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Abstract

Many high-dimensional statistical inference problems are believed to possess
inherent computational hardness. Various frameworks have been proposed to give
rigorous evidence for such hardness, including lower bounds against restricted
models of computation (such as low-degree functions), as well as methods rooted
in statistical physics that are based on free energy landscapes. This paper aims
to make a rigorous connection between the seemingly different low-degree and
free-energy based approaches. We define a free-energy based criterion for hardness
and formally connect it to the well-established notion of low-degree hardness for a
broad class of statistical problems, namely all Gaussian additive models and certain
models with a sparse planted signal. By leveraging these rigorous connections
we are able to: establish that for Gaussian additive models the “algebraic” notion
of low-degree hardness implies failure of “geometric” local MCMC algorithms,
and provide new low-degree lower bounds for sparse linear regression which seem
difficult to prove directly. These results provide both conceptual insights into the
connections between different notions of hardness, as well as concrete technical
tools such as new methods for proving low-degree lower bounds.

1 Introduction

Many inference problems in high dimensional statistics appear to exhibit an information-computation
gap, wherein at some values of the signal-to-noise ratio, inference is information-theoretically
possible, but no (time-)efficient algorithm is known. Well-known problems that exhibit such gaps
include sparse linear regression, sparse principal component analysis (PCA), tensor PCA, planted
clique, community detection, graph coloring, and many others (we point the reader to the survey
references [ZK16a, BPW18, RSS19, KWB19, Gam21] and references therein for many examples).
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A priori, it is unclear whether such gaps are a symptom of the inherent computational intractability
of these problems, or whether they instead reflect a limitation of our algorithmic ingenuity. One
of the main goals in this field is to provide, and understand, rigorous evidence for the existence of
an information-computation gap. Indeed, there are several mature tools to establish statistical or
information-theoretic lower bounds, and these often sharply characterize the signal-to-noise ratio
at which inference is possible. We have relatively fewer tools for establishing computational lower
bounds in statistical settings, and the study of such tools is still in its early days. Broadly, there are
three approaches: (i) establishing computational equivalence between suspected-to-be-hard problems
via reductions, (ii) proving lower bounds within restricted models of computation, or in other words,
ruling out families of known algorithms, and (iii) characterizing geometric properties of the problem
that tend to correspond to computational hardness, often by studying a corresponding energy or
free energy landscape of the posterior distribution of the signal given the data, and establishing the
existence of ‘large barriers’ in this landscape. In some cases it can be rigorously shown that these
properties impede the success of certain families of algorithms (notable examples include the work of
Jerrum [Jer92] and Gamarnik and Sudan [GS17]; see also references therein for other instances).

These complementary approaches give us a richer understanding of the computational landscape of
high-dimensional statistical inference. Reductions contribute to establishing equivalence classes of
(conjectured hard) problems, and lower bounds against restricted models, or characterizations of the
problem geometry, give concrete evidence for computational hardness within the current limits of
known algorithms. There have been considerable recent advances in this context (see for example
[BB20], the surveys [ZK16a, BPW18, RSS19, KWB19, Gam21], and references therein). One
particularly exciting direction, which is the topic of this paper, is the pursuit of rigorous connections
between different computational lower bound approaches. For instance, a recent result shows (under
mild assumptions) that lower bounds against statistical query algorithms and low-degree polynomials
are essentially equivalent [BBH+20]. Results of this type help to unify our understanding about
what makes problems hard. Following the work of [BHK+19, HKP+17, HS17] in the context
of the sum-of-squares hierarchy of algorithms, a conjecture was made that there is a large and
easy-to-characterize universality class of intractable problems [Hop18]: those for which low-degree
statistics cannot distinguish data with a planted signal from (suitably defined) random noise. These
problems are “hard for the low-degree likelihood ratio” or “low-degree hard,” which we will define
precisely below. Many problems mentioned above fall into this class precisely in the regime of their
information-computation gaps.

Another successful approach to understand computational hardness of statistical problems borrows
tools from statistical physics: tools such as the cavity method and replica method can be used to make
remarkably precise predictions of both statistical and computational thresholds, essentially by studying
properties of free energy potentials associated to the problem in question, or by studying related
iterative algorithms such as belief propagation or approximate message passing (see e.g. [DKMZ11,
LKZ15a, LKZ15b, DMK+16]) – the type of “free energy barrier” encountered in these potentials
that is (heuristically) suggested to lead to computational hardness also often has an appealing
interpretation as a barrier to algorithms based on Markov chain Monte Carlo methods. However, the
physics approaches are not without drawbacks, chief among them (for us) that it is notoriously difficult
to pin down with mathematical rigor just what the free energy potentials (certain one-dimensional
curves) in question are, or precisely what properties of them are meant to predict computational
hardness. Furthermore, it is clear that some versions of the “physics recipe” can make erroneous
predictions (for instance, in the case of the tensor PCA problem), and can require seemingly problem-
specific modifications to be redeemed [RM14, LML+17, BGJ20, WEM19, BCRT20, GZ19]. This
has made it challenging to push any mathematical account of the physics approach to predicting
computational hardness beyond a one-problem-at-a-time theory.

Main Contributions A tantalizing question and a step towards a rigorous free-energy based theory
of statistical hardness is whether some free-energy based criterion is actually rigorously connected
with low-degree hardness. This paper aims to achieve exactly this: to make a rigorous connection
between the low-degree and free-energy based approaches in the setting of statistical inference. (We
note that this setting differs from that of random optimization problems with no planted signal,
where a connection of this nature has already been established [GJW20, Wei22, BH21].) Our first
contribution is a formal definition of a free-energy based criterion for computational hardness, the
Franz–Parisi criterion (Definition 3.2) inspired by the so-called Franz–Parisi potential [FP95]. We
formally connect this criterion to low-degree hardness for a broad class of statistical problems,
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namely all Gaussian additive models (Theorems 4.3 and 4.4) and certain sparse planted models
(e.g. Theorem 6.2). By leveraging these rigorous connections we are able to (i) establish that in the
context of Gaussian additive models, low-degree hardness implies failure of local MCMC algorithms
(Corollary 5.4), and (ii) provide new low-degree lower bounds for sparse linear regression which seem
difficult to prove directly (Theorem 6.2). In the supplementary material, we also investigate whether
the Franz–Parisi criterion, as we defined it, is accurate beyond Gaussian Additive Models, and find,
with counterexamples, that it can make erroneous predictions in simple discrete settings. We thus
leave as an exciting future direction the problem of determining its precise domain of applicability,
and investigating what other free-energy based criteria may be more suitable in other inference
problems.

2 Preliminaries

We will focus on problems in which there is a signal vector of interest u ∈ Rn, drawn from a prior
distribution µ over such signals, and the data observed is a sample from a distribution Pu on RN that
depends on the signal u. We focus mainly on hypothesis testing: we are given a sample generated
either from the “planted” distribution P = Eu∼µPu (a mixture model were the data is drawn from Pu
for a random u ∼ µ) or from a “null” reference distribution Q representing pure noise, and the goal is
to decide whether it is more likely that the sample came from P or Q. While not our main focus, we
note that in the section on MCMC hardness we do also discuss the related task of estimation/recovery:
given a sample from Pu with the promise that u ∼ µ, the goal is to estimate u (different estimation
error targets correspond to different versions of this problem, often referred to weak/approximate
recovery or exact recovery). We now begin with the formal definitions.
Problem 2.1 (High Dimensional Inference: Hypothesis Testing). Given positive integers n,N , and
distributions µ on Rn, and Pu on RN for each u ∈ supp(µ), the goal is to perform simple hypothesis
testing between the Null model H0 : Y ∼ Q and the Planted model H1 : Y ∼ P = Eu∼µ Pu.

We will be especially interested in asymptotic settings where n→∞ and the other parameters scale
with n in some prescribed way: N = Nn, µ = µn, P = Pn, Q = Qn. In this setting, we focus on
the following two objectives.
Definition 2.2 (Strong/Weak Detection). Strong detection is achieved if the sum of type I and type II
errors1 tends to 0 as n→∞. Weak detection is achieved if the sum of type I and type II errors is at
most 1− ε for some fixed ε > 0 (not depending on n).

Throughout, we will work in the Hilbert space L2(Q) of (square integrable) functions RN → R
with inner product 〈f, g〉Q := EY∼Q[f(Y )g(Y )] and corresponding norm ‖f‖Q := 〈f, f〉1/2Q . For
a function f : RN → R and integer D ∈ N, we let f≤D denote the orthogonal (w.r.t. 〈·, ·〉Q)
projection of f onto the subspace of polynomials of degree ≤ D. We assume that Pu is absolutely
continuous w.r.t. Q for all u ∈ supp(µ), use Lu := dPu

dQ to denote the likelihood ratio, and assume
that Lu ∈ L2(Q) for all u ∈ supp(µ). L := dP

dQ = Eu∼µLu is the likelihood ratio of P and Q.

2.1 (Low-degree) Likelihood Ratio and Computational Complexity of Inference

A key quantity of interest is the (squared) norm of the likelihood ratio, which is related to the chi-
squared divergence χ2(P ‖Q) as ‖L‖2Q = χ2(P ‖Q) + 1. If this quantity is asymptotically bounded
(by O(1) or 1 + o(1)), there are well-known consequences for information-theoretic impossibility
of testing (impossibility of strong and weak detection, respectively); see [MRZ15, Lemma 2]. The
low-degree likelihood ratio, L≤D, which recall means the projection of the likelihood ratio onto
the subspace of degree-D polynomials, has been studied intensively in recent years as a means to
“predict” computational complexity of high-dimensional testing problems (see [Hop18, KWB19]).
Definition 2.3 (Low-Degree Likelihood Ratio). Define the squared norm of the degree-D likelihood
ratio (also called the “low-degree likelihood ratio”) to be the quantity

LD(D) := ‖L≤D‖2Q =

∥∥∥∥∥
(

E
u∼µ

Lu

)≤D∥∥∥∥∥
2

Q

= E
u,v∼µ

[
〈L≤Du , L≤Dv 〉Q

]
, (1)

1Type I error is the probability of outputting “P” when given a sample from Q. Type II error is the probability
of outputting “Q” when given a sample from P.
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where the last equality follows from linearity of the projection operator, and where u, v are drawn
independently from µ. For some increasing sequence D = Dn, we say that the hypothesis testing
problem above is hard for the degree-D likelihood or simply low-degree hard if LD(D) = O(1).

Heuristically speaking, the interpretation of LD(D) should be thought of as analogous to that of ‖L‖2Q
but for computationally-bounded tests: if LD(D) = O(1) (or 1 + o(1)) this suggests computational
hardness of strong (or weak, respectively) detection. The parameter D = Dn should be loosely
thought of as a proxy for the runtime allowed for our testing algorithm, where D = O(log n)
corresponds to polynomial time and more generally, larger values of D correspond to runtime
exp(Θ̃(D)) where Θ̃ hides factors of log n. See supplementary material for further discussion of the
relationship between low-degree hardness and hardness against other classes of algorithms.

3 The Franz Parisi criterion

We define a predictor of computational hardness, which we call the Franz–Parisi criterion. It is
inspired by well-established ideas rooted in statistical physics, which we discuss further below and
in the supplement. However, the precise definition we use here has not appeared before (to our
knowledge). Throughout this paper we will argue for the significance of this criterion in a number of
ways: its conceptual link to physics, its provable equivalence to the low-degree criterion for Gaussian
additive models, its formal connection to MCMC methods for Gaussian additive models (Section 5),
and its usefulness as a tool for proving low-degree lower bounds (Section 6).

Definition 3.1 (Low-Overlap Likelihood Norm). We define the low-overlap likelihood norm at
overlap δ ≥ 0 as

LO(δ) := E
u,v∼µ

[
1|〈u,v〉|≤δ · 〈Lu, Lv〉Q

]
, (2)

where u, v are drawn independently from µ.

Definition 3.2 (Franz–Parisi Criterion). We define the Franz–Parisi Criterion at D deviations to be
the quantity

FP(D) := LO(δ), for δ = δ(D) := sup {ε ≥ 0 s.t. Pr
u,v∼µ

(|〈u, v〉| ≥ ε) ≥ e−D}. (3)

For some increasing sequence D = Dn, a problem is FP-hard at D deviations if FP(D) = O(1).

Heuristically speaking, FP(D) should be thought of as having a similar interpretation as LD(D): if
FP(D) = O(1) this suggests hardness of strong detection, and if FP(D) = 1 + o(1) this suggests
hardness of weak detection. The parameter D is a proxy for runtime and corresponds to the parameter
D in LD(D), as we justify below.

We remark that LD(D) and FP(D) can be thought of as different ways of “restricting” the quantity

‖L‖2Q = E
u,v∼µ

[〈Lu, Lv〉Q] , (4)

which, recall, is related to information-theoretic impossibility of testing. For LD, the restriction is
low-degree projection on each Lu, while for FP it excludes pairs (u, v) of high overlap. Our results
will show that (in some settings) these two restrictions are nearly equivalent.

Relation to statistical physics We defer to supplementary material an extended discussion of the
relationship between the Franz–Parisi criterion and ideas from statistical physics. See also [MM09,
ZK16b] for exposition on the well-explored connections between statistical physics and Bayesian
inference. Roughly speaking, the logarithm of LO(δ) is the ‘annealed’ approximation near δ = 0
of the Franz–Parisi potential [FP95]; a tool used to study the free energy landscape of a disordered
system locally around a reference configuration at equilibrium. In our statistical context this potential
takes the form

f(δ) = Eu∼µEY∼Pu logEv∼µ
[
1〈u,v〉=δ Lv(Y )

]
.

Roughly speaking, f(δ) measures the amount of mass that the posterior distribution places on vectors
of overlap δ with the true signal. Jensen’s inequality leads to the upper bound f(δ) ≤ f ann(δ) :=
logEu,v∼µ

[
1〈u,v〉=δ 〈Lu, Lv〉Q

]
, which we call the annealed FP potential, c.f. LO(δ), Eq. (2).
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For inference problems which are information-theoretically solvable, most of the mass of the posterior
distribution of v |Y , when Y ∼ Pu is concentrated on those v with large 〈u, v〉. But to predict
computational complexity, the Franz–Parisi criterion stipulates that it is the contributions of v with
|〈u, v〉| ≤ δ for small values of δ which matter: when such v contribute noticeably, LO(δ) is large
and hence so is FP(D).

The FP criterion, Definition 3.2, is whether FP(D) stays bounded or diverges as n → ∞ for
some choice of an increasing sequence D = Dn. A heuristic justification of this criterion is as
follows: We should first note that since Lu ≥ 0, we have FP(D) ≤ ‖L‖2Q. Thus if ‖L‖Q → ∞
but FP(D) = O(1), then the divergence of ‖L‖Q must be due to contributions to the sum Eq. (4)
with high overlap values: |〈u, v〉| � δ(D). Suppose now there is a free energy barrier separating
small overlaps |〈u, v〉| ≤ δ(D) from larger ones |〈u, v〉| � δ(D). For instance, suppose 〈u, v〉 = 0
is a local maximum of the potential, separated by a barrier from a global maximum located at
〈u, v〉 � δ(D) (see Fig. 1, Panel (b)), then one needs much more than eO(D) samples to guess an
overlap value on the other side of the barrier and land in the basin of attraction of the global maximum.
This suggests that tests distinguishing P and Q cannot be constructed in time eO(D). One of our
main results (see Section 4) is an equivalence relation between the FP(D) criterion and the LD(D′)

criterion for Gaussian models, where D′ = Θ̃(D), therefore grounding this heuristic in a rigorous
statement.

Example: The spiked Wigner model As a concrete example, let us consider the spiked Wigner
model with sparse Rademacher prior: The signal vector u has i.i.d. entries drawn from a three-point
prior µ0 = ρ

2δ+1/
√
ρ+(1−ρ)δ0+ρ

2δ−1/
√
ρ, and for 1 ≤ i ≤ j ≤ nwe let Yij = λ√

n
uiuj+Zij , where

Z is drawn from the Gaussian Orthogonal Ensemble: Zij ∼ N(0, 1) for i < j and Zii ∼ N(0, 2).
The null distribution is pure Gaussian noise: Y = Z. In this case, known efficient algorithms succeed
at detecting/estimating the signal u if and only if λ > 1 [BGN11, LM19, CL19]. Furthermore, the
threshold λALG = 1 is information-theoretically tight when ρ = 1 (or more generally, if ρ is larger
than a known absolute constant). On the other hand if ρ is small enough, then detection becomes
information-theoretically possible for some λ < 1 but no known polynomial-time algorithm succeeds
in the regime [BMV+17, PWBM18, AKJ20]. Let us check that the behavior of the annealed potential
is qualitatively consistent with these facts. A small computation (see Section 4) leads to the expression

〈Lu, Lv〉Q = exp

(
λ2

2n
〈u, v〉2

)
,

and the annealed FP potential is

f ann(k/ρ) = log Pr
(
〈u, v〉 = k/ρ

)
+
λ2k2

2nρ2
.

Letting k = bnxc, and using Stirling’s formula, we obtain a variational formula for the annealed FP
potential: f ann(bnxc/ρ) = nφ(x) + o(n) where

φ(x) = max
p

{
h(p) + (1− p0) log(ρ2/2) + p0 log(1− ρ2)

}
+
λ2x2

2ρ2
, x ∈ [−1, 1] . (5)

The max is over probability vectors p = (p−1, p0, p1) satisfying p1 − p−1 = x, and h(p) =
−p−1 log p−1 − p0 log p0 − p1 log p1. It is not difficult to check that φ(0) = φ′(0) = 0, and
φ′′(0) = (λ2 − 1)/ρ2. Hence when λ < λALG = 1, f ann is negative for all |x| ≤ ε for some
ε = ε(λ, ρ) (Fig 1, Panels (a), (b)). This indicates that FP(D) is bounded for D ≤ c(ε)n. On the
other hand, if λ > 1, f ann > 0 over [−ε, ε] for some ε > 0, which indicates that FP(D) → ∞ for
D = Dn →∞ slowly (Panel (c)). One can also look at the global behavior of f ann, which we plot in
Figure 1. Panel (b) represents a scenario where x = 0 is a local maximum separated from the two
symmetric global maxima by a barrier, while in panels (a) and (c), no such barrier exists.

Differences to prior physical hardness criteria Our FP criterion is conceptually similar to ideas
that have appeared before in statistical physics, but there are a few key differences. While free energy
barriers are typically thought of as an obstruction to algorithmic recovery, our criterion—due to its
connection with ‖L‖2Q—is instead designed for the detection problem. As such, we do not expect the
annealed FP to make sharp predictions about estimation error (e.g. MMSE) like approaches based on
approximate message passing (AMP), e.g. [DMM09, LKZ15a, LKZ15b, DMK+16]. (For instance,
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Figure 1: The annealed FP potential, Eq. (5), for various value of λ and ρ. Panel (a): A global
maximum at x = 0. Panel (b): Local maximum at x = 0 separated from two global maxima by a
‘barrier’. Panel (c): A local minimum at x = 0.

Figure 1, Panel (b) wrongly predicts that estimation is ‘possible but hard’ for λ = 0.9, ρ = 0.4, when
it is in fact information-theoretically impossible [LM19].) On the other hand, one advantage of our
criterion is that, by virtue of its connection to LD in Section 4, it predicts the correct computational
threshold2 for tensor PCA (matching the best known poly-time algorithms), whereas existing methods
based on AMP or free energy barriers capture a different threshold [RM14, LML+17, BGJ20] (see
also [WEM19, BCRT20] for other ways to “redeem” the physics approach).

One-sidedness of hardness criteria Finally, we note that the quantities ‖L‖2Q, LD(D), FP(D)
should be thought of primarily as lower bounds that imply/suggest impossibility or hardness. If one
of these quantities does not remain bounded as n→∞, it does not necessarily mean the problem
is possible/tractable. We will revisit this issue again in Section 6, where a conditional low-degree
calculation will be used to prove hardness even though the standard LD blows up (akin to the
conditional versions of ‖L‖2Q that are commonly used to prove information-theoretic lower bounds,
e.g. [BMNN16, BMV+17, PWB16, PWBM18]).

4 The Gaussian Additive Model

We will for now focus on a particular class of estimation models, the so called Gaussian additive
models. The distribution Pu describes an observation of the form

Y = λu+ Z (6)

where λ ≥ 0 is the signal-to-noise ratio, u ∼ µ is the signal of interest drawn from some distribution
µ on RN , and Z ∼ N (0, IN ) is standard Gaussian noise (independent from u). In recovery, the goal
is to recover u, or more precisely to compute an estimator û(Y ) that correlates with u. We note that
in principle, λ could be absorbed into the norm of u, but it will be convenient for us to keep λ explicit
because some of our results will involve perturbing λ slightly. We focus on the hypothesis testing
version of this question, where the goal is to distinguish a sample (6) from a standard Gaussian vector.
Definition 4.1 (Gaussian Additive Model: Hypothesis Testing). Given N a positive integer, λ ≥ 0,
and µ a distribution on RN with all moments finite, let Z ∼ N (0, I) and u ∼ µ; then hypothesis
testing in the Gaussian additive model consists of performing a simple hypothesis test between

H0 Q : Y = Z and H1 P : Y = λu+ Z .

We are interested in understanding, as N = Nn → ∞, for which prior distributions µ = µn and
SNR levels λ = λn it is possible to computationally efficiently distinguish a sample from P from a
sample from Q (in the sense of strong or weak detection; see Definition 2.2). As in Section 2 we use
Pu to denote the distribution N (λu, I), and write Lu = dPu

dQ .

A number of classical inference tasks are captured by the Gaussian additive model, and bounds on
LD(D) are known for many of them [HKP+17, KWB19, DKWB19, BBK+21], including matrix
and tensor PCA.
Example 4.2 (Matrix and Tensor PCA). In the matrix PCA case, we take N = n2 and u = x⊗2,
where x is for instance drawn with i.i.d. coordinates from some prior µ0. In the tensor case, we take
N = np and u = x⊗p, with x drawn uniformly from the sphere Sn−1.

2The detection and recovery thresholds are the same in this case.
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FP-LD Equivalence The following two theorems show that in the Gaussian additive model, FP
and LD are equivalent up to logarithmic factors in D and 1 + ε factors in λ. Recall the notation
LD(D) and FP(D) from (1) and (3), here also with a dependency on the SNR λ.
Theorem 4.3 (FP-hard implies LD-hard). Assume the Gaussian additive model (Definition 4.1) and
suppose ‖u‖2 ≤M for all u ∈ supp(µ), for some M > 0. Then for any λ ≥ 0 and any odd integer
D ≥ 1, LD(D,λ) ≤ FP(D̃, λ) + e−D, where D̃ := D · (2 + log(1 + λ2M)).

We give the proof in the supplement. We are primarily interested in the regime D = ω(1), where we
have shown that LD can only exceed FP by an additive o(1) term. We have lost logarithmic factors in
passing from D to D̃. For many applications, these log factors are not an issue because (in the “hard”
regime) FP is bounded for some D = NΩ(1) while λ,M are polynomial in N .
Theorem 4.4 (LD-hard implies FP-hard). Assume the Gaussian additive model (Definition 4.1). For
all ε ∈ (0, 1) there exists D0 = D0(ε) > 0 such that for any λ ≥ 0 and any even integer D ≥ D0, if

LD(D, (1 + ε)λ) ≤ (1 + ε)D/(eD) then FP(D,λ) ≤ LD(D, (1 + ε)λ) + ε. (7)

The proof, together with proofs for various corollaries, can be found in the supplementary material.
In the asymptotic regime of primary interest, we have the following consequence.
Corollary 4.5. Fix any constant ε′ > 0 and suppose D = Dn, λ = λn, N = Nn, and µ = µn
are such that D is an even integer, D = ω(1), and LD(D, (1 + ε′)λ) = O(1). Then FP(D,λ) ≤
LD(D, (1 + ε′)λ) + o(1).

Remark 4.6. Above, we have taken the liberty to assume D has a particular parity for convenience.
Since FP and LD are both monotone in D, one can readily deduce similar results for all integers D.

5 FP-Hard Implies MCMC-Hard

In this section we show that in the Gaussian additive model, if FP is uniformly bounded then a
natural class of local Markov chain Monte Carlo (MCMC) methods fail to recover the planted signal.
Combining this with the results of the previous section, we also find that low-degree hardness, an
impossibility result for polynomial (“algebraic”) methods, implies MCMC-hardness, which is the
failure of “geometric” methods. To the best of our knowledge this is the first time such a direct
implication is established for any planted model. Note also that such a result is interesting as low-
degree hardness is in principle an impossibility result for detection, while MCMC-hardness is a
failure of some MCMC methods to perform estimation. We remark that the result of this section is
similar in spirit to [BAJ18], which relates a version of annealed FP to the spectral gap for Langevin
dynamics (albeit in a setting with no planted solution).

We again restrict our attention to the additive Gaussian model, now with the additional assumption
that the prior µ is uniform on some finite set S ⊆ RN with transitive symmetry, defined as follows.
Definition 5.1. We say S ⊆ RN has transitive symmetry if for any u, v ∈ S there exists an orthogonal
matrix R ∈ O(N) such that Ru = v and RS = S.

The assumption that S is finite is not too restrictive because one can approximate any continuous prior
to arbitrary accuracy by a discrete set (see the supplementary material for more details on that). Note
that transitive symmetry implies that every u ∈ S has the same 2-norm. Without loss of generality
we will assume this 2-norm is 1, i.e., S is a subset of the unit sphere SN−1.

Given an observation Y = λu + Z from the Gaussian additive model (with µ uniform on a finite,
transitive-symmetric set S ⊆ SN−1), consider the associated Gibbs measure νβ on S defined by

νβ(v) =
1

Zβ
exp(−βH(v)) (8)

where β ≥ 0 is an inverse-temperature parameter (i.e., 1/β is the temperature),H(v) = −〈v, Y 〉
is the Hamiltonian, and Zβ =

∑
v∈S exp(−βH(v)) is the partition function. When β = λ (the

“Bayesian temperature”), the Gibbs measure νβ is precisely the posterior distribution for the signal u
given the observation Y = λu+ Z.

We consider an arbitrary Markov chain X0, X1, X2, . . . on state space S with stationary distribution
νβ (for some β), i.e., if Xt ∼ νβ then Xt+1 ∼ νβ . We will assume a worst-case initial state, which
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may depend adversarially on Y . We are interested in hitting time lower bounds, showing that such a
Markov chain will take many steps before finding a “good” state that is close to the true signal u.

The core idea of our argument is to establish a free energy barrier, that is, a subset B ⊆ S of small
Gibbs mass that separates the initial state from the “good” states. Such a barrier is well-known to
imply a lower bound for the hitting time of the “good” states using conductance; see e.g. [LP17,
Theorem 7.4]. This is formalized in the proposition below.
Proposition 5.2 (Free Energy Barrier Implies Hitting Time Lower Bound). Suppose X0, X1, X2, . . .
is a Markov chain on a finite state space S, with some stationary distribution ν. Let A and B be two
disjoint subsets of S and define the hitting time τB := inf{t ∈ N : Xt ∈ B}. If the initial state X0 is
drawn from the conditional distribution ν|A, then for any t ∈ N, Pr(τB ≤ t) ≤ t · ν(B)

ν(A) . In particular,

for any t ∈ N there exists a v ∈ A s.t. if X0 = v deterministically, then Pr(τB ≤ t) ≤ t · ν(B)
ν(A) .

We will need to impose some “locality” on our Markov chain so that it cannot jump from A to a
good state without first visiting B. We say a Markov chain on a finite state space S ⊆ SN−1 is
∆-local if for every possible transition v → v′ we have ‖v − v′‖2 ≤ ∆. We note that the use of
local Markov chains is well motivated and preferred in theory and practice for the, in principle, low
computation time for implementing a single step. For this reason, in most (discrete-state) cases the
locality parameter ∆ > 0 is tuned so that the ∆-neighborhood of each point is at most of polynomial
size; see e.g. [Jer92, BWZ20, GZ19, CMZ22].

We now state the core result of this section, followed by various corollaries. (See the supplementary
material for a slightly more general result and for the proof). The proof is based on an free energy
barrier argument used in [BGJ20] which relies on rotational invariance of the Gaussian distribution.
Theorem 5.3 (FP-Hard Implies Free Energy Barrier). Let µ be the uniform measure on S, where
S ⊆ SN−1 is a finite, transitive-symmetric set. The following holds for any ε ∈ (0, 1/2), D ≥ 2,
λ ≥ 0, and β ≥ 0. Fix a ground-truth signal u ∈ S and let Y = λu+Z with Z ∼ N (0, IN ). Define
δ = δ(D) as in (3). Let A = {v ∈ S : |〈u, v〉| ≤ δ} and B = {v ∈ S : 〈u, v〉 ∈ (δ, (1 + ε)δ]}.
With probability at least 1 − e−εD over Z, the Gibbs measure (8) associated to Y satisfies that
νβ(B)
νβ(A) ≤ 2

(
2 · FP(D + log 2, λ̃)

)1−2ε

e−εD where λ̃ :=
√
βλ · 2+ε

1−2ε .

As mentioned above, one particularly natural choice of β is the Bayesian temperature λ (which
corresponds to sampling from the posterior distribution). By combining Proposition 5.2 and Theo-
rem 5.3 we conclude that FP-hard implies that the hitting time grows exponential with D, which we
simply refer to as “MCMC-hard”. Combinining now this result with the FP and LD equivalence part
described in Corollary 4.5, we conclude also that LD-hard implies MCMC-hard.
Corollary 5.4 (FP-Hard (and LD-hard) Implies Hitting Time Lower Bound). In the setting of
Theorem 5.3, suppose X0, X1, X2, . . . is a ∆-local Markov chain with state space S and stationary
distribution νβ , for some ∆ ≤ εδ. Define the hitting time τ := inf{t ∈ N : 〈u,Xt〉 > δ}. With
probability at least 1−e−εD over Z, there exists a state v ∈ A such that for the initializationX0 = v,
with probability at least 1− e−εD/2 over the Markov chain,

τ ≥ eεD/2

2
(

2 · FP(D + log 2, λ̃)
)1−2ε .

If furthermore D = Dn is a sequence with D = ω(1) such that D + log 2 is an even integer
LD(D + log 2, (1 + ε)λ̃) ≤ B for a constant B > 0, then there is a constant C = C(B, ε) > 0 for
which τ ≥ C(B, ε)eεD/2.

We note that Corollary 5.4 applies for all ∆ ≤ εδ(D). For various models of interest, we note
that the range ∆ ≤ εδ(D) for the locality parameter ∆ contains the “reasonable” range of values
where the ∆-neighborhoods are of polynomial size. For example, let us focus on the well-studied
tensor PCA setting with a Rademacher signal and even tensor power, that is S = {u = x⊗2p : x ∈
{−n−p, n−p}n}. Then for any D > 0 and any ε > 0, we have εδ(D) = Ω(n−p) and therefore the
εδ(D)-neighborhood of any point u = x⊗2p ∈ S, contains all nω(1) points u = y⊗2p ∈ S where y
has any Hamming distance o(

√
n) from x.

Remark 5.5. We note that the original work of [BGJ20], on which the proof of Theorem 5.3 is
based, showed failure of MCMC methods in a strictly larger (by a power of n) range of λ than the
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low-degree-hard regime for the tensor PCA problem. In contrast, our MCMC lower bound uses
the same argument but matches the low-degree threshold (at the Bayesian temperature). This is
because [BGJ20] only considers temperatures that are well above the Bayesian one: in their notation,
their result is for constant β whereas the Bayesian β grows with n.

6 Sparse Linear Regression

In this section we prove sharp low-degree lower bounds for the hypothesis testing version of a
classical inference problem: sparse linear regression. This is significant for a number of reasons:
(i) we uncover a new computational phase transition in sparse regression, (ii) our proof involves
upper-bounding LD in terms of FP, illustrating that an FP-to-LD connection can be achieved outside
the Gaussian additive model, and (iii) the proof requires a first-of-its-kind conditional low-degree
calculation which seems difficult to carry out directly without using FP, illustrating that FP can be a
powerful tool for proving low-degree lower bounds. We consider the following detection task.
Definition 6.1 (Sparse Linear Regression: Hypothesis Testing). Given a sample size m ∈ N, feature
size n ∈ N, sparsity level k ∈ N with k ≤ n and noise level σ > 0, we consider hypothesis testing
between the following two distributions over (X,Y ) ∈ Rm×n × Rm.

• Q generates a pair (X,Y ) where both X and Y have i.i.d. N (0, 1) entries.

• P generates a pair (X,Y ) as follows. First X is drawn with i.i.d. N (0, 1) entries. Then, for
a planted signal u ∈ {0, 1}n drawn uniformly from all binary vectors of sparsity exactly
k, and independent noise W ∼ N (0, σ2Im), we set Y = (k + σ2)−1/2(Xu + W ). This
normalization ensures Y ∼ N (0, Im).

In the following result, we provide rigorous “low-degree evidence” (and a matching upper bound) for
the precise threshold separating the “easy” and “hard” regimes.
Theorem 6.2. For θ ∈ (0, 1), define

RLD(θ) = 2(1−
√
θ)

1+
√
θ
· 1[0 < θ < 1

4 ] + 1−2θ
1−θ · 1[ 1

4 ≤ θ <
1
2 ]. (9)

Consider sparse linear regression (Definition 6.1) in the following scaling regime: for fixed constants
θ ∈ (0, 1) and R > 0, take n→∞ with k = nθ+o(1), σ2 = o(k), and m = (1 + o(1))Rk log(n/k).

(a) (Hard regime) If R < RLD(θ) then no degree-o(k) polynomial f : Rm(n+1) → R achieves
the following notion of “strong separation”:√

max{VarQ[f ],VarP[f ]} = o (|EP[f ]− EQ[f ]|) . (10)

(b) (Easy regime) If R > RLD(θ) then there is a polynomial-time algorithm for strong detection
between P and Q (see Definition 2.2).

In line with existing low-degree lower bounds in the literature, the notion of strong separation ruled out
in part (a) is a natural notion of success for polynomial-based tests: by Chebyshev’s inequality, (10)
implies that strong detection is possible by thresholding f . Part (a) is interpreted as evidence that
when R < RLD(θ), strong detection requires runtime exp(Ω̃(k)). This is tight, matching the runtime
of a brute-force search algorithm, which succeeds for any constants θ ∈ (0, 1) and R > 0 (i.e., the
problem is always information-theoretically possible in our regime) [RXZ21].

The algorithm that gives the matching upper bound in part (b) is fairly simple but somewhat subtle:
letting Xj denote the jth column of X , the idea is to count the number of indices j ∈ [n] for which
〈Xj , Y 〉/‖Y ‖2 exceeds a particular (carefully chosen) threshold, and then threshold this count.

We note that prior work has also considered the related task of recovering u, given (X,Y ) ∼ P
(e.g. [Wai09, DT10, GZ22, RXZ19, RXZ21]). Our result gives evidence that the existing algorithms
for recovery cannot be improved in the regime θ ↓ 0. See the supplement for further discussion.

Proof techniques and beyond sparse regression Proving the sharp low-degree lower bound in
the regime θ < 1/4 requires a conditional low-degree calculation: instead of bounding LD for
testing P versus Q, we bound LD for testing the conditional distribution P|A versus Q, for some
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high-probability event A. This is necessary because the standard LD blows up at a sub-optimal
threshold due to a rare “bad” event under P. Conditioning arguments of this type are common for
information-theoretic lower bounds (see e.g. [BMNN16, BMV+17, PWB16, PWBM18]), but this
is (to our knowledge) the first instance where conditioning has been needed for a low-degree lower
bound. We note that [Arp21] gave low-degree lower bounds for sparse regression by analyzing the
standard (non-conditioned) LD, and our result improves the threshold when θ < 1/4 via conditioning.
The standard approach to bounding LD involves direct moment calculations (see e.g. Section 2.4
of [Hop18]), but it seems difficult to carry out our conditional low-degree calculation by this approach.
Instead, we prove that the conditional LD can be upper-bounded by the corresponding conditional FP,
which is more tractable to bound directly. This illustrates that FP can be a powerful tool for proving
low-degree lower bounds that may otherwise be out of reach. As we discuss in the supplement,
the FP-to-LD connection we establish here holds for a broad class of problems with planted sparse
signals, including planted clique, planted dense subgraph, and any sparse generalized linear model.

7 Conclusion

We have introduced the Franz-Parisi criterion and have shown that it implies lower bounds against
local MCMC algorithms and is equivalent to low-degree hardness in Gaussian additive models.
We have also used the FP criterion as a tool to prove new low-degree lower bounds for sparse
regression. This is a first step in relating notions of computational intractability based on free energy
potentials to lower bounds within restricted models of computation, such as the sum-of-squares
hierarchy. A clear question in the wake of our work is whether similar connections can be drawn for
a broader class of planted models. In the supplementary material, we demonstrate that this cannot be
done in a straightforward way, by building counterexamples (namely, certain simple mixtures over
Boolean product measures) where the Franz-Parisi criterion is not consistent with computational
intractability. Nonetheless, given the impressive track-record of accuracy of free-energy based
computational threshold predictions, we believe this to be a shortcoming of our specific criterion,
and the development of one for a more general class of problems is a fascinating direction for future
research.

Acknowledgments and Disclosure of Funding

AEA: Part of this work was done while this author was supported by the Richard M. Karp Fellowship
at the Simons Institute for the Theory of Computing (Program on Probability, Geometry and Compu-
tation in High Dimensions). This author is grateful to Florent Krzakala for introducing him to the
work of Franz and Parisi.
SBH: Parts of this work were done while this author was supported by a Microsoft Research PhD
Fellowship, by a Miller Postdoctoral Fellowship, and by the Microsoft Fellowship at the Simons
Institute for the Theory of Computing.
ASW: Part of this work was done at Georgia Tech, supported by NSF grants CCF-2007443 and
CCF-2106444. Part of this work was done while visiting the Simons Institute for the Theory of
Computing. Part of this work was done while with the Courant Institute at NYU, partially supported
by NSF grant DMS-1712730 and by the Simons Collaboration on Algorithms and Geometry.
IZ: Supported by the Simons-NSF grant DMS-2031883 on the Theoretical Foundations of Deep
Learning and the Vannevar Bush Faculty Fellowship ONR-N00014-20-1-2826. Part of this work
was done while visiting the Simons Institute for the Theory of Computing. Part of this work was
done while with the Center for Data Science at NYU, supported by a Moore-Sloan CDS postdoctoral
fellowship.
The authors thank Cris Moore and the Santa Fe Institute for hosting the 2018 “Santa Fe Workshop on
Limits to Inference in Networks and Noisy Data,” where the initial ideas in this paper were formulated.
The authors thank Aukosh Jagannath and anonymous reviewers for helpful comments on an earlier
version of this work.

References
[AKJ20] Ahmed El Alaoui, Florent Krzakala, and Michael Jordan. Fundamental limits of

detection in the spiked wigner model. The Annals of Statistics, 48(2):863–885, 2020.

10



[Arp21] Gabriel Arpino. Computational hardness of sparse high-dimensional linear regression.
MSc Thesis, ETH Zürich, 2021.

[BAJ18] Gérard Ben Arous and Aukosh Jagannath. Spectral gap estimates in mean field spin
glasses. Communications in Mathematical Physics, 361(1):1–52, 2018.

[BB20] Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps
from secret leakage. In Conference on Learning Theory, pages 648–847. PMLR, 2020.

[BBH+20] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm.
Statistical query algorithms and low-degree tests are almost equivalent. arXiv preprint
arXiv:2009.06107, 2020.

[BBK+21] Afonso S Bandeira, Jess Banks, Dmitriy Kunisky, Christopher Moore, and Alexander S
Wein. Spectral planting and the hardness of refuting cuts, colorability, and communities
in random graphs. In Conference on Learning Theory, pages 410–473. PMLR, 2021.

[BCRT20] Giulio Biroli, Chiara Cammarota, and Federico Ricci-Tersenghi. How to iron out rough
landscapes and get optimal performances: averaged gradient descent and its application
to tensor PCA. Journal of Physics A: Mathematical and Theoretical, 53(17):174003,
2020.

[BGJ20] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Algorithmic thresholds for
tensor PCA. The Annals of Probability, 48(4):2052–2087, 2020.

[BGN11] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors
of finite, low rank perturbations of large random matrices. Advances in Mathematics,
227(1):494–521, 2011.

[BH21] Guy Bresler and Brice Huang. The algorithmic phase transition of random k-SAT for
low degree polynomials. In 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 298–309. IEEE, 2021.

[BHK+19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and
Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique
problem. SIAM Journal on Computing, 48(2):687–735, 2019.

[BMNN16] Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-
theoretic thresholds for community detection in sparse networks. In Conference on
Learning Theory, pages 383–416. PMLR, 2016.

[BMV+17] Jess Banks, Cristopher Moore, Roman Vershynin, Nicolas Verzelen, and Jiaming Xu.
Information-theoretic bounds and phase transitions in clustering, sparse PCA, and
submatrix localization. In IEEE International Symposium on Information Theory (ISIT),
pages 1137–1141. IEEE, 2017.

[BPW18] Afonso S Bandeira, Amelia Perry, and Alexander S Wein. Notes on computational-
to-statistical gaps: predictions using statistical physics. Portugaliae Mathematica,
75(2):159–186, 2018.

[BWZ20] Gérard Ben Arous, Alexander S Wein, and Ilias Zadik. Free energy wells and overlap
gap property in sparse PCA. In Conference on Learning Theory, pages 479–482. PMLR,
2020.

[CL19] Hye Won Chung and Ji Oon Lee. Weak detection of signal in the spiked wigner model.
In International Conference on Machine Learning, pages 1233–1241. PMLR, 2019.

[CMZ22] Zongchen Chen, Elchanan Mossel, and Ilias Zadik. Almost-linear planted cliques elude
the metropolis process. arXiv preprint arXiv:2204.01911, 2022.

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymp-
totic analysis of the stochastic block model for modular networks and its algorithmic
applications. Physical Review E, 84(6):066106, 2011.

11



[DKWB19] Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira.
Subexponential-time algorithms for sparse PCA. arXiv preprint arXiv:1907.11635,
2019.

[DMK+16] Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, Lenka Zdeborová,
et al. Mutual information for symmetric rank-one matrix estimation: A proof of the
replica formula. Advances in Neural Information Processing Systems, 29, 2016.

[DMM09] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for
compressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–
18919, 2009.

[DT10] David L Donoho and Jared Tanner. Counting the faces of randomly-projected hypercubes
and orthants, with applications. Discrete & computational geometry, 43(3):522–541,
2010.

[FP95] Silvio Franz and Giorgio Parisi. Recipes for metastable states in spin glasses. Journal
de Physique I, 5(11):1401–1415, 1995.

[Gam21] David Gamarnik. The overlap gap property: A topological barrier to optimizing over
random structures. Proceedings of the National Academy of Sciences, 118(41), 2021.

[GJW20] David Gamarnik, Aukosh Jagannath, and Alexander S Wein. Low-degree hardness of
random optimization problems. In 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 131–140. IEEE, 2020.

[GS17] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random
graphs. Annals of Probability, 45(4):2353–2376, 2017.

[GZ19] David Gamarnik and Ilias Zadik. The landscape of the planted clique problem: Dense
subgraphs and the overlap gap property, 2019.

[GZ22] David Gamarnik and Ilias Zadik. Sparse high-dimensional linear regression. Estimating
squared error and a phase transition. The Annals of Statistics, 50(2):880–903, 2022.

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil
Schramm, and David Steurer. The power of sum-of-squares for detecting hidden
structures. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 720–731. IEEE, 2017.

[Hop18] Samuel Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis,
Cornell University, 2018.

[HS17] Samuel B Hopkins and David Steurer. Bayesian estimation from few samples: commu-
nity detection and related problems. arXiv preprint arXiv:1710.00264, 2017.

[Jer92] Mark Jerrum. Large cliques elude the metropolis process. Random Structures &
Algorithms, 3(4):347–359, 1992.

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational
hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. arXiv
preprint arXiv:1907.11636, 2019.

[LKZ15a] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. MMSE of probabilistic low-
rank matrix estimation: Universality with respect to the output channel. In 2015 53rd
Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 680–687. IEEE, 2015.

[LKZ15b] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Phase transitions in sparse
PCA. In 2015 IEEE International Symposium on Information Theory (ISIT), pages
1635–1639. IEEE, 2015.

[LM19] Marc Lelarge and Léo Miolane. Fundamental limits of symmetric low-rank matrix
estimation. Probability Theory and Related Fields, 173(3):859–929, 2019.

12



[LML+17] Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, and Lenka Zdeborová.
Statistical and computational phase transitions in spiked tensor estimation. In 2017
IEEE International Symposium on Information Theory (ISIT), pages 511–515. IEEE,
2017.

[LP17] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[MM09] Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford
University Press, 2009.

[MRZ15] Andrea Montanari, Daniel Reichman, and Ofer Zeitouni. On the limitation of spectral
methods: From the gaussian hidden clique problem to rank-one perturbations of gaussian
tensors. Advances in Neural Information Processing Systems, 28, 2015.

[PWB16] Amelia Perry, Alexander S Wein, and Afonso S Bandeira. Statistical limits of spiked
tensor models. arXiv preprint arXiv:1612.07728, 2016.

[PWBM18] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Optimality
and sub-optimality of PCA I: Spiked random matrix models. The Annals of Statistics,
46(5):2416–2451, 2018.

[RM14] Emile Richard and Andrea Montanari. A statistical model for tensor PCA. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[RSS19] Prasad Raghavendra, Tselil Schramm, and David Steurer. High-dimensional estimation
via sum-of-squares proofs. ICM 2018, 2019.

[RXZ19] Galen Reeves, Jiaming Xu, and Ilias Zadik. All-or-nothing phenomena: From single-
letter to high dimensions. In 2019 IEEE 8th International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 654–658. IEEE, 2019.

[RXZ21] Galen Reeves, Jiaming Xu, and Ilias Zadik. The all-or-nothing phenomenon in sparse
linear regression. Mathematical Statistics and Learning, 3(3):259–313, 2021.

[Wai09] Martin J Wainwright. Information-theoretic limits on sparsity recovery in the high-
dimensional and noisy setting. IEEE transactions on information theory, 55(12):5728–
5741, 2009.

[Wei22] Alexander S Wein. Optimal low-degree hardness of maximum independent set. Mathe-
matical Statistics and Learning, 4(3):221–251, 2022.

[WEM19] Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore. The Kikuchi hierarchy
and tensor PCA. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1446–1468. IEEE, 2019.

[ZK16a] L. Zdeborová and F. Krzakala. Statistical physics of inference: Thresholds and algo-
rithms. Advances in Phyisics, 65(5), 2016.

[ZK16b] Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds
and algorithms. Advances in Physics, 65(5):453–552, 2016.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work

is purely theoretical and has no societal impacts.

13



(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In the supplementary

material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	Preliminaries
	(Low-degree) Likelihood Ratio and Computational Complexity of Inference

	The Franz Parisi criterion
	The Gaussian Additive Model
	FP-Hard Implies MCMC-Hard
	Sparse Linear Regression
	Conclusion

