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Abstract

As part of the effort to understand implicit bias of gradient descent in over-
parametrized models, several results have shown how the training trajectory on
the overparametrized model can be understood as mirror descent on a different
objective. The main result here is a characterization of this phenomenon under
a notion termed commuting parametrization, which encompasses all the previ-
ous results in this setting. It is shown that gradient flow with any commuting
parametrization is equivalent to continuous mirror descent with a related Legendre
function. Conversely, continuous mirror descent with any Legendre function can
be viewed as gradient flow with a related commuting parametrization. The latter
result relies upon Nash’s embedding theorem.

1 Introduction

Implicit bias refers to the phenomenon in machine learning whereby the solution obtained from loss
minimization has special properties that were not implied by value of the loss function and instead
arose from the optimization’s trajectory through the parameter space. Quantifying implicit bias nec-
essarily has to go beyond the traditional black-box convergence analyses of optimization algorithms.
Implicit bias can explain how choice of optimization algorithm can affect generalization [61, 42, 41].

Many existing results about implicit bias view training (in the limit of infinitesimal step size) as
a differential equation or process {x(t)}t�0 ⇢ RD. To show the implicit bias of x(t), the idea
is to show for another (more intuitive or better understood) process {w(t)}t�0 ⇢ Rd that x(t) is
simulating w(t), in the sense that there exists a mapping G : RD ! Rd such that w(t) = G(x(t)).
Then the implicit bias of x(t) can be characterized by translating the special properties of w(t) back
to x(t) through G. A related term, implicit regularization, refers to a handful of such results where
particular update rules are shown to lead to regularized solutions; specifically, x(t) is simulating w(t)
where w(t) is solution to a regularized version of the original loss.

The current paper develops a general framework involving optimization in the continuous-time
regime of a loss L : Rd ! R that has been re-parametrized before optimization as w = G(x)
for some G : RD ! Rd. Then the original loss L(w) in the w-space induces the implied loss
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(L �G)(x) ⌘ L(G(x)) in the x-space, and the gradient flow in the x-space is given by2

dx(t) = �r(L �G)(x(t))dt. (1)

Using w(t) = G(x(t)) and the fact that r(L �G)(x) = @G(x)>rL(G(x)) where @G(x) 2 Rd⇥D

denotes the Jacobian of G at x, the corresponding dynamics of (1) in the w-space is

dw(t) = @G(x(t))dx(t) = �@G(x(t))@G(x(t))>rL(w(t))dt. (2)

Our framework is developed to fully understand phenomena in recent papers [26, 58, 64, 4, 61, 5, 8],
which give examples suggesting that gradient flow in the x-space could end up simulating a more
classical algorithm, mirror descent (specifically, the continuous analog, mirror flow) in the w-
space. Recall that mirror flow is continuous-time limit of the classical mirror descent, written as
drR(w(t)) = �rL(w(t))dt where R : Rd ! R [ {1} is a strictly convex function [49, 10],
which is called mirror map or Legendre function in literature. Equivalently it is Riemannian gradient

flow with metric tensor r2R, an old notion in geometry:

dw(t) = �r2R(w(t))�1rL(w(t))dt. (3)

If there exists a Legendre function R such that @G(x(t))@G(x(t))> = r2R(w(t))�1 for all t,
then (2) becomes a simple mirror flow in the w-space. Many existing results about implicit bias
indeed concern reparametrizations G that satisfy @G(x)@G(x)> = r2R(w)�1 for a strictly convex
function R, and the implicit bias/regularization is demonstrated by showing that the convergence
point satisfies the KKT conditions needed for minimizing R among all minimizers of the loss
L. A concrete example is that wi(t) = Gi(x(t)) = (xi(t))2 for all i 2 [d], so here D = d.
In this case, the Legendre function R must satisfy (r2R(w(t)))�1 = @G(x(t))@G(x(t))> =
4diag((x1(t))2, . . . , (xd(t))2) = 4diag(w1(t), . . . , wd(t)) which suggests R is the classical negative
entropy function, i.e., R(w) =

P
d

i=1 wi(lnwi � 1).

However, in general, it is hard to decide whether gradient flow for a given parametrization G can

be written as mirror flow for some Legendre function R, especially when D > d and G is not an
injective map. In such cases, there could be multiple x’s mapping to the same G(x) yet having
different @G(x)@G(x)>. If more than one of such x can be reached by gradient flow, then the desired
Legendre function cannot exist.3 If only one of such x can be reached by gradient flow, we must
decide which x it is in order to decide the value of r2R using @G@G>. Conversely, [5] raises the
following question: for what Legendre function R can the corresponding mirror flow be the result of

gradient flow after some reparametrization G? Answering the questions in both directions requires a
deeper understanding of the impact of parametrizations.

The following are the main contributions of the current paper:

• In Section 4, building on classic study of commuting vector fields we identify a notion of when a
parametrization w = G(x) is commuting (Definition 4.1) and use it to give a sufficient condition
(Theorem 4.8) and a slightly weaker necessary condition (Theorem 4.9) of when the gradient
flow in the x-space governed by �r(L � G) is simulating a mirror flow in the w-space with
respect to some Legendre function R : Rd ! R. This condition encompasses all the previous
results [26, 58, 64, 4, 61, 5, 8]. Moreover, the Legendre function is independent of the loss L and
depends only on the initialization xinit and the parametrization G.

• We recover and generalize existing implicit bias results for underdetermined linear regression as
implications of the above characterization (Corollary 4.17). We also give new convergence analysis
in such settings (Theorem 4.15), filling the gap in previous works [26, 61, 8] where parameter
convergence is only assumed but not proved.

• In the reverse direction, we use the famous Nash’s embedding theorem to show that every mirror
flow in the w-space with respect to some Legendre function R simulates a gradient flow with
commuting parametrization under some embedding x = F (w) where F : Rd ! RD and the

2Two examples from recent years, where G does not change expressiveness of the model, involve (a)
overparametrized linear regression where the parameter vector w is reparametrized (for example as w =
u�2 � v�2 [61]) and (b) deep linear nets [6] where a matrix W is factorized as W = W1W2 · · ·WL where
each W` is the weight matrix for the `-th layer.

3To avoid such an issue, [5] has to assume all the preimages of G at w have the same @G(@G)> and a recent
paper [23] assumes that G is injective.
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parametrization G is the inverse of F (Theorem 5.1). This provides an affirmative and fully general
answer to the question of when such reparametrization functions exist, giving a full answer to
questions raised in a more restricted setting in [5].

2 Related work

Implicit bias. With high overparametrization as used in modern machine learning, there usually
exist multiple optima, and it is crucial to understand which particular solutions are found by the
optimization algorithm. Implicit bias of gradient descent for classification tasks with separable data
was studied in [55, 24, 46, 35, 45, 34] and for non-separable data in [32, 33], where the implicit bias
appears in the form of margin maximization. The implicit bias for regression problems has also been
analyzed by leveraging tools like mirror descent [61, 24, 64, 58, 4, 5], later generalized in [8].

The sharp contrast between the so-called kernel and rich regimes [61] reflects the importance of the
initialization scale, where a large initialization often leads to the kernel regime with features barely
changing during training [30, 16, 20, 19, 2, 1, 65, 7, 62, 31], while with a small initialization, the
solution exhibits richer behavior with the resulting model having lower complexity [25, 26, 39, 52,
6, 15, 41, 43, 44, 53, 56, 22]. Recently [63] gave a complete characterization on the relationship
between initialization scale, parametrization and learning rate in order to avoid kernel regime.

There are also papers on the implicit bias of other types of optimization algorithms, e.g., stochastic
gradient descent [40, 11, 29, 42, 18, 66] and adaptive and momentum methods [51, 60, 59, 36], to
name a few.

Understanding mirror descent. In the continuous-time regime, the mirror flow is equivalent to a
Riemannian gradient flow with the metric tensor induced by the Legendre function. [27] showed that
a partial discretization of the latter gives rise to the classical mirror descent. Assuming the existence
of some reparametrization function, [5] showed that a particular mirror flow can be reparametrized
as a gradient flow. Our paper shows that such reparametrization always exists by using Nash’s
embedding theorem. [23] generalized the equivalence result of [5] to discrete updates.

3 Preliminaries and notations

Notations. We denote N as the set of natural numbers. For any n 2 N, we denote {1, 2, . . . , n}
by [n]. For any vector u 2 RD, we denote its i-th coordinate by ui. For any vector u, v 2 RD

and ↵ 2 R, we define u � v = (u1v1, . . . , uDvD)> and u�↵ = ((u1)↵, . . . , (uD)↵)>. For any
k 2 N [ {1}, we say a function f is Ck if it is k times continuously differentiable, and use Ck(M)
to denote the set of all Ck functions from M to R. We use � to denote the composition of functions,
e.g., f � g(x) = f(g(x)). For any convex function R : RD ! R [ {1}, we denote its domain by
domR = {w 2 RD|R(w) < 1}. For any set S, we denote its interior by int(S) and its closure by
S.

We assume that the model has parameter vector w 2 Rd and C1 loss function L : Rd ! R. Training
involves a reparametrized vector x 2 RD, which is a reparametrization of w such that w = G(x)
for some differentiable parametrization function G, and the objective is L(G(x)). From now on, we
follow the convention that d is the dimension of the original parameter w and D is the dimension of
the reparametrized x. We also refer to Rd as the w-space and RD as the x-space.

In particular, we are interested in understanding the dynamics of gradient flow under the objective
L �G on some submanifold M ✓ RD. Most of our results also generalize to the following notion of
time-dependent loss.

Definition 3.1 (Time-dependent loss). A time-dependent loss Lt(w) is a function piecewise constant
in time t and continuously differentiable in w 2 Rd, that is, there exist k 2 N, 0 = t1 < t2 < · · · <
tk+1 = 1 and C1 loss functions L(1), L(2), . . . , L(k) such that for each i 2 [k] and all t 2 [ti, ti+1),

Lt(w) = L(i)(w), 8w 2 Rd.

We denote the set of such time-dependent loss functions by L.
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3.1 Manifold and vector field

Vector fields are a natural way to formalize the continuous-time gradient descent (a good reference
is [38]). Let M be any smooth submanifold of RD. A vector field X on M is a continuous map from
M to RD such that for any x 2 M , X(x) is in the tangent space of M at x, which is denoted by
TxM . Formally, TxM := {d�

dt

��
t=0

| 8 smooth curves � : R ! M, �(0) = x}.

Definition 3.2 (Complete vector field; p.215, [38]). Let M be a smooth submanifold of RD and X
be a vector field on M . We say X is a complete vector field on M if for any initialization xinit 2 M ,
the differential equation dx(t) = X(x(t))dt has a solution on (�1,1) with x(0) = xinit.

Equipping the smooth submanifold M ✓ RD with a metric tensor g, we then have a Riemannian
manifold (M, g), where for each x 2 M , gx : TxM ⇥ TxM ! R is a positive definite bilinear form.
In particular, the standard Euclidean metric g corresponds to g

x
(u, v) = u>v for each x 2 M and

u, v 2 TxM , under which the length of any arc on M is given by its length as a curve in RD.

For any differentiable function f : M ! R, we denote by rgf its gradient vector field with respect
to metric tensor g. More specifically, rgf(x) is defined as the unique vector in RD such that
rgf(x) 2 TxM and df(�(t))

dt

��
t=0

= gx
�
rf(x), d�(t)

dt

��
t=0

�
for any smooth curve � : R ! M with

�(0) = x. Throughout the paper, we assume by default that the metric on the submanifold M ✓ RD

is inherited from (RD, g), and we will use rf as a shorthand for rgf . If M is an open set of RD,
rf is then simply the ordinary gradient of f .

For any x 2 M and C1 function f : M ! R, we denote by �t
f
(x) the point on M reached after time

t by following the vector field �rf starting at x, i.e., the solution at time t (when it exists) of

d�t
f
= �rf(�t

f
)dt, �0

f
(x) = x.

We say �t
f
(x) is well-defined at time t when the above differential equation has a solution at time t.

Moreover, for any differentiable function X : M ! Rd, we define its Jacobian by

@X(x) = (rX1(x),rX2(x), . . . ,rXd(x))
>.

Definition 3.3 (Lie bracket). Let M be a smooth submanifold of RD. Given two C1 vector fields
X,Y on M , we define the Lie bracket of X and Y as [X,Y ](x) := @Y (x)X(x)� @X(x)Y (x).

3.2 Parametrizations

We use the term parametrization to refer to differentiable maps from a smooth submanifold of
RD (x-space) to Rd (w-space). We reserve G to denote parametrizations, and omit the dependence
on G for notations of objects related to G when it is clear from the context.

The following notion of regular parametrization plays an important role in our analysis, and it is
necessary for our main equivalence result between mirror flow and gradient flow with commuting
parametrization. This is because if the null space of @G(x) is non-trivial, i.e., it contains some vector
u 6= 0, then the gradient flow with parametrization G obviously cannot simulate any mirror flow with
nonzero velocity in the direction of u.
Definition 3.4 (Regular parametrization). Let M be a smooth submanifold of RD. A regular

parametrization G : M ! Rd is a C1 parametrization such that @G(x) is of rank d for all x 2 M .

Note that a regular parametrization G can become irregular when its domain is changed. For example,
G(x) = x2 is regular on R+, but it is not regular on R as @G(0) = 0.

Given a C2 parametrization G : M ! Rd, for any x 2 M and µ 2 Rd, we define

 (x;µ) := �µ1

G1
� �µ2

G2
� · · · � �µd

Gd
(x) (4)

when it is well-defined, i.e., the corresponding integral equation has a solution. For any x 2 M , we
define the domain of  (x; ·) as

U(x) =
�
µ 2 Rd |  (x;µ) is well-defined

 
. (5)

When every rGi is a complete vector field on M as in Definition 3.2, we have U(x) = Rd. However,
such completeness assumption is relatively strong, and most polynomials would violate it. For
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example, consider G(x) = x�3 for x 2 Rd, then the solution to dxi(t) = 3xi(t)2dt explodes in
finite time for each i 2 [d]. To relax this, we consider parametrizations such that the domain of the
flows induced by its gradient vector fields is pairwise symmetric. More specifically, we define

Uij(x) =
�
(s, t) 2 R2 | �s

Gi
� �t

Gj
(x) is well-defined

 

for any x 2 M and i, j 2 [d], and we make the following assumption.

Assumption 3.5. Let M be a smooth submanifold of RD and G : M ! Rd be a parametrization.
We assume that for any x 2 M and i 2 [d], �t

x
(x) is well-defined for t 2 (T�, T+) such that either

limt!T+ k�t
x
(x)k2 = 1 or T+ = 1 and similarly for T�. Also, we assume that for any x 2 M and

i, j 2 [d], it holds that Uji(x) = {(t, s) 2 R2 | (s, t) 2 Uij(x)}, i.e., �s
Gi

� �t
Gj

(x) is well-defined if
and only if �t

Gj
� �s

Gi
(x) is.

Indeed, under Assumption 3.5, we can show that for any x 2 M , U(x) is a hyperrectangle in Rd, i.e,

U(x) = I1(x)⇥ I2(x)⇥ · · ·⇥ Id(x) where each Ij(x) ⇢ R is an open interval. (6)

See Lemma C.1 and its proof in Appendix C. Next, for any initialization xinit 2 M , the set of
points that are reachable via gradient flow under some time-dependent loss (see Definition 3.1) with
parametrization G is a subset of M that depends on G and xinit.
Definition 3.6 (Reachable set). Let M be a smooth submanifold of RD. For any C2 parametrization
G : M ! Rd and any initialization xinit 2 M , the reachable set ⌦x(xinit;G) is defined as

⌦x(xinit;G) =
n
�µ1

L1�G � �µ2

L2�G � · · · � �µk

Lk�G(xinit)
��� 8k 2 N, 8i 2 [k], Li 2 C1(Rd), µi � 0

o
.

It is clear that the above definition induces a transitive “reachable” relationship between points on M ,
and it is also reflexive since for all L 2 C1(Rd) and t > 0, �t

L�G ��t(�L)�G is the identity map on the
domain of �t�L�G. In this sense, the reachable sets are orbits of the family of gradient vector fields
{r(L �G) | L 2 C1(Rd)}, i.e., the reachable sets divide the domain M into equivalent classes. The
above reachable set in the x-space further induces the corresponding reachable set in the w-space
given by ⌦w(xinit;G) = G(⌦x(xinit;G)).

In most natural examples, the parametrization G is smooth (though this is not necessary for our
results), and by Sussman’s Orbit Theorem [57], each reachable set ⌦x(xinit;G) is an immersed
submanifold of M . Moreover, it follows that ⌦x(xinit;G) can be generated by {rGi}di=1, i.e.,
⌦x(xinit;G) = {�µ1

Gj1
� �µ2

Gj2
� · · · � �µk

Gjk
(xinit) | 8k 2 N, 8i 2 [k], ji 2 [d], µi � 0}.

3.3 Mirror descent and mirror flow

Next, we introduce some basic notions for mirror descent [49, 10]. We refer the readers to Appendix B
for more preliminaries on convex analysis.
Definition 3.7 (Legendre function and mirror map). Let R : Rd ! R[{1} be a differentiable convex
function. We say R is a Legendre function when it satisfies that (1) R is strictly convex on int(domR),
and (2) for any sequence {wi}1i=1 going to the boundary of domR, limi!1 krR(wi)k2 = 1. In
particular, we call R a mirror map if R further satisfies that the gradient map rR : int(domR) ! Rd

is surjective (see p.298 in [13]).

Given a Legendre function R : Rd ! R [ {1}, for any initialization w0 = winit 2 int(domR),
mirror descent with step size ⌘ updates as follows:

rR(wk+1) = rR(wk)� ⌘rL(wk). (7)

Usually rR is required to be surjective so that after a discrete descent step in the dual space, it can
be projected back to the primal space via (rR)�1. Nonetheless, as long as rR(wk)� ⌘rL(wk) is
in the range of rR, the above discrete update is well-defined. In the limit of ⌘ ! 0, (7) becomes the
continuous mirror flow:

drR(w(t)) = �rL(w(t))dt. (8)
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�rGi ti

�rGj

tj

�rGj

tj

�rGi
ti

x

�ti
Gi
(x)

�
tj

Gj
(x)

�ti
Gi

� �tj
Gj

(x) = �
tj

Gj
� �ti

Gi
(x)

Figure 1: Illustration of commuting parametrizations. Suppose G : M ! Rd is a commuting
parametrization satisfying Assumption 3.5, then starting from any x 2 M , first moving along �rGi

for time ti then moving along �rGj for time tj yields the same result as first moving along �rGj

for time tj then moving along �rGi for time ti does, i.e., �ti
Gi

� �tj
Gj

(x) = �
tj

Gj
� �ti

Gi
(x).

Given a differentiable function R, the corresponding Bregman divergence DR is defined as

DR(w,w
0) = R(w)�R(w0)� hrR(w0), w � w0i.

We recall a well-known implicit bias result for mirror flow [24] (which holds for mirror descent as
well), which shows that for a specific type of loss, if mirror flow converges to some optimal solution,
then the convergence point minimizes some convex regularizer among all optimal solutions.
Theorem 3.8. Given any data Z 2 Rn⇥d

and corresponding label Y 2 Rn
, suppose the loss L(w)

is in the form of L(w) = eL(Zw) for some differentiable eL : Rn ! R. Assume that initialized at

w(0) = winit, the mirror flow (8) converges and the convergence point w1 = limt!1 w(t) satisfies

Zw1 = Y , then DR(w1, w0) = minw:Zw=Y DR(w,w0).

See Appendix C for a proof. The above theorem is the building block for proving the implicit bias
induced by any commuting parametrization in overparametrized linear models (see Theorem 4.16).

4 Every gradient flow with commuting parametrization is a mirror flow

4.1 Commuting parametrization

We now formalize the notion of commuting parametrization. We remark that M is a smooth
submanifold of RD, and it is the domain of the parametrization G.
Definition 4.1 (Commuting parametrization). Let M be a smooth submanifold of RD. A C2

parametrization G : M ! Rd is commuting in a subset S ✓ M if and only if for any i, j 2 [d], the
Lie bracket [rGi,rGj ](x) = 0 for all x 2 S. Moreover, we say G is a commuting parametrization

if it is commuting in the entire M .

In particular, when M is an open subset of Rd, {rGi}di=1 are ordinary gradients in RD, and the
Lie bracket between any pair of rGi and rGj is given by [rGi,rGj ](x) = r2Gj(x)rGi(x)�
r2Gi(x)rGj(x). This provides an easy way to check whether G is commuting or not.

The above definition of commuting parametrizations builds upon the differential properties of the
gradient vector fields {rGi}di=1, where each Lie bracket [rGi,rGj ] quantifies the change of rGj

along the flow generated by rGi. Indeed, the above characterization of ‘commuting’ is further
equivalent to another characterization in the integral form (Theorem 4.2), as illustrated in Figure 1.
Theorem 4.2. Let M be a smooth submanifold of RD

and G : M ! Rd
be a C2

parametrization

satisfying Assumption 3.5. For any i, j 2 [d], [rGi,rGj ](x) = 0 for all x 2 M if and only if for

any x 2 M , it holds that �s
Gi

� �t
Gj

(x) = �t
Gj

� �s
Gi
(x) for all (s, t) 2 Ii(x)⇥ Ij(x), where Ii(x)

and Ij(x) are the time domains of �s
Gi
(x) and �t

Gj
(x) as defined in (6).

The commuting condition clearly holds when each Gi only depends on a different subset of coordi-
nates of x, because we then have r2Gi(·)rGj(·) ⌘ 0 for any distinct i, j 2 [d] as r2Gi and rGj

live in different subspaces of RD. We call such G separable parametrizations
4, and this case covers

all the previous examples [26, 58, 4, 61, 5]. Another interesting example is the quadratic parametriza-

tion: We parametrize w 2 Rd by G : RD ! Rd where for each i 2 [d], there is a symmetric matrix
4We further discuss the existence of non-separable commuting parametrizations in Appendix A.2.
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Ai 2 RD⇥D such that Gi(x) =
1
2x

>Aix. Then each [rGi,rGj ](x) = (AjAi �AiAj)x, and thus
G is a commuting parametrization if and only if matrices {Ai}di=1 commute.

For concreteness, we analyze two examples below. The first one is both a separable parametrization
and a commuting quadratic parametrization, while the second one is quadratic but non-commuting.
Example 4.3 (u�2 � v�2 parametrization, [61]). Parametrize w 2 Rd by w = u�2 � v�2. Here
D = 2d, and the parametrization G is given by G(x) = u�2 � v�2 for x =

�
u

v

�
2 RD. Since

each Gi(x) involves only ui and vi, G is a separable parametrization and hence a commuting
parametrization. Meanwhile, each Gi(x) is a quadratic form in x, and it can be directly verified that
the matrices underlying these quadratic forms commute with each other.
Example 4.4 (Matrix factorization). As a counter-example, consider two parametrizations for matrix
factorization: G(U) = UU> and G(U, V ) = UV >, where U, V 2 Rd⇥r and d � 2, r � 1.
These are both non-commuting quadratic parametrizations. Here we only demonstrate for the
parametrization G(U) = UU>, and G(U, V ) = UV > follows a similar argument. For each
i, j 2 [d], we define Eij 2 Rd as the one-hot matrix with the (i, j)-th entry being 1 and the rest
being 0, and denote Eij =

1
2 (Eij + Eji). For r = 1, we have Gij(U) = UiUj = U>EijU for any

i, j 2 [d], so G is a quadratic parametrization. Note that EiiEij =
1
2Eij 6= 1

2Eji = EijEii for all
distinct i, j 2 [d], which implies that [rGij ,rGii] 6= 0, so G is non-commuting. More generally,
we can reshape U as a vector

�!
U := [U>

:1 , . . . , U
>
:r ]

> 2 Rrd where each U:j is the j-th column of U ,
and the resulting quadratic form for the (i, j)-entry of G(U) corresponds to a block-diagonal matrix:

Gij(U) = (
�!
U )>diag(Eij , . . . , Eij)

�!
U .

Therefore, r2Gij does not commute with r2Gii due to the same reason as in the rank-1 case.
Remark 4.5. This non-commuting issue for general matrix factorization does not conflict with

the theoretical analysis in [26] where the measurements are commuting, or equivalently, only

involve diagonal elements, as {Gii}di=1 are indeed commuting parametrizations. [26] is the first to

identify the above non-commuting issue and conjectured that the implicit bias result for diagonal

measurements can be extended to the general case.

4.2 Main equivalence result

Next, we proceed to present our analysis for gradient flow with commuting parametrization. The
following two lemmas highlight the special properties of commuting parametrizations. Lemma 4.6
shows that the point reached by gradient flow with any commuting parametrization is determined by
the integral of the negative gradient of the loss along the trajectory.
Lemma 4.6. Let M be a smooth submanifold of RD

and G : M ! Rd
be a commuting parametriza-

tion. For any initialization xinit 2 M , consider the gradient flow for any time-dependent loss

Lt 2 L as in Definition 3.1: dx(t) = �r(Lt � G)(x(t))dt, x(0) = xinit. Further define

µ(t) =
R
t

0 �rLt(G(x(s)))ds. Suppose µ(t) 2 U(xinit) for all t 2 [0, T ) where T 2 R [ {1},

then it holds that x(t) =  (xinit;µ(t)) for all t 2 [0, T ).

Based on Lemma 4.6, the next key lemma reveals the essential approach to find the Legendre function.
Lemma 4.7. Let M be a smooth submanifold of RD

and G : M ! Rd
be a commuting and regular

parametrization satisfying Assumption 3.5. Then for any xinit 2 M , there exists a Legendre function

Q : Rd ! R [ {1} such that rQ(µ) = G( (xinit;µ)) for all µ 2 U(xinit). Moreover, let R be

the convex conjugate of Q, then R is also a Legendre function and int(domR) = ⌦w(xinit;G) and

r2R(G( (xinit;µ))) =
�
@G( (xinit;µ))@G( (xinit;µ))>

��1
for all µ 2 U(xinit).

Next, we present our main result on characterization of gradient flow with commuting parametrization.
Theorem 4.8. Let M be a smooth submanifold of RD

and G : M ! Rd
be a commuting and regular

parametrization satisfying Assumption 3.5. For any initialization xinit 2 M , consider the gradient

flow for any time-dependent loss function Lt : Rd ! R:

dx(t) = �r(Lt �G)(x(t))dt, x(0) = xinit.

Define w(t) = G(x(t)) for all t � 0, then the dynamics of w(t) is a mirror flow with respect to the

Legendre function R given by Lemma 4.7, i.e.,

drR(w(t)) = �rLt(w(t))dt, w(0) = G(xinit).
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Moreover, this R only depends on the initialization xinit and the parametrization G, and is indepen-

dent of the loss function Lt.

Theorem 4.8 provides a sufficient condition for when a gradient flow with certain parametrization
G is simulating a mirror flow. The next question is then: What are the necessary conditions on the
parametrization G so that it enables the gradient flow to simulate a mirror flow? We provide a (partial)
characterization of such G in the following theorem.
Theorem 4.9 (Necessary condition on smooth parametrization to be commuting). Let M be a smooth

submanifold of RD
and G : M ! Rd

be a smooth parametrization. If for any xinit 2 M , there is a

Legendre function R such that for all time-dependent loss Lt 2 L, the gradient flow under Lt �G
initialized at xinit can be written as the mirror flow under Lt with respect to R, then G must be a

regular parametrization, and it also holds that for each x 2 M ,

Lie�2(@G)
��
x
✓ ker(@G(x)), (9)

where Lie�K(@G) := span
�
[[[[rGj1 ,rGj2 ], . . .],rGjk�1 ],rGjk ] | k � K, 8i 2 [k], ji 2 [d]} is

the subset of the Lie algebra generated by {rGi}di=1 only containing elements of order higher than

K, and ker(@G(x)) is the orthogonal complement of span({rGi(x)}di=1) in RD
.

Note the necessary condition in (9) is weaker than assuming that G is a commuting parametrization,
and we conjecture that it is indeed sufficient.
Conjecture 4.10. The claim in Theorem 4.8 still holds, if we relax the commuting assumption to
that Lie�2(@G)

��
x
✓ ker(@G(x)) for all x 2 M .

With the above necessary condition (9), we can formally refute the possibility that one can use mirror
flow to characterize the implicit bias of gradient flow for matrix factorization in general settings, as
summarized in Corollary 4.11. It is also worth mentioning that [40] constructed a concrete counter
example showing that the implicit bias for commuting measurements, that gradient flow finds the
solution with minimal nuclear norm, does not hold for the general case, where gradient flow could
prefer the solution with minimal rank instead.
Corollary 4.11 (Gradient flow for matrix factorization cannot be written as mirror flow). For any

d, r 2 N, let M be an open set in Rd⇥r
and G : M ! Rd⇥d

be a smooth parametrization given by

G(U) = UU>
. Then there exists a initial point Uinit 2 M and a time-dependent loss Lt such that

the gradient flow under Lt �G starting from Uinit cannot be written as a mirror flow with respect to

any Legendre function R under the loss Lt.

The following corollary shows that gradient flow with non-commuting parametrization cannot be
mirror flow, when the dimension of the reachable set matches that of the w-space.
Corollary 4.12. Let M be a smooth submanifold of RD

whose dimension is at least d. Let G : M !
Rd

be a regular parametrization such that for any xinit 2 M , (1) ⌦x(xinit;G) is a submanifold of

dimension d, and (2) there is a Legendre function R such that for any time-dependent loss Lt 2 L,

the gradient flow governed by �r(Lt �G) with initialization xinit can be written as a mirror flow

with respect to R. Then G must be a commuting parametrization.

Next, we establish the convergence of w(t) = G(x(t)) when x(t) is given by some gradient flow with
the commuting parametrization G. Here we require that the convex function R given by Lemma 4.7
is a Bregman function (see definition in Appendix B). The proofs of Theorem 4.13, Corollary 4.14
and Theorem 4.15 are in Appendix D.
Theorem 4.13. Under the setting of Theorem 4.8, further assume that the loss L is quasi-convex,

rL is locally Lipschitz and argmin{L(w) | w 2 domR} is non-empty where R : Rd ! R [ {1}
is the convex function given by Lemma 4.7. Suppose R is a Bregman function, then as t ! 1, w(t)
converges to some w⇤

such that rL(w⇤)>(w � w⇤) � 0 for all w 2 domR. Moreover, if the loss

function L is convex, then w(t) converges to a minimizer in domR.

Corollary 4.14. Under the setting of Theorem 4.13, if the reachable set in the w-space satisfies

⌦w(xinit;G) = Rd
, then R is a Bregman function and all the statements in Theorem 4.13 hold.

Theorem 4.15. Under the setting of Theorem 4.13, consider the commuting quadratic parametrization

G : RD ! Rd
where each Gi(x) = 1

2x
>Aix, for symmetric matrices A1, A2, . . . , Ad 2 RD⇥D

that commute with each other, i.e., AiAj � AjAi = 0 for all i, j 2 [d]. For any xinit 2 RD
, if

{rGi(xinit)}di=1 = {Aixinit}di=1 are linearly independent, then the following holds:
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(a) For all µ 2 Rd
,  (xinit;µ) = exp(

P
d

i=1 µiAi)xinit where exp(·) is the matrix exponential

defined as exp(A) :=
P1

k=0
A

k

k! .

(b) For each j 2 [d] and all µ 2 Rd
, Gj( (xinit;µ)) =

1
2xinit

> exp(
P

d

i=1 2µiAi)Ajxinit.

(c) Q(µ) = 1
4 k (xinit;µ)k22 is a Legendre function with domain Rd

.

(d) R is a Bregman function with domR = rangerQ where rangerQ is the range of rQ,

and thus all the statements in Theorem 4.13 hold.

4.3 Solving underdetermined linear regression with commuting parametrization

Next, we specialize to underdetermined linear regression problems to showcase our framework.

Setting: underdetermined linear regression. Let {(zi, yi)}ni=1 ⇢ Rd ⇥ R be a dataset of size n.
Given any parametrization G, the output of the linear model on the i-th data is z>

i
G(x). The goal is

to solve the regression for the label vector Y = (y1, y2, . . . , yn)>. For notational convenience, we
define Z = (z1, z2, . . . , zn) 2 Rd⇥n.

We can apply Theorem 3.8 to show the implicit bias of gradient flow with commuting parametrization.
Theorem 4.16. Let M be a smooth submanifold of Rd

and G : M ! Rd
be a commuting and regular

parametrization satisfying Assumption 3.5. Suppose the loss function L satisfies L(w) = eL(Zw) for

some differentiable eL : Rn ! R. For any initialization xinit 2 M , consider the gradient flow

dx(t) = �r(L �G)(x(t))dt, x(0) = xinit.

There exists a convex function R (given by Lemma 4.7, depending only on xinit and G), such that for

any dataset {(zi, yi)}ni=1 ⇢ Rd ⇥ R, if w(t) = G(x(t)) converges as t ! 1 and the convergence

point w1 = limt!1 w(t) satisfies Zw1 = Y , then R(w1) = minw:Zw=Y R(w), that is, gradient

flow implicitly minimizes the convex regularizer R among all interpolating solutions.

Note that the identity parametrization w = G(x) = x is a commuting parametrization. Therefore, if
we run the ordinary gradient flow on w itself and it converges to some interpolating solution, then
the convergence point is closest to the initialization in Euclidean distance among all interpolating
solutions. This recovers the well-known implicit bias of gradient flow for underdetermined regression.

Furthermore, we can recover the results on the quadratically overparametrized linear model studied in
a series of papers [26, 61, 8], as summarized in the following Corollary 4.17. Note that their results
assumed convergence in order to characterize the implicit bias, whereas our framework enables us to
directly prove the convergence as in Theorem 4.15. The convergence guarantee here is also more
general than existing convergence results for Example 4.3 in [50, 42].
Corollary 4.17. Consider the underdetermined linear regression problem with data Z 2 Rd⇥n

and

Y 2 Rn
. Let eL : Rn ! R be a differentiable loss function such that eL is quasi-convex, reL is locally

Lipschitz, and Y 2 Rn
is its unique global minimizer. Consider solving minw eL(Zw) by running

gradient flow on L(w) = eL(Zw) with the quadratic parametrization w = G(x) = u�2 � v�2
where

x =
�
u

v

�
2 R2d

+ , for any initialization xinit 2 R2d
+ : dx(t) = �r(L � G)(x(t))dt, x(0) = xinit.

Then as t ! 1, w(t) = G(x(t)) converges to some w1 such that Zw1 = Y and R(w1) =
minw:Zw=Y R(w) where R is given by

R(w) =
1

4

Xd

i=1

⇣
wi arcsinh

⇣ wi

2u0,iv0,i

⌘
�
q
w2

i
+ 4u2

0,iv
2
0,i � wi ln

u0,i

v0,i

⌘
.

5 Every mirror flow is a gradient flow with commuting parametrization

For any smooth Legendre function R : Rd ! R [ {1}, recall the corresponding mirror flow:
drR(w(t)) = �rL(w(t))dt.

Note that int(domR) is a convex open set of Rd, hence a smooth manifold (see Example 1.26 in [38]),
and r2R is a continuous positive-definite metric on int(domR). As discussed previously in (3), the
above mirror flow is the Riemannian gradient flow on the Riemannian manifold (int(domR),r2R).
The goal is to find a parametrization G : U ! Rd, where U is an open set of RD, such that the
dynamics of w(t) = G(x(t)) can be induced by the gradient flow on x(t) governed by �r(L�G)(x).
Formally, we have the following result:
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Theorem 5.1. Let R : Rd ! R [ {1} be a smooth Legendre function. There exist a smooth

submanifold of RD
denoted by M , an open neighborhood U of M and a smooth and regular

parametrization G : U ! Rd
such that for the mirror flow under any time-dependent loss Lt with

any initialization winit 2 int(domR)

drR(w(t)) = �rLt(w(t))dt, w(0) = winit, (10)
it holds that w(t) = G(x(t)) for all t � 0 where x(t) is given by the gradient flow under Lt �G:

dx(t) = �r(Lt �G)(x(t))dt, x(0) = xinit (11)
where xinit satisfies G(xinit) = winit. Moreover, let G|M be the restriction of G on M , then G|M is

a commuting and regular parametrization and @G = @G|M on M , which implies x(t) 2 M for all

t � 0. If R is further a mirror map, then {rGi|M}d
i=1 are complete vector fields on M .

The proof of Theorem 5.1 can be found in Appendix E. To illustrate the idea, let us first suppose
such a smooth and regular parametrization G exists and is a bijection between the reachable set
⌦x(xinit;G) ⇢ RD and int(domR), and denote its inverse by F . It turns out that we can show

@F (w)>@F (w) = (@G(F (w))@G(F (w))>)�1 = r2R(w)

where the second equality follows from the relationship between R and G as discussed in the
introduction on (2). Note that this corresponds to expressing the metric tensor r2R using an explicit
map F , which is further equivalent to embedding the Riemannian manifold (int(domR),r2R) into
a Euclidean space (RD, g) in a way that preserves its metric. This refers to a notion called isometric
embedding in differential geometry.
Definition 5.2 (Isometric embedding). Let (M, g) be a Riemannian submanifold of Rd. An isometric

embedding from (M, g) to (RD, g) is a differentiable injective map F : M ! RD that preserves the
metric, i.e., for any two tangent vectors v, w 2 TxM it holds that gx(v, w) = g

x
(@F (x)v, @F (x)w).

Nash’s embedding theorem is a classic result in differential geometry that guarantees the existence of
isometric embedding of any Riemannian manifold into a Euclidean space with a plain geometry. See
Appendix A.1 for additional discussion on construction of G given a Legendre function R.
Theorem 5.3 (Nash’s embedding theorem, [47, 48, 28]). Any d-dimensional Riemannian manifold

has an isometric embedding to (RD, g) for D = max{d(d+ 5)/2, d(d+ 3)/2 + 5}.

As another way to understand Theorem 4.8, note that r2R(w)�1rL(w) is the Riemannian gradient
of L on the Riemannian manifold (int(domR),r2R). It is well-known that gradient flow is invariant
under isometric embedding, and thus we can use Nash’s embedding theorem to rewrite the Riemannian
gradient flow on (int(domR), gR) as that on (RD, g).

6 Conclusion

We presented a framework that characterizes when gradient descent with proper paramterization
becomes equivalent to mirror descent. In the limit of infinitesimal step size, we identify a notion
named commuting parametrization such that any gradient flow (i.e., the continuous analog of gradient
descent) with a commuting parametrization is equivalent to a mirror flow (i.e., the continuous analog
of mirror descent) in the original parameter space with respect to a Legendre function that depends
only on the initialization and the parametrization. Conversely, we use Nash’s embedding theorem
to show that any mirror flow can be characterized by a gradient flow in the reparametrized space
with a commuting parametrization. Using our framework, we recover and generalize results on the
implicit bias of gradient descent in a series of existing works, including a rigorous and general proof
of convergence. We also provide a necessary condition for the parametrization such that gradient
flow in the reparametrized space is equivalent to a mirror flow in the original space. However, the
necessary condition is slightly weaker than the commuting condition and it is left for future work to
close the gap.
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• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This

paper only studies the theoretical properties of optimization algorithms.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
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2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We explicitly

clarify the assumptions for each result.
(b) Did you include complete proofs of all theoretical results? [Yes] Part of the proofs

appears in the main context and others are deferred to appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [N/A] We do not
have any experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We do not use any

existing assets.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We do not use crowdsourcing nor conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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