ ∈ U(x).

Since G is regular, ∂G(ψ(xinit;µ)) is of full-rank for all µ ∈ U(xinit), so ∂Ψ is symmetric and
positive definite for all µ ∈ U(xinit), which implies that Ψ is the gradient of some strictly convex
functionQ : Rd → R∪{∞} by Lemma D.2. ThisQ satisfies that ∇Q(µ) = Ψ(µ) = G(ψ(xinit;µ))
for all µ ∈ U(xinit). Therefore, Q is a strictly convex function with dom∇Q = U(xinit) and
range∇Q = Ωw(xinit;G).

Next, we show thatQ is essentially smooth. If U(xinit) = Rd, then domQ = Rd and the boundary of
domQ is empty, so it is trivial that Q is essentially smooth. Otherwise, it suffices to show that for any
µ on the boundary of domQ and any sequence {µk}∞k=1 ⊂ U(xinit) such that limk→∞ µk = µ∞,
we have limk→∞ ∥∇Q(µk)∥2 = ∞. Since each ∇Q(µk) = G(ψ(xinit;µk)), we only need to show
that limk→∞ ∥G(ψ(xinit;µk))∥2 = ∞. Suppose otherwise, then {G(ψ(xinit;µk)}∞k=1 is bounded.
Note that by Lemma 4.6, let Hk(x) = ⟨µk, G(x)⟩, and we have

ψ(xinit;µk) = ϕ1−Hk
(xinit) = xinit +

∫ 1

0

∇Hk(ϕ
s
−Hk

(xinit))ds.

Therefore,

∥ψ(xinit;µk)− xinit∥2 ≤
∫ 1

0

∥∥∇Hk(ϕ
s
−Hk

(xinit))
∥∥
2
ds ≤

√∫ 1

0

∥∥∇Hk(ϕs−Hk
(xinit))

∥∥2
2
ds.

(12)

where the second inequality follows from Cauchy-Schwarz inequality. Further note that

Hk(ψ(xinit;µk))−Hk(xinit) =

∫ 1

0

d

ds
Hk(ϕ

s
−Hk

(xinit))ds

=

∫ 1

0

〈
∇Hk(ϕ

s
−Hk

(xinit)),
dϕs−Hk

(xinit)

ds

〉
ds

=

∫ 1

0

∥∇Hk(ϕ
s
−Hk

(xinit))∥22ds. (13)

Then combining (12) and (13), we get

∥ψ(xinit;µk)− xinit∥2 ≤
√
⟨µk, G(ψ(xinit;µk))−G(xinit)⟩

≤
√
∥µk∥2 · ∥G(ψ(xinit;µk))−G(xinit)∥2,

which implies that {ψ(xinit;µk)}∞k=1 is bounded. Then there exists a convergent subsequence of
{ψ(xinit;µk)}∞k=1, and without loss of generality we assume that ψ(xinit;µk) itself converges to
some x∞ ∈M as k → ∞. Note that ψ(x∞;µ) is well-defined for µ in a small open neighborhood of
0, and since limk→∞ ψ(xinit;µk) = x∞, for sufficiently large k, ψ(ψ(xinit;µk);µ) is well-defined
for µ in a small neighborhood of 0 that does not depend on k. Thus there exists some µ ∈ Rd
such that µk + µ /∈ U(xinit) but ψ(ψ(xinit;µk);µ) is well-defined for sufficiently large k. But by
Lemma C.1 and Theorem D.1, ψ(ψ(xinit;µk);µ) = ψ(xinit;µk + µ) and thus µk + µ ∈ U(xinit),
which leads to a contradiction. Hence, we conclude that Q is essentially smooth.

Combining the above, it follows that Q is a Legendre function. Let R : Rd → R ∪ {∞} be the
convex conjugate of Q. Then by Theorem B.5, R is also a Legendre function. Note that for any
µ ∈ U(xinit), by the result in [17], we have

∇2R(G(ψ(xinit;µ))) = ∇2R(∇Q(µ)) = ∇2Q(µ)−1 = (∂G(ψ(xinit;µ))∂G(ψ(xinit;µ))
⊤)−1.
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Therefore, R and Q are both Legendre functions, and by Proposition B.3, we further have
range∇R = int(domQ) = dom∇Q = U(x) and conversely dom∇R = range∇Q =
Ωw(xinit;G). This finishes the proof.

Then using Lemma 4.6 and Lemma 4.7, we can prove Theorem 4.8.

Proof of Theorem 4.8. Recall that the gradient flow in the x-space governed by −∇(Lt ◦G)(x) is

dx(t) = −∇(Lt ◦G)(x(t))dt = −∂G(x(t))⊤∇Lt(G(x(t)))dt.

Using w(t) = G(x(t)), the corresponding dynamics in the w-space is

dw(t) = ∂G(x(t))dx(t) = −∂G(x(t))∂G(x(t))⊤∇Lt(w(t))dt. (14)

By Lemma 4.6, we know that the solution to the gradient flow satisfies x(t) = ψ(xinit;µ(t))

where µ(t) =
∫ t
0
−∇Lt(G(x(s)))ds. Therefore, applying Lemma 4.7, we get a Legendre function

R : Rd → R ∪ {∞} with domain Ωw(xinit;G) such that

∇2R(w(t)) = ∇2R(G(ψ(xinit;µ(t)))) =
(
∂G(ψ(xinit;µ(t)))∂G(ψ(xinit;µ(t)))

)−1

for all t ≥ 0. Then the dynamics of w(t) in (14) can be rewritten as

dw(t) = −∇2R(w(t))−1∇Lt(w(t))dt,

or equivalently,

d∇R(w(t)) = −∇Lt(w(t))dt,

which is exactly the mirror flow with respect to R initialized at w(0) = G(xinit). Further note that
the result of Lemma 4.7 is completely independent of the loss function Lt, and thus R only depends
on the initialization xinit and the parametrization G. This finishes the proof.

D.2 Necessary condition for a smooth parametrization to be commuting

Proof of Theorem 4.9. Fix any initialization xinit ∈ M , and let the Legendre function R be given
such that for all time-dependent loss Lt, the gradient flow under Lt ◦G initialized at x can be written
as the mirror flow under Lt with respect to the Legendre functionR. We first introduce a few notations
that will be useful for the proof. For any s ∈ R, we define a time-shifting operator Ts such that for
any time-dependent loss Lt(·), (TsL)t(·) = Lt−s(·). We say a time-dependent loss Lt is supported
on finite time if Lt =

∑k
i=1 1t∈[ti,ti+1)L

(i) for some k ≥ 1 where t1 = 0, tk+1 = ∞ and L(k) ≡ 0,
and we denote len(L) = tk. We further define the concatenation of two time-dependent loss Lt, L′

t

supported on finite time as L ∥ L′ = L+ Tlen(L)L′. We also use L to denote the time-reverse of the
time-dependent loss L which is supported on finite time, that is, Lt = Llen(L)−t for all t ≥ 0. For
any j ∈ [d] and δ > 0, we define the following loss function

ℓj,δt (w) = 10≤t≤δ · ⟨ej , w⟩ (15)

where ej is the j-th canonical base of Rd.

Now for any k ≥ 2, let {ji}ki=1 be any sequence where each ji ∈ [d]. Then we recursively define a
sequence of time-dependent losses as follows: First define L1,δ = −ℓj1,δ , then sequentially for each
i = 2, 3, . . . , k, we define

Li,δ = Li−1,
√
δ ∥

(
−ℓji,

√
δ
)

∥
(
−Li−1,

√
δ
)

∥ ℓji,
√
δ (16)

where we write L
i−1,

√
δ
= Li−1,

√
δ for convenience. Denote ιi(δ) = len(Li,δ) for each i ∈ [k].

Then ι1(δ) = δ and ιi(δ) = 2
√
δ + 2ιi−1(

√
δ) for i = 2, 3, . . . , k, which further implies

ιi(δ) =

i−1∑
m=1

2mδ1/2
m

+ 2i−1δ1/2
i−1

for all i ∈ [k].
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Moreover, for each i = 2, 3, . . . , k, the gradient of Li,δ with respect to w is given by

∇Li,δt (w) =



∇Li−1,
√
δ

t (w) 0 ≤ t ≤ ιi−1(
√
δ),

−eji ιi−1(
√
δ) < t ≤ ιi−1(

√
δ) +

√
δ,

−∇Li−1,
√
δ

t (w) ιi−1(
√
δ) +

√
δ < t ≤ 2ιi−1(

√
δ) +

√
δ,

eji 2ιi−1(
√
δ) +

√
δ < t ≤ 2ιi−1(

√
δ) + 2

√
δ,

0 t > 2ιi−1(
√
δ) + 2

√
δ.

(17)

This inductively implies that for any t ∈ [0, ιk(δ)], ∇Lk,δt (w) ∈ {ej}dj=1 does not depend on w and
is only determined by t. Therefore, for any initialization x ∈M , for all sufficiently small δ > 0, the
gradient flow under Lk,δ for ιk(δ) time, i.e., ϕιk(δ)

Lk,δ (x), is well-defined. Moreover, it follows from
(17) that∫ ιk−1(δ)

0

∇Lk,δt (w(t))dt =

∫ ιk−1(
√
δ)

0

∇Lk−1,
√
δ(w(t))dt+

∫ ιk−1(
√
δ)+

√
δ

ιk−1(
√
δ)

−ejkdt

+

∫ 2ιk−1(
√
δ)+

√
δ

ιk−1(
√
δ)+

√
δ

−∇Lk−1,
√
δ
(w(t))dt+

∫ 2ιk−1(
√
δ)2

√
δ

2ιk−1(
√
δ)+

√
δ

ejkdt

=

∫ ιk−1(
√
δ)

0

(
∇Lk−1,

√
δ

t (w(t))−∇Lk−1,
√
δ

t (w(t))

)
dt = 0

where the last two equalities follow from the fact that ∇Lk−1,
√
δ

t (w) does not depend on w and is
only determined by t by our construction.

Hence, the mirror flow with respect to the Legendre function R for the time-dependent loss Lk,δ will
return to the initialization after ιk(δ) time since

∇R(w(ιk(δ)))−∇R(w(0)) =
∫ ιk(δ)

0

−∇Lk,δ(w(t))dt = 0.

This further implies that

G(xinit) = G
(
ϕ
ιk(δ)

Lk,δ◦G(xinit)
)

for all sufficiently small δ. Then differentiating with δ on both sides yields

∂G(x) ·
dϕ

ιk(δ)

Lk,δ◦G(xinit)

dδ

∣∣∣∣
δ=0

= 0. (18)

Note that if the following holds:

dϕ
ιk(δ)

Lk,δ◦G(xinit)

dδ

∣∣∣∣
δ=0

= [[[[∇Gj1 ,∇Gj2 ], . . .],∇Gjk−1
],∇Gjk ](xinit), (19)

then combining (18) and (19) completes the proof, so it remains to verify (19).

We will prove by induction over k, and now let {ji}∞i=1 be an arbitrary sequence where each ji ∈ [d].
For notational convenience, we denote for each k ≥ 1,

πk,δ(·) := ϕδ−ℓjk,δ(·) and Πk,δ(·) := ϕ
ιk(δ)

Lk,δ (·).

Then their inverse maps are given by π−1
k,δ(·) = ϕδ

ℓjk,δ(·) and Π−1
k,δ(·) = ϕ

ιk(δ)

−Lk,δ(·) respectively. Since

G is smooth, each Πk,
√
δ is a C∞ function of δ1/2

k

, and we can expand it in δ1/2
k

as

Πk,
√
δ(x) = x+

2k∑
i=1

δi/2
k

i!
∆k,i(x) + rk,δ(x) (20)
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where the remainder term rk,δ(x) is continuous in x and for each x ∈ M , rk,δ(x) = o(δ) (i.e.,
limδ→0

rk,δ(x)
δ = 0), and each ∆k,i is defined as

∆k,i(x) =
diΠk,

√
δ(x)

d(δ1/2k)i

∣∣∣∣
δ=0

.

In particular, for k = 1, we have

Π1,
√
δ(x) = π1,

√
δ(x) = x+

√
δ∇Gj1(x) +

δ

2
∂(∇Gj1)(x)∇Gj1(x) + r1,δ(x) (21)

where the second equality holds as well for any other Gj in place of Gj1 , with a different but similar
remainder term. For any fixed K ≥ 2, there is a small open neighborhood of xinit on M , denoted by
Nxinit

⊆M , such that for all k ∈ [K], we have rk,δ(x) = o(δ) uniformly over all x ∈ Nxinit
, so we

can replace all rk,δ(x) by o(δ) when x ∈ Nxinit
. Then we claim that for each k = 2, 3, . . . ,K,

lim
δ→∞

1√
δ

2k−1∑
i=1

δi/2
k

i!
∆k,i(x) = [[[∇Gj1 ,∇Gj2 ], . . .],∇Gjk ](x), ∀x ∈ Nxinit

, (22)

which directly implies (19). With a slight abuse of notation, the claim is also true for k = 1 since
∆1,1(x) = ∇Gj1(x) by (21), so we use this as the base case of the induction. Then, assuming (22)
holds for k − 1 < K, we proceed to prove it for k. For convenience, further define LieG(j1:k) =
[[[∇Gj1 ,∇Gj2 ], . . .],∇Gjk ].
Combining the Taylor expansion in (20) and (22) for k − 1, we obtain for all x ∈ Nxinit that

Πk−1,
√
δ(x) = x+

√
δ · LieG(j1:(k−1))(x) +

2k−1∑
i=2k−2+1

δi/2
k−1

i!
∆k−1,i(x) + o(δ)

for sufficiently small δ. Further apply (21) with Gjk in place of Gj1 for sufficiently small δ, and then

Πk−1,
√
δ

(
πk,

√
δ(x)

)
= Πk−1,

√
δ

(
x+

√
δ∇Gjk(x) +

δ

2
∂(∇Gjk)(x)∇Gjk(x) + o(δ)

)
= x+

√
δ∇Gjk(x) +

δ

2
∂(∇Gjk)(x)∇Gjk(x) + o(δ)

+
√
δ · LieG(j1:(k−1))

(
x+

√
δ∇Gjk(x) +

δ

2
∂(∇Gjk)(x)∇Gjk(x) + o(δ)

)

+

2k−1∑
i=2k−2+1

δi/2
k−1

i!
∆k−1,i

(
x+

√
δ∇Gjk(x) +

δ

2
∂(∇Gjk)(x)∇Gjk(x) + o(δ)

)

+ rk−1,δ

(
x+

√
δ∇Gjk(x) +

δ

2
∂(∇Gjk)(x)∇Gjk(x) + o(δ)

)
where the second equality follows from the Taylor expansion of Πk−1,

√
δ and that πk,√δ(x) ∈ Nxinit

for sufficiently small δ. Then by the Taylor expansion of LieG(j1:(k−1)) and each ∆k−1,i, we have
for all x ∈ Nxinit

,

Πk−1,
√
δ

(
πk,

√
δ(x)

)
= x+

√
δ∇Gjk(x) +

√
δ · LieG(j1:(k−1))(x) +

δ

2
∂(∇Gjk)(x)∇Gjk(x)

+ δ · ∂LieG(j1:(k−1))(x)∇Gjk(x) +
2k−1∑

i=2k−2+1

δi/2
k−1

i!
∆k−1,i(x) + o(δ)

(23)
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for sufficiently small δ. For the other way around, we similarly have

πk,
√
δ

(
Πk−1,

√
δ(x)

)
= πk,

√
δ

(
x+

√
δ · LieG(j1:(k−1))(x) +

2k−1∑
i=2k−2+1

δi/2
k−1

i!
∆k−1,i(x) + o(δ)

)
= x+

√
δ∇Gjk(x) +

√
δ · LieG(j1:(k−1)) +

δ

2
∂(∇Gjk)(x)∇Gjk(x)

+ δ∂(∇Gjk)(x)LieG(j1:(k−1))(x) +

2k−1∑
i=2k−2+1

δi/2
k

i!
∆k−1,i(x) + o(δ)

(24)

for all x ∈ Nxinit
, when δ is sufficiently small. Note that x = π−1

k,
√
δ
◦Π−1

k−1,
√
δ
◦Πk−1,

√
δ ◦πk,√δ(x),

thus

Πk,δ(x)− x = π−1

k,
√
δ
◦Π−1

k−1,
√
δ
◦ πk,√δ ◦Πk−1,

√
δ(x)− x

= π−1

k,
√
δ
◦Π−1

k−1,
√
δ
◦ πk,√δ ◦Πk−1,

√
δ(x)− π−1

k,
√
δ
◦Π−1

k,
√
δ
◦Πk,√δ ◦ πk,√δ(x)

= π−1

k,
√
δ
◦Π−1

k−1,
√
δ
◦ πk,√δ ◦Πk−1,

√
δ(x)− πk,

√
δ ◦Πk−1,

√
δ(x)

+ πk,
√
δ ◦Πk−1,

√
δ(x)−Πk,

√
δ ◦ πk,√δ(x)

+ Πk−1,
√
δ(x) ◦ πk,√δ − π−1

k,
√
δ
◦Π−1

k,
√
δ
◦Πk,√δ ◦ πk,√δ(x)

= Πk−1,
√
δ ◦ πk,√δ(x)− πk,

√
δ ◦Πk−1,

√
δ(x) + o(δ) (25)

where the last equality follows from the Taylor expansion of π−1

k,
√
δ
◦ Π−1

k−1,
√
δ
(·) in terms of

√
δ.

Now, combining (23), (24) and (25), we obtain

Πk,δ(x)− x = δ
(
∂(∇Gjk)(x)LieG(j1:(k−1))(x)− ∂LieG(j1:(k−1))(x)∇Gjk(x)

)
+ o(δ)

= δ · [LieG(j1:(k−1)),∇Gjk ](x) + o(δ) (26)

where the second equality follows from the definition of Lie bracket. Comparing (26) with (20) yields
(22). This completes the induction for k ∈ [K] and hence finishes the proof as K is arbitrary.

Proof of Corollary 4.11. It turns out that the necessary condition in Theorem 4.9 is already violated
by only considering the Lie algebra spanned by {∇G11,∇G12}. We follow the notation in Exam-
ple 4.4 to define each Eij ∈ Rd as the one-hot matrix with the (i, j)-th entry being 1, and denote
Eij =

1
2 (Eij +Eji) and ∆ij = Eij −Eji. Then [∇G11,∇G12](U) = 4(E11E12 −E12E11)U =

∆12U and [∇G11, [∇G11,∇G12]](U) = (E11∆12 − ∆12E11)U = E12U . Further noting that
⟨[∇G11, [∇G11,∇G12]],∇G12⟩ = 2

∥∥E12U
∥∥2
F
= 1

2

∑r
i=1(U

2
1i + U2

2i) must be positive at some U
in every open set M , by Theorem 4.9, we know such Uinit and Lt exist. Moreover, Lt will only
depend on G11(U) and G12(U).

Proof of Corollary 4.12. By the condition (b) and Theorem 4.9, we know that each Lie bracket
[∇Gi,∇Gj ] ∈ ker(∂G). By the condition (a), we know that each Lie bracket [∇Gi,∇Gj ] ∈
span{∇Gi}di=1. Combining these two facts, we conclude that each [∇Gi,∇Gj ] ≡ 0, so G is a
commuting parametrization.

D.3 Convergence for gradient flow with commuting parametrization

Proof of Theorem 4.13. Recall that the dynamics of w(t) is given by

dw(t) = −∇2R(w(t))−1∇L(w(t))dt, w(0) = G(xinit).

By Lemma 4.7, we know that R is a Legendre function. Therefore, when R is further a Bregman
function, we can apply Theorem B.8 to obtain the convergence of w(t). This finishes the proof.

Based on Theorem B.7, we can prove the trajectory convergence of w(t) for the special case where
Ωw(xinit;G) = Rd as summarized in Corollary 4.14.
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Proof of Corollary 4.14. It suffices to verify thatR is a Bregman function in this case. By Lemma 4.7,
we know thatR is a Legendre function and satisfies that Rd = Ωw(xinit;G) = dom∇R ⊆ domR ⊆
Rd, which implies domR = Rd. Moreover, the domain of its convex conjugate Q is also Rd. Then
by Theorem B.7, we see that R is a Bregman function. This finishes the proof.

Next, we prove that for a class of commuting quadratic parametrizations, the corresponding Legendre
function is also a Bregman function, thus guaranteeing the trajectory convergence.

Proof of Theorem 4.15. Since A1, A2, . . . , Ad commute with each other, these matrices can be si-
multaneously diagonalized. Thus we can assume without loss of generality that each Ai = diag(λi)
where λi ∈ RD, then Gi(x) = λ⊤i x

⊙2. For convenience, we denote Λ = (λ1, λ2, . . . , λd)
⊤ ∈

Rd×D, so the parametrization is given by G(x) = Λx⊙2. Note that for each i ∈ [d], ∇Gi(x) =
2λi ⊙ x and ∇2Gi(x) = 2diag(λi), so for any i, j ∈ [d], we have

[∇Gi,∇Gj ](x) = 4diag(λi)λj ⊙ x− 4diag(λj)λi ⊙ x = 0.

Therefore, we see that G : RD+ → Rd is a commuting parametrization. Also, for any t ∈ R,
x(t) = xinit −

∫ t
0
∇Gi(x(s))ds = xinit ⊙ e−2λit, which proves the first and the second claims.

Moreover, if the sign of each coordinate of x will not change from that of initialization, (sign
means +,− or 0). Without loss of generality, below we will assume every coordinate is non-zero at
initialization (otherwise we just ignore it). We can also assume the coordinates at initialization are
all positive, as the negatives will induce the same trajectory in terms of G(x). By Theorem 4.8, the
dynamics of w(t) = G(x(t)) is given by

dw(t) = −∇2R(w(t))−1∇L(w(t))dt, w(0) = G(xinit)

for some Legendre functionR whose conjugate is denoted byQ. To apply the results in Theorem 4.13,
it suffices to show that this R is a Bregman function.

To do so, we further denote w̃ = x⊙2 and G̃(x) = x⊙2, then w = Λw̃ and in this case G̃ is a
commuting parametrization for w̃ defined on M = RD+ . Also, we have ∂G(x) = Λ∂G̃(x). Let
L̃ : Rd → R be defined by L̃(w̃) = L(Λw̃), which satisfies that ∇L̃(w̃) = Λ⊤∇L(Λw̃). Then the
gradient flow with parametrization G̃ governed by −∇(L̃ ◦ G̃)(x) is given by

dx(t) = −∇(L̃ ◦ G̃)(x)dt = −∂G̃(x(t))⊤∇L̃(G̃(x(t))dt
= −∂G̃(x(t))⊤Λ⊤∇L(ΛG̃(x(t))dt
= −∂G(x(t))⊤∇L(G(x(t))dt,

which yields the same dynamics of the gradient flow with parametrization G governed by −∇(L ◦
G)(x). Therefore, we have w(t) = G(x(t)) = ΛG̃(x(t)) = Λw̃(t), where again by Theorem 4.8,
the dynamics of w̃(t) is

dw̃(t) = −∇2R̃(w̃(t))−1∇L̃(w̃(t))dt, w̃(0) = G̃(xinit)

for some Legendre function R̃ whose conjugate is denoted by Q̃. For any x ∈M and µ̃ ∈ RD, we
define ψ̃(x; µ̃) = ϕµ̃1

G̃1
◦ ϕµ̃2

G̃2
◦ · · · ◦ ϕµ̃D

G̃D
(x). We need the following lemma.

Lemma D.3. In the setting of the proof of Theorem 4.15, for any µ ∈ Rd and x ∈ M , we have
ψ(x;µ) = ψ̃(x; Λ⊤µ).

Recall from Lemma 4.7 that ∇Q(µ) = G(ψ(xinit;µ)) for any µ ∈ Rd and ∇Q̃(µ̃) = G̃(ψ̃(xinit; µ̃))
for any µ̃ ∈ RD. Note that

∇Q(µ) = Λψ(xinit;µ)
⊙2 = Λψ̃(xinit; Λ

⊤µ)⊙2 = ΛG̃(ψ̃(xinit; Λ
⊤µ)) = Λ∇Q̃(Λ⊤µ) (27)

where the second equality follows from Lemma D.3. This implies that Q(µ) = Q̃(Λ⊤µ) + C for
some constant C. Recall the definition of convex conjugate, and we have

R̃(w̃) = sup
µ̃∈RD

⟨µ̃, w̃⟩ − Q̃(µ̃), R(w) = sup
µ∈Rd

⟨µ,w⟩ −Q(µ).
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Then for any w̃ ∈ RD, we have

R(Λw̃) = sup
µ∈Rd

⟨µ,Λw̃⟩ −Q(µ) = sup
µ∈Rd

⟨Λ⊤µ, w̃⟩ − Q̃(Λ⊤µ)− C

= sup
µ̃∈Λ⊤Rd

⟨µ̃, w̃⟩ − Q̃(µ̃)− C ≤ sup
µ̃∈RD

⟨µ̃, w̃⟩ − Q̃(µ̃)− C = R̃(w̃)− C (28)

Therefore, for any w̃ ∈ dom R̃, it holds that R(Λw̃) ≤ R̃(w̃) − C < ∞, so Λdom R̃ ⊆ domR,
where Λdom R̃ On the other hand, by (27) and Proposition B.3, we have

dom∇R = range∇Q ⊆ Λ range∇Q̃ = Λdom∇R̃
and it follows that

int(domR) = dom∇R ⊆ Λdom∇R̃ = Λ int(dom R̃).

Combining the above, we see that domR = Λdom R̃. As discussed in Section 1, here it is
straightforward to verify that R̃(w̃) =

∑D
i=1 w̃i(ln

w̃i

x2
init,i

− 1), which is indeed a Bregman function

with domain dom R̃ = RD+ . Thus domR = ΛRD+ is also a closed set. This yields the first condition
in Definition B.6.

Next, we verify the second condition in Definition B.6. For any µ ∈ Rd, we have
∇R(G(ψ(xinit;µ))) = ∇R(∇Q(µ)) = µ

and
∇R̃(G̃(ψ(xinit;µ))) = ∇R̃(G̃(ψ̃(xinit; Λ⊤µ))) = ∇R̃(∇Q̃(Λ⊤µ)) = Λ⊤µ.

Comparing the above two equalities, we get

∇R̃(w̃) = Λ⊤∇R(Λw̃) (29)

for all w̃ ∈ RD+ . Then for any w̃ ∈ RD+ and y = Λỹ ∈ int(domR), we have

DR(Λw̃, y) = R(Λw̃)−R(y)− ⟨∇R(y),Λw̃ − y⟩
= R(Λw̃)−R(Λỹ)− ⟨Λ⊤∇R(Λỹ), w̃ − ỹ⟩
= R(Λw̃)−R(Λỹ)− ⟨∇R̃(ỹ), w̃ − ỹ⟩
= R(Λw̃)−R(Λỹ)− R̃(w̃) + R̃(ỹ) +DR̃(w̃, ỹ) (30)

≥ R(Λw̃)− R̃(w̃) + C +DR̃(w̃, ỹ)

where the inequality follows from (28). Therefore, we further have for any α ∈ R
{y ∈ int(domR) | DR(Λw̃, y) ≤ α} ⊆ Λ{ỹ ∈ RD+ | DR̃(w̃, ỹ) ≤ α−R(Λw̃) + R̃(w̃)− C}

where the right-hand side is bounded since R̃ is a Bregman function, and so is the left-hand side.

Finally, we verify the third condition in Definition B.6. Consider any w ∈ domR and sequence
{wi}∞i=1 ⊂ int(domR) such that limi→∞ wi = w. Since domR = Λdom R̃, there is some
w̃ ∈ RD+ such that w = Λw̃ and some w̃i ∈ RD+ for each i ∈ N+ such that wi = Λw̃i. We have that

R(w)−R(wi) =

∫ 1

0

⟨∇R((1− t)wi + tw), w − wi⟩dt

=

∫ 1

0

⟨Λ⊤∇R(Λ((1− t)w̃i + tw̃)), w̃ − w̃i⟩dt

=

∫ 1

0

⟨∇R̃((1− t)w̃i + tw̃), w̃ − w̃i⟩dt

= R̃(w̃)− R̃(w̃i).

Combining this with (30), we get DR(w,wi) = DR̃(w̃, w̃i). Note that we can always choose each
w̃i properly such that limi→∞ w̃i = w̃. Then since R̃ is a Bregman function, we have

lim
i→∞

DR(w,wi) = lim
i→∞

DR̃(w̃, w̃i) = 0.

Therefore, we conclude that R is also a Bregman function. This finishes the proof.
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Proof of Lemma D.3. For each i ∈ [D] and any t > 0, we have

ϕtGi
(x) = x+

∫ t

s=0

−∇Gi(ϕsfi(x))ds = x+

∫ t

s=0

−
D∑
j=1

λi,j∇G̃j(ϕsfi(x))ds = ψ̃(x; tλi)

where the last equality follows from Lemma 4.6. Therefore, for any µ ∈ Rd, we further have
ψ(x;µ) = ϕµ1

G1
◦ ϕµ2

G2
◦ · · · ◦ ϕµd

Gd
(x)

= ϕ
µ1λ1,1

G̃1
◦ · · · ◦ ϕµ1λ1,D

G̃D
◦ · · · ◦ ϕµdλd,1

G̃1
◦ · · · ◦ ϕµdλd,D

G̃D
(x)

= ϕ
∑d

i=1 µiλi,1

G̃1
◦ · · · ◦ ϕ

∑d
i=1 µiλi,D

G̃D
(x)

= ϕ
(Λ⊤µ)1

G̃1
◦ · · ·ϕ(Λ

⊤µ)D

G̃D
(x) = ψ̃(x; Λ⊤µ).

where the third equality follows from the assumption that G̃ is a commuting parametrization. This
finishes the proof.

D.4 Results for underdetermined linear regression

Here we provide the proof for the implicit bias result for the quadratically overparametrized linear
model.

Proof of Theorem 4.16. By Theorem 4.8, w(t) obeys the following mirror flow:
d∇R(w(t)) = −∇L(w(t))dt, w(0) = G(xinit).

Applying Theorem 3.8 yields
DR(w∞, G(xinit)) = min

w:Zw=Y
DR(w,G(xinit)).

Therefore, for any w ∈ int(domR) such that Zw = Y , we have
R(w∞)−R(G(xinit))− ⟨∇R(G(xinit), w∞ −G(xinit)⟩

≤ R(w)−R(G(xinit))− ⟨∇R(G(xinit), w −G(xinit)⟩
which can be reorganized as

R(w∞) ≤ R(w)− ⟨∇R(G(xinit)), w − w∞⟩. (31)
Note that by Lemma 4.7, we also have

∇R(G(xinit)) = ∇R(G(ψ(xinit; 0))) = ∇R(∇Q(0)) = 0 (32)
where the last equality follows from the property of convex conjugate. Combining (31) and (32),
we get R(w∞) ≤ R(w) for all w ∈ int(domR) such that Zw = Y . By the continuity of R, this
property can be further extended to the entire domR, and for any w /∈ domR, we have R(w) = ∞
by definition, so R(w∞) ≤ R(w) holds trivially. This finishes the proof.

Proof of Corollary 4.17. By symmetry, we assume without loss of generality that all coordinates
of xinit are positive. Note that for M = RD+ with D = 2d, G : M → Rd can be written as
Gi(x) = x⊤Aix where each Ai = eie

⊤
i − ed+ie

⊤
d+i. Therefore, this parametrization G satisfies the

conditions in Theorem 4.15, which then implies the convergence of w(t).

Next, we identify the function R given by Theorem 4.8. we have ψ(xinit;µ) =
(
u0⊙e−2µ

v0⊙e2µ
)

and thus

G(ψ(xinit;µ)) = u⊙2
0 ⊙ e−4µ − v⊙2

0 ⊙ e4µ

= (u⊙2
0 + v⊙2

0 )⊙ sinh(4µ) + (u⊙2
0 − v⊙2

0 )⊙ cosh(4µ).

SoG(ψ(xinit;µ)) is the gradient ofQ(µ) = 1
4 (u

⊙2
0 +v⊙2

0 )⊙cosh(4µ)+ 1
4 (u

⊙2
0 −v⊙2

0 )⊙sinh(4µ)+C
where C is an arbitrary constant. Also note that (∇Q(µ))i only depends on µi, then we have

(∇R(w))i = (∇Q(µ))−1
i (w) =

1

4
ln

(√
1 +

(
wi

2u0,iv0,i

)2

+
wi

2u0,iv0,i

)
+

1

4
ln
v0,i
u0,i

=
1

4
arcsinh

(
wi

2u0,iv0,i

)
+

1

4
ln
v0,i
u0,i
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which further implies that

R(w) =
1

4

d∑
i=1

(
wi arcsinh

(
wi

2u0,iv0,i

)
−
√
w2
i + 4u20,iv

2
0,i − wi ln

u0,i
v0,i

)
+ C.

This finishes the proof.

E Omitted proofs in Section 5

We first prove the following intermediate result that will be useful in the proof of Theorem 5.1.
Lemma E.1. Under the setting of Theorem 5.1, let F be the smooth map that isometrically embeds
(int(domR), gR) into (RD, g). Let M = range(F ), and denote the inverse of F by G̃ : M → Rd.
Then for any w ∈ int(domR), it holds that

∂F (w)(∂F (w)⊤∂F (w))−1 = ∂G̃(F (w))⊤ and ∂G̃(F (w))∂G̃(F (w))⊤ = ∇2R(w)−1.

Proof of Lemma E.1. For any x ∈M and v ∈ Tx(M), consider a parametrized curve {x(t)}t≥0 ⊂
M such that x(0) = x and dx(t)

dt

∣∣
t=0

= v. Since x(t) = F (G̃(x(t))) for any t ≥ 0, differentiating
with respect to t on both sides and evaluating at t = 0 yield

v = ∂F (G̃(x))∂G̃(x)v. (33)

Now, for any w ∈ int(domR), let x = F (w), then for any v ∈ Tx(M), it follows from (33) that

v⊤∂F (w) = v⊤(∂F (w)∂G̃(F (w)))⊤∂F (w) = v⊤∂G̃(F (w))⊤∂F (w)⊤∂F (w).

Note that the span of the column space of ∂F (w) is exactly Tx(M), so for any v in the orthogonal
complement of Tx(M), it holds that

v⊤∂F (w) = 0 = v⊤∂G̃(F (w))⊤∂F (w)⊤∂F (w)

where the second equality follows from the fact that for any i ∈ [d], ∇G̃i(x) ∈ Tx(M). Therefore,
combining the above two cases, we conclude that

∂F (w) = ∂G̃(F (w))⊤∂F (w)⊤∂F (w).

Since ∂F (w)⊤∂F (w) = ∇2R(w) is invertible, we then get

∂G̃(F (w))⊤ = ∂F (w)(∂F (w)⊤∂F (w))−1.

Next, for any w ∈ int(domR), since G̃(F (w)) = w, differentiating on both sides yields

∂G̃(F (w))∂F (w) = Id.

Therefore, using the identity proved above, we have

∂G̃(F (w))∂G̃(F (w))⊤ = ∂G̃(F (w))∂F (w)(∂F (w)⊤∂F (w))−1

= (∂F (w)⊤∂F (w))−1 = ∇2R(w)−1.

This finishes the proof.

Proof of Theorem 5.1. By Nash’s embedding theorem, there is a smooth map F : int(domR) →
RD that isometrically embeds (int(domR), gR) into (RD, g). Denote M = range(F ), i.e., the
embedding of int(domR) in RD. We further denote the inverse of F on M by G̃ :M → Rd. Note
(M, G̃) is a global atlas for M , we have that Tx(M) = span({∇G̃i(x)}di=1) for all x ∈M . This G̃
is almost the commuting parametrization that we seek for, except now it is only defined on M but
not on an open neighborhood of M . Yet we can extend G̃ to an open neighbourhood of M in the
following way: First by [21], for each x ∈ M , there is an open neighbourhood Ux of x such that
projection function P defined by

P (y) = argmin
y′∈M

∥y − y′∥2
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is smooth in Ux. Then we define U = ∪x∈MUx, and extend G̃ to U by defining G(x) := G̃(P (x))

for all x ∈ U . We have G(x) = G̃(x) for all x ∈ M , and we can verify that ∂G ≡ ∂G̃ on M as
well. For any v ∈ Tx(M), let {γ(t)}t≥0 be a parametrized curve on M such that γ(0) = x and
dγ(t)
dt

∣∣
t=0

= v, then for sufficiently small t, by Taylor expansion we have

γ(t) = P (γ(t)) = P (x) + ∂P (x)(γ(t)− x) + o(∥γ(t)− x∥2)
= x+ ∂P (x)(γ(t)− x) + o(∥γ(t)− x∥2)

which implies that v = ∂P (x)v by letting t→ 0. While for any v in the orthogonal complement of
Tx(M), for sufficiently small δ > 0, we have P (x+ δv) is smooth in δ. Then since P (x+ δv) ∈M
for all sufficiently small δ by its definition, we have

∂P (x)v =
dP (x+ δv)

dδ

∣∣∣∣
δ=0

= lim
δ→0

P (x+ δv)− P (x)

δ
=: u ∈ Tx(M). (34)

Note that ∥x+ δv−P (x+ δv)∥2 ≤ ∥x+ δv−P (x)∥2 = δ∥v∥2, and by Taylor expansion, we have

∥x+ δv − P (x+ δv)∥2 = ∥x+ δv − δ∂P (x)v +O(δ2)∥2 = ∥x+ δv − δu+O(δ2)∥2
where O(δ2) denotes a term whose norm is bounded by Cδ2 for a constant C > 0 for all sufficiently
small δ, and the second equality follows from (34). Then dividing both sides by δ and letting δ → 0,
we have ∥v∥2 ≥ ∥v − u∥2. Since u is orthogonal to v, we must have u = 0. As v is arbitrary, we
conclude that ∂P (x) is the orthogonal projection matrix onto Tx(M). Then differentiating both sides
of G(x) = G̃(P (x)) with x yields

∂G(x) = ∂G̃(P (x))∂P (x) = ∂G̃(x) (35)

where the second equality follows from the fact that Tx(M) = span({∇G̃i(x)}di=1). This further
implies that the solution of Equation (11) satisfies dx/dt = −∇(L ◦ G̃)(x) ∈ Tx(M), and thus
x(t) ∈M for all t ≥ 0.

Now we consider the mirror flow

dw(t) = −∇2R(w(t))−1∇Lt(w(t))dt, w(0) = winit.

Since ∇2R(w) = ∂F (w)⊤∂F (w) by the fact that F is an isometric embedding, we further have

dw(t) = −
(
∂F (w(t))⊤∂F (w(t))

)−1∇Lt(w(t))dt.

Now define x(t) = F (w(t)), and it follows that

dx(t) = ∂F (w(t))dw(t) = −∂F (w(t))(∂F (w(t))⊤∂F (w(t)))−1∇Lt(w(t))dt
= −∂G(F (w(t)))⊤∇Lt(w(t))dt = −∇(Lt ◦G)(x(t))dt

where the third equality follows from Lemma E.1 and (35).

Next, we verify that G restricted on M , G̃, is a commuting and regular parametrization. First, for any
x ∈M , we have ∂G̃(x)⊤ = ∂F (G̃(x))(∂F (G̃(x))⊤∂F (G̃(x)))−1 by Lemma E.1 and (35). Since
∇2R(w) = ∂F (w)⊤∂F (w) is of rank d for allw ∈ int(domR), it follows that ∂F (w) is also of rank
d for all w ∈ int(domR), thus ∂G̃(x) is of rank d for all x ∈M . The commutability of {∇G̃i}di=1

follows directly from Corollary 4.12. Here we just need to show rank(Ωx(x; G̃)) = rank(M). This
is because on one hand rank(Ωx(x; G̃)) ≥ rank(span({∇G̃i(x)}di=1)) = rank(M), and on the
other hand, rank(Ωx(x; G̃)) ≤ rank(M) since Ωx(x; G̃) ⊂M , for any x ∈M .

Finally, we show that when R is a mirror map, each ∇G̃j is a complete vector field on M . For any
xinit ∈M , consider loss Lt(w) = ⟨ej , w⟩, and the corresponding gradient flow is

dx(t) = −∇(Lt ◦ G̃)(x(t))dt = −∂G̃(x(t))⊤∇Lt(G̃(x(t)))dt = −∇G̃j(x(t)),

so x(t) = ϕt
G̃j

(xinit) for all t ≥ 0. On the other hand, w(t) = G̃(x(t)) satisfies that

dw(t) = ∂G̃(x(t))dx(t) = −∂G̃(x(t))∂G̃(x(t))⊤∇Lt(w(t))dt
= −∇2R(w(t))−1∇Lt(w(t))dt = −∇2R(w(t))−1ejdt
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where the third equality follows from Lemma E.1 and Equation (35). Therefore, rewriting the above
as a mirror Flow yields

d∇R(w(t)) = −ejdt,

the solution to which exists for all t ∈ R and is given by ∇R(w(t)) = ejt, so w(t) = (∇R)−1(ejt)
is defined for all t ∈ R as ∇R is surjective. This further implies that x(t) = F (w(t)) is well-defined
for all t ∈ R, hence ∇G̃j is a complete vector field.
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