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Abstract

In this supplementary document, we first provide details on the network archi-
tectures and training strategy of our approach in Section 1. Our settings for the
baselines are described in Section 2. Section 3 shows additional results and fail-
ure cases. In Section 4, we discuss the societal impact of our work. The supple-
mentary video includes synthesized animations in which we control the camera
viewpoint for our method and the baselines and show interpolations between latent
codes. We use the same mathematical notation as in the paper.

1 Implementation

Foreground Generator The foreground generator builds on the StyleGAN2 generator [14] replacing
2D operations with their 3D equivalent as described in the main paper. For faster training, we
consider the layers of StyleGAN2 instead of their alias-free version proposed in StyleGAN3 [13]. The
mapping network has 2 layers with 64 channels. Since 3D convolutions have more parameters than
2D convolutions with the same channel size, we reduce the channel base1 from 32768 for StyleGAN2
to 4000. To facilitate progressive growing we choose an architecture with skip connections which
adds an upsampled version of the output grid of the previous layer to the input of the next layer. The
skip architecture is equivalent to the 2D variant proposed in [14].

Following [3], we condition the generator on a camera pose. Specifically, we condition the generator
on a rotation matrix and a translation vector, yielding a 12-dimensional vector as input to the
conditioning.

The foreground generator predicts color and density values on a sparse voxel grid. Following
Plenoxels [1], the generator outputs the coefficients of spherical harmonics. We choose spherical
harmonics of degree 0, i.e., a single coefficient for each color channel. For a sharp surface and
efficient rendering, the foreground generator needs to predict high values for the density. We facilitate
generating high values by multiplying the density output of the network with a factor of 30. A similar
idea was proposed in [1] where the learning rate for the density is set to a higher value than the
learning rate for the color.

Sparse Convolutions We investigate sparse convolutions [8] for the foreground generator but find
that the computational overhead of managing coordinates increases runtime for our architecture. We
therefore use dense convolutions and zero out values in the feature maps for pruned voxels. We also
compare the difference for both implementations on performance. In general, we observe similar
training behavior for both implementations. However, the faster dense implementation allows us to

1see https://github.com/NVlabs/stylegan3.git
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train the model for 60M iterations compared to 30M for the model with sparse convolutions. This
improves FID from 14.4 for the sparse implementation to 9.0 for the dense implementation on FFHQ
256.

Background Generator We use the StyleGAN2 [14] generator with a 2-layer mapping network with
64 channels, and a synthesis network with channel base 2048 and a maximum of 64 channels per layer.

2D Refinement Layers Depending on the dataset, we optionally refine the rendered image with a
shallow 2D CNN with 2 hidden layers of dimension 16 and kernel size 3. To avoid texture sticking
under viewpoint changes we use alias-free layers [13] with critical sampling.

Regularization Without regularization, volume rendering is prone to result in semi-opaque voxels
and floating artifacts and struggles to accurately represent sharp surfaces [10, 16, 18, 21]. Therefore,
we regularize both the variance of the depth, as described in the main paper, and the total variation of
the predicted density. For the depth variance loss LDV , we set τ = (1.5δ0)

2 where δ0 is the size of
one voxel and λDV = 0.01.

Following Plenoxels [1], we regularize the total variation of the predicted density values in the set of
all voxels V for a compact, smooth geometry

LTV = λTV
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2 and analogously for ∆2
y(σ) and ∆2

z(σ). For efficiency,
we evaluate the loss stochastically on random contiguous segments of voxels as proposed in [1] and
set λTV = 10−5 in all experiments.

To avoid that the full image is generated by either background or foreground generator, we use a
hinge loss on the mean mask value as proposed in GIRAFFE-HD [23]
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where ηfg and ηbg denote the minimum fraction that should be covered by foreground and background,
respectively. To ensure that both models are used, we set ηfg = 0.4 for AFHQ [5] and FFHQ [14]
and ηfg = 0.1 for Carla [19] because Carla’s objects cover a much smaller fraction of the image. We
use ηbg = 0.1 and λfgcvg = λbgcvg = 0.1 for all datasets.

Discriminator We use the StyleGAN2 [14] discriminator with conditional input as in [3]. To
facilitate progressive growing we choose a skip architecture which adds a downsampled version of
the input image to the input of each layer as introduced in [14].

Rendering For efficient rendering, we leverage custom CUDA kernels building on the official code
release of [1]. We select equidistant sampling points for volume rendering in steps of 0.5 voxels but
skip voxels with σi < 10−10 and stop rendering early if Ti < 10−7 as in [1].

Implementation and Training Our code base builds on the official PyTorch implementation of
StyleGAN2 [14] available at https://github.com/NVlabs/stylegan3. Similar to StyleGAN2, we train
with equalized learning rates for the trainable parameters and a minibatch standard deviation layer at
the end of the discriminator [11] and apply an exponential moving average of the generator weights.
For faster training, we use mixed-precision for both the generator and the discriminator as proposed in
[12]. Unlike [14], we do not train with path regularization or style-mixing. To reduce computational
cost and overall memory usage R1-regularization [15] is applied only once every 4 minibatches. We
use a regularization strength of γ = 1 for all datasets. Due to the small size of AFHQ, we follow [12]
and finetune a generator that is pretrained on FFHQ with RI = 128 and RG = 32, i.e., before the
representation is pruned.
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Figure 1: Background disentanglement. We show generated images at resolution 2562 for
FFHQ [14] and AFHQ [5] with truncation ψ = 0.7.

2 Baselines

Qualitative Results We provide qualitative results for StyleNeRF [7] and GRAM [6] in both the main
paper and the supplemental material. For StyleNeRF, we obtain samples from the pretrained FFHQ
model available at https://github.com/facebookresearch/StyleNeRF.git. For GRAM, its authors kindly
provided unpublished code and pretrained models which we use for evaluation. In the qualitative
comparisons, i.e., Fig. 4 of the main paper and Fig. 3, we use a truncation of ψ = 0.7 for all methods.
For GRAM and our approach, we show samples from −40◦ to +40◦ which roughly corresponds to
2 standard deviations of the pose distribution. We find that StyleNeRF does not necessarily adhere
to the input pose. Hence, we manually define the range to be −60◦ to +60◦ such that the rendered
images roughly align with the other methods.

Quantitative Results Table 2 of the main paper shows a quantitative comparison for all baselines
and our method in terms of FID. For EG3D [3] and GIRAFFE [16], we report the numbers from [3].
For StyleNeRF [7], we take the numbers from [7]. From [7] we further reference the results on FFHQ
and AFHQ for GRAF [20] and π-GAN [4] as these datasets were not considered in the original
publications. On Carla, we report the results from [20] and [4], respectively. For GOF [21], we
reference the numbers from [21] on Carla and train new models to obtain results on FFHQ and AFHQ
using the official code release available at https://github.com/SheldonTsui/GOF_NeurIPS2021.git.
For GRAM [6], we report the results from [6] for FFHQ. As AFHQ is not considered in [6], we train
GRAM on AFHQ using their unpublished code. Similar to our approach, we finetune a generator that
was pre-trained on FFHQ. We remark that across all reported values for FID the number of generated
image varies where most methods report values considering either 20k or 50k generated images. An
overview is provided in Table 1 which is discussed in more detail at the end of Section 3.

3 Results

Background and Foreground Disentanglement. Fig. 1 illustrates foreground masks, foreground
and background image, and the image after alpha composition. As the background remains fixed
under viewpoint changes, the generator is encouraged to model pose-dependent content with the
foreground generator. The regularization in Eq. (2) and Eq. (3) encourages the generator to use both
the background and the foreground generator to synthesize the full image.

Multi-View Consistency. Corresponding to Fig. 4 of the main paper, we provide additional
qualitative comparisons on multi-view consistency in Fig. 3. For StyleNeRF [7], the red boxes
highlight inconsistencies, like changing eye shape (first row on the left), moving strands of hair
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FFHQ [14] AFHQ [5] Carla [19]
RI = 2562 RI = 2562 RI = 1282

GIRAFFE [17] 31.5† 16.1† –
VolumeGAN [22] 9.1† – 7.9†

StyleNeRF [7] 8.0† – –
EG3D [3] 4.8† 3.9† –
GRAF [19] 71† 121† 41∗1

π-GAN [4] 85† 47† 29.2∗2

GOF [21] 69.2 54.1 29.3
GRAM [6] 17.9 18.5 26.3
VoxGRAF 9.6 / 9.0† 9.6 / 9.4† 6.7 / 6.3†

Table 1: Quantitative Comparison. We report
FID [9] on the full dataset and explicitly annotate
the number of generated images for evaluation.
† denotes 50k generated images, ∗1 denotes 1k
images (GRAF, Carla) and ∗2 denotes 8k images
(π-GAN, Carla). Numbers without annotation
are calculated using 20k generated images.

Figure 2: Failure Cases. Left: Some part of
the background is modeled with the foreground.
Middle: The whiskers are connected to the body
of the cat. Right: The hair is directed inward to
the head.

Lreg w/o LDV w/o LTV w/o Lfg
cvg w/o Lbg

cvg

FID 14.2 14.8 15.1 14.6 14.8

Table 2: Impact of Regularization on FID. We
ablate the performance of all four regularizers
on models trained on FFHQ with RI = 128 and
RG = 64. While the regularizers do not signifi-
cantly impact end-to-end performance measured
in FID, we find that they can be helpful to stabi-
lize training.

Depth ↓ Pose ↓
StyleNeRF [7] – 0.051± 0.047
GRAM [6] 0.48± 0.24 0.013± 0.013
EG3D [3] 0.29± 0.30 0.0018± 0.0031
VoxGRAF 0.33± 0.23 0.00045± 0.00079

Table 3: View-Consistency. We re-implement
the depth and pose metric from [3]. While results
agree with the qualitative evaluation in Fig. 4 of
the main paper, the large standard deviations in-
dicate that both metrics are very sensitive to the
latent code and the sampled poses. Note that for
StyleNeRF depth can only be rendered at resolu-
tion 322 and we thus omit evaluating the Depth
metric for it.

(second row, third row on the left) and distortion of the face shape (first and third row on the right).
For GRAM [6], red boxes indicate layered artifacts stemming from its manifold representation. In
contrast, our method leads to more multi-view consistent results.
We further include a quantitative evaluation on consistency in Table 3. We implemented our own
version of the depth and pose metric following the description in [3] as their evaluation code is not
publicly available. We report the results for our approach, GRAM, StyleNeRF and EG3D for reference.
We also report the standard deviation across the 1024 samples used for evaluation. While the results in
Table 3 agree with our qualitative analysis of view consistency in Fig. 4 and the supplementary video,
we find that both metrics are very sensitive to the latent code and the sampled poses, as indicated by
the large standard deviations. As no established evaluation pipeline exists, our results should not be
directly compared to the numbers in [3] as the implementation and pose sampling might differ.

Pose Conditioning. Fig. 4 illustrates the impact of the pose conditioning on the generated images.
Pose conditioning is not only used to model slight changes, e.g. of the eyes or the smile, but can alter
the general appearance of the generated instance. However, by fixing the pose conditioning during
inference, view-consistent images can be generated.

Regularization. We ablate the effect of regularization in terms of end-to-end performance measured
in FID. Table 2 shows that the regularizers do not significantly change FID. Nonetheless, LDV

speeds up training (see Table 1 of the main paper) and we find the remaining losses to be helpful for
stabilizing training.

Failure Cases. Fig. 2 illustrates failure cases of out method. For some samples, we observe that the
background and the foreground are not disentangled properly. The left column in Fig. 2 shows an
example where the foreground generates parts of the background, as indicated by the red boxes. In
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Figure 3: Qualitative Comparison on Multi-View Consistency. We apply truncation with ψ = 0.7
for all methods.
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Figure 4: Effect of Pose Conditioning. From left to right we vary the pose used for rendering ξ′ and
from top to bottom we vary the pose used for conditioning ξ. All samples are generated using the
same latent z.

turn, the background models the body of the person which should be part of the foreground. Learning
to disentangle background and foreground without direct supervision, e.g., instance masks, is often
ambiguous which makes it a challenging task. The middle column in Fig. 2 displays a common
failure case of our model on AFHQ: The whiskers of the cat are connected to its body. This is likely
a consequence from the depth variance and total variation regularization we apply to obtain a single
sharp surface and compact geometry. The right column in Fig. 2 shows an occasional failure on
FFHQ. For some samples, we observe that the hair is directed inward to the head instead of outward.
In the rendered image this effect is not visible which suggests that it likely results from ambiguity in
the training data.

Uncurated Samples. We provide additional samples of our method for FFHQ [14] in Fig. 5,
AFHQ [5] in Fig. 6, and Carla [19] in Fig. 7.

Quantitative Comparison. As FID is biased towards the number of images [2], we explicitly
annotate the number of generated images for the results reported in Table 2 of the main paper in
Table 1. Most works evaluate FID either using 20k or 50k generated images. We evaluate our method
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for both cases. For our method and the considered datasets, the difference between using 20k or 50k
generated images is reasonably small.

4 Societal Impact

This work considers the task of generating photorealistic renderings of scenes with data-driven
approaches which has potential downstream applications in virtual reality, augmented reality, gaming
and simulation. While many use-cases are possible, we believe that in the long run this line of
research could support designers in creating renderings of 3D models more efficiently. However,
generating photorealistic 3D-scenarios also bears the risk of manipulation, e.g., by creating edited
imagery of real people. Further, like all data-driven approaches, our method is susceptible to biases
in the training data. Such biases can, e.g., result in a lack of diversity for the generated faces and have
to be addressed before using this work for any downstream applications.

7



Figure 5: Uncurated Samples for FFHQ [14]. We use truncation with ψ = 0.7.
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Figure 6: Uncurated Samples for AFHQ [5]. We use truncation with ψ = 0.7.
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Figure 7: Uncurated Samples for Carla [19]. We use truncation with ψ = 0.7.
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