
A Missing privacy proofs

A.1 Proof of Lemma 2.3

We restate the lemma for convenience.
Lemma 2.3. Let M1 : G →M1 be a randomized algorithm that is (ϵ, δ)-DP. Suppose B ⊆ M1

is a set of "bad outcomes" with Pr [M1(G) ∈ B] ≤ δ∗ for any G ∈ G. Further let M2 : G ×
M1 → M2 be a deterministic algorithm such that for every fixed "non-bad" m1 ∈ M1 \ B
we have M2(G,m1) = M2(G

′,m1) for adjacent G,G′ ∈ G. Then the composed mechanism
G ∋ G 7→M2(G,M1(G)) ∈M2 is (ϵ, δ + δ∗)-DP.

The proof is routine:

Proof. Fix G,G′ ∈ G and a set of outcomes S2 ⊆M2. Define

S∗1 := {m1 ∈M1 \B : M2(G,m1) ∈ S2} .
By assumption we have

S∗1 = {m1 ∈M1 \B : M2(G
′,m1) ∈ S2} . (4)

Now we can write

Pr [M2(G,M1(G)) ∈ S2] ≤ Pr [M1(G) ∈ B] + Pr [M1(G) ̸∈ B and M2(G,M1(G)) ∈ S2]

≤ δ∗ + Pr [M1(G) ∈ S∗1]

DP
≤ δ∗ + eϵ · Pr [M1(G

′) ∈ S∗1] + δ

(4)
= δ∗ + eϵ · Pr [M1(G

′) ̸∈ B and M2(G
′,M1(G

′)) ∈ S2] + δ

≤ δ∗ + eϵ · Pr [M2(G
′,M1(G

′)) ∈ S2] + δ .

A.2 Proof of Theorem 4.4

We restate the theorem for convenience.
Theorem 4.4. By a state let us denote the noised-agreement status of all edges in E(G)∪E(G′) and
heavy/light status of all vertices. Under a fixed state, consider Line 4 as a deterministic algorithm
that, given G or G′, outputs the final clustering. Then this clustering does not depend on whether the
input graph is G or G′, except on a set of states that arises with probability at most 3

4δ (when steps
before Line 4 are executed on either of G or G′).

Let us analyze how adding a single edge (x, y) can influence the output of Line 4. Namely, we will
show that it cannot, unless at least one of certain bad events happens. We will list a collection of
these bad events, and then we will upper-bound their probability.

First, if x and y are not in noised agreement, then (x, y) was removed in Line 2 and the two outputs
will be the same. In the remainder we assume that x and y are in noised agreement. Similarly, we can
assume that x, y ∈ H (otherwise they cannot be in noised agreement).

If x and y are both light, then similarly (x, y) will be removed in Line 4 and the two outputs will be
the same.

If x and y are both heavy, then (x, y) will survive in G̃. It will affect the output if and only if
it connects two components that would otherwise not be connected. However, intuitively this is
unlikely, because x and y are heavy and in noised agreement and thus they should have common
neighbors in G̃. Below (Lemma A.3) we will show that if no bad events (also defined below) happen,
then x and y indeed have common neighbors in G̃.

If x is heavy and y is light, then similarly (x, y) will survive in G̃, and it will affect the output if and
only if it connects two components that would otherwise not be connected and that each contain a
heavy vertex. More concretely, we claim that if the outputs are not equal, then y must have a heavy
neighbor z ̸= x (in G̃) that has no common neighbors with x (except possibly y). For otherwise:

15

• if y has a heavy neighbor z ̸= x that does have a common neighbor with x (that is not y),
then x and y are in the same component in G̃ regardless of the presence of (x, y),

• if y has no heavy neighbor except x, then (as light-light edges are removed) y only has at
most x as a neighbor and therefore (x, y) does not influence the output.

Let us call such a neighbor z a bad neighbor. Below (Lemma A.4) we will show that if no bad events
(also defined below) happen, then y has no bad neighbors.

Finally, if x is light and y is heavy: analogous to the previous point. We will require that x have no
bad neighbor, i.e., neighbor z ̸= y that has no common neighbors with y.

Bad events. We start with two helpful definitions.

Definition A.1. We say that a vertex v is TV-light (Truly Very light) if l(v) ≥ (λ+ λ′)d(v), i.e., v
lost a (λ+ λ′)-fraction of its neighbors in Line 2.

Definition A.2. We say that two vertices u, v TV-disagree (Truly Very disagree) if |N(u)△N(v)| ≥
(β + β′)max(d(u), d(v)).

Recall from Section 3 that we can set λ′ = β′ = 0.1.

Our bad events are the following:

1. x and y TV-disagree but are in noised agreement,

2. x is TV-light but is heavy,

3. the same for y,

4. x ∈ H but d(x) < T1,

5. the same for y,

6. for each z ∈ N(y) \ {x, y}:
6a. y and z do not TV-disagree, and z is TV-light but is heavy, (or)
6b. y and z TV-disagree, but are in noised agreement.

7. similarly for each z ∈ N(x) \ {x, y}.

Recall that we can assume that x, y ∈ H , so if bad event 4 does not happen, we have

d(x) ≥ T1 (5)

and similarly for y and bad event 5.

Heavy–heavy case. Let us denote the neighbors of a vertex v in G̃ by Ñ(v); also here we adopt the
convention that v ∈ Ñ(v).

Lemma A.3. If x and y are heavy and bad events 1–5 do not happen, then |Ñ(x) ∩ Ñ(y)| ≥ 3, i.e.,
x and y have another common neighbor in G̃.

Proof. Recall that we can assume that x and y are in noised agreement (otherwise the two outputs
are equal). Since bad event 1 does not happen, x and y do not TV-disagree, i.e.,

|N(x)△N(y)| < (β + β′)max(d(x), d(y)) .

From this we get min(d(x), d(y)) ≥ (1 − β − β′)max(d(x), d(y)) and thus d(x) + d(y) =
min(d(x), d(y)) + max(d(x), d(y)) ≥ (2− β − β′)max(d(x), d(y)) and so

|N(x)△N(y)| < β + β′

2− β − β′
(d(x) + d(y)) .

Since x is heavy but bad event 2 does not happen, x is not TV-light, i.e., l(x) < (λ + λ′)d(x).
Moreover, l(x) = |N(x) \ Ñ(x)| because x is heavy (so there are no light-light edges incident to it).
We use bad event 3 similarly for y.

16

We will use the following property of any two sets A, B:

|A ∩B| = |A|+ |B| − |A△B|
2

.

Taking these together, we have

|Ñ(x) ∩ Ñ(y)| ≥ |N(x) ∩N(y)| − |N(x) \ Ñ(x)| − |N(y) \ Ñ(y)|

=
d(x) + d(y)− |N(x)△N(y)|

2
− l(x)− l(y)

≥ 1− β − β′

2− β − β′
(d(x) + d(y))− (λ+ λ′)(d(x) + d(y))

=

(
1− β − β′

2− β − β′
− λ− λ′

)
(d(x) + d(y))

≥ 3 ,

where the last inequality follows since

1− β − β′

2− β − β′
− λ− λ′ ≥ 1− 0.2− 0.1

2
− 0.2− 0.1 = 0.05 > 0

and as, by (5), we have d(x) + d(y) ≥ 2T1, and T1 is large enough:

T1 ≥
1.5

1−β−β′

2−β−β′ − λ− λ′
. (6)

Heavy–light case. Without loss of generality assume that x is heavy and y is light. Recall that a
bad neighbor of y is a vertex z ∈ Ñ(y) \ {x, y} that is heavy and has no common neighbors with x
(except possibly y).

Lemma A.4. If x is heavy, y is light, and bad events do not happen, then y has no bad neighbors.

Proof. Suppose that a vertex z ∈ Ñ(y) \ {x, y} is heavy; we will show that z must have common
neighbors with x.

Since z ∈ Ñ(y), we have that y and z must be in noised agreement (otherwise (y, z) would have
been removed). Since bad event 6b does not happen, y and z do not TV-disagree, i.e.,

|N(y)△N(z)| < (β + β′)max(d(y), d(z))

which also implies that d(z) ≥ (1− β − β′)d(y).

Since bad event 6a does not happen, and y and z do not TV-disagree, and z is heavy, thus z is not
TV-light, i.e., l(z) < (λ+ λ′)d(z).

As in the proof of Lemma A.3, since bad events 1 and 2 do not happen, we have

|N(x)△N(y)| < (β + β′)max(d(x), d(y)) ,

17

which also implies that d(x) ≥ (1−β−β′)d(y) and l(x) < (λ+λ′)d(x). Similarly as in that proof,
we write

|Ñ(x) ∩ Ñ(z)| ≥ |N(x) ∩N(z)| − |N(x) \ Ñ(x)| − |N(z) \ Ñ(z)|

=
d(x) + d(z)− |N(x)△N(z)|

2
− l(x)− l(z)

≥ d(x) + d(z)− |N(x)△N(y)| − |N(y)△N(z)|
2

− l(x)− l(z)

≥ d(x) + d(z)− (β + β′)(d(x) + d(z))

2
− (λ+ λ′)(d(x) + d(z))

= (1− β − β′ − 2(λ+ λ′))
d(x) + d(z)

2

≥ (1− β − β′ − 2(λ+ λ′))
d(x) + (1− β − β′)d(y)

2

≥ (1− β − β′ − 2(λ+ λ′))
2− β − β′

2
T1

≥ 2 ,

where the second-last inequality follows as, by (5), we have d(x), d(y) ≥ T1, and the last inequality
follows because

1− β − β′ − 2(λ+ λ′) ≥ 1− 0.2− 0.1− 2 · (0.2 + 0.1) ≥ 0.1 > 0

and T1 is large enough:

T1 ≥
2 · 2

(1− β − β′ − 2(λ+ λ′)) (2− β − β′)
. (7)

Bounding the probability of bad events. Roughly, our strategy is to union-bound over all the bad
events.

Fact A.5. Let A, c, d ≥ 0. If d ≥ ln(c/2
δ)

A , then 1
2 exp(−A · d) ≤

δ
c .

Proof. A straightforward calculation.

Claim A.6. The probability of bad event 1, conditioned on bad events 4 and 5 not happening, is at
most δ/8.

Proof. Start by recalling that by (5), d(x), d(y) ≥ T1. We have that the sought probability is at most

Pr [Ex,y < −β′ ·max(d(x), d(y))] ≤ 1

2
exp

(
−β′ ·max(d(x), d(y))

E

)
where we use E to denote the magnitude of Ex,y , i.e.,

E = max

(
1,

γ
√
max(d(x), d(y)) · ln(1/δagr)

ϵagr

)
.

We will satisfy both
1

2
exp (−β′ ·max(d(x), d(y))) ≤ δ

8
and

1

2
exp

(
− ϵagr · β′ ·max(d(x), d(y))

γ
√
max(d(x), d(y)) · ln(1/δagr)

)
≤ δ

8
.

For the former, by applying Fact A.5 (for c = 8, A = β′ and d = max(d(x), d(y))) we get that it is
enough to have max(d(x), d(y)) ≥ ln(4/δ)

β′ , which holds when T1 is large enough:

T1 ≥
ln(4/δ)

β′
. (8)

18

For the latter, we want to satisfy

1

2
exp

(
−
ϵagr · β′ ·

√
max(d(x), d(y))

γ
√

ln(1/δagr)

)
≤ δ

8
.

Use Fact A.5 (for c = 8, A =
ϵagr·β′

γ
√

ln(1/δagr)
and d =

√
max(d(x), d(y))) to get that it is enough to

have √
max(d(x), d(y)) ≥

ln(4/δ) · γ ·
√

ln(1/δagr)

ϵagr · β′
,

which is true when T1 is large enough:

T1 ≥
(
ln(4/δ) · γ
ϵagr · β′

)2

· ln(1/δagr) . (9)

Claim A.7. The probability of bad event 2, conditioned on bad events 4 and 5 not happening, is at
most δ/32.

Proof. Start by recalling that by (5), d(x) ≥ T1. If x is TV-light but heavy, then we must have
Yx < λ′ · d(x). We have that the sought probability is at most

1

2
exp

(
−λ′ · d(x) · ϵ

8

)
and by Fact A.5 (with c = 32, d = d(x) and A = λ′·ϵ

8) this is at most δ/32 because d(x) ≥ T1 and
T1 is large enough:

T1 ≥
8 ln(16/δ)

λ′ · ϵ
. (10)

Claim A.8. The probability of bad event 4 is at most δ/32.

Proof. For bad event 4 to happen, we must have Zx ≥ T0− T1 = 8 ln(16/δ)
ϵ ; as Zx ∼ Lap(8/ϵ), this

happens with probability 1
2 exp(− ln(16/δ)) = δ/32.

The following two facts are more involved versions of Fact A.5.

Fact A.9. Let A, d ≥ 0. If d ≥ 1.6 ln(4
δA)

A , then 1
2 exp(−A · d) ≤

δ
8d .

Proof. We use the following analytic inequality: for α, x > 0, if x ≥ 1.6 ln(α), then x ≥ ln(αx).
We substitute x = A · d and α = 4

δA . Then by the analytic inequality, A · d ≥ ln
(
4d
δ

)
. Negate and

then exponentiate both sides.

Fact A.10. Let A, d ≥ 0. If
√
d ≥

2.8·
(
1+ln

(
2√
δA

))
A , then 1

2 exp(−A ·
√
d) ≤ δ

8d .

Proof. We use the following analytic inequality: for α, x > 0, if x ≥ 2.8(ln(α) + 1), then x ≥
2 ln(αx). We substitute x = A

√
d and α = 2√

δA
. Then by the analytic inequality, A ·

√
d ≥ ln

(
4d
δ

)
.

Negate and then exponentiate both sides.

Claim A.11. For any z ∈ N(y) \ {x, y}, the probability of bad event 6a for z, conditioned on bad
events 4 and 5 not happening, is at most δ

8d(y) .

19

Proof. The proof is similar as for Claim A.7 but somewhat more involved as d(y) appears also in the
probability bound.

When z is TV-light but heavy, we must have Yz < −λ′ · d(z). When y and z do not TV-disagree, we
have d(z) ≥ (1−β−β′)d(y). Thus, if bad event 6a happens, we must have Yz < −λ′·(1−β−β′)d(y).
Thus the sought probability is at most

Pr [Yz < −λ′ · (1− β − β′)d(y)] =
1

2
exp

(
−λ′ · (1− β − β′)d(y) · ϵ

8

)
.

By Fact A.9 (invoked for d = d(y) and A = λ′·(1−β−β′)·ϵ
8), this is at most δ

8d(y) because d(y) ≥ T1

by (5) and T1 is large enough:

T1 ≥
1.6 ln

(
4·8

δλ′·(1−β−β′)·ϵ

)
· 8

λ′ · (1− β − β′) · ϵ
. (11)

Claim A.12. For any z ∈ N(y) \ {x, y}, the probability of bad event 6b for z, conditioned on bad
events 4 and 5 not happening, is at most δ

8d(y) .

Proof. The proof is similar as for Claim A.6 but somewhat more involved as d(y) appears also in the
probability bound. Start by recalling that by (5), d(y) ≥ T1. We have that the sought probability is at
most

Pr [Ey,z < −β′ ·max(d(y), d(z))] ≤ 1

2
exp

(
−β′ ·max(d(y), d(z))

E

)
where we use E to denote the magnitude of Ey,z , i.e.,

E = max

(
1,

γ
√

max(d(y), d(z)) · ln(1/δagr)
ϵagr

)
.

We will satisfy both
1

2
exp (−β′ ·max(d(y), d(z))) ≤ 1

2
exp (−β′ · d(y)) ≤ δ

8d(y)
(12)

and
1

2
exp

(
− ϵagr · β′ ·max(d(y), d(z))

γ
√
max(d(y), d(z)) · ln(1/δagr)

)
≤ 1

2
exp

(
−
ϵagr · β′ ·

√
d(y)

γ
√
ln(1/δagr)

)
≤ δ

8d(y)
. (13)

For the former, by applying Fact A.9 (for A = β′ and d = d(y)) we get that (12) holds because
d(y) ≥ T1 and T1 is large enough:

T1 ≥
1.6 ln

(
4

δ·β′

)
β′

. (14)

For the latter, by applying Fact A.10 (for A =
ϵagr·β′

γ
√

ln(1/δagr)
and d = d(y)) we get that (13) holds

because d(y) ≥ T1 and T1 is large enough:

T1 ≥

2.8
(
1 + ln

(
2√
δA

))
A

2

=

2.8

(
1 + ln

(
2γ
√

ln(1/δagr)√
δϵagr·β′

))
γ
√
ln(1/δagr)

ϵagr · β′

2

. (15)

Now we may conclude the proof of Theorem 4.4. We use the property that if A, B are events,
then Pr [A ∪B] ≤ Pr [A] + Pr [B | not A] (with A being bad events 4 or 5). By Claim A.8, the
probability of bad events 4 or 5 is at most δ/16. Conditioned on these not happening, bad event 1
is handled by Claim A.6 and bad events 2–3 are handled by Claim A.7; these incur δ/8 + 2 · δ/32,
in total δ/4 so far. Next, there are d(y) bad events of type 6a (and the same for 6b), thus we get
2 · d(y) · δ

8d(y) = δ/4 by Claims A.11 and A.12; and we get the same from bad events 7a and 7b.
Summing everything up yields 3

4δ. ■

20

B Proofs Missing from Section 5

B.1 Proof of Lemma 5.1

First, we prove the following claim.

Lemma B.1. Let βL, βU ∈ RV×V
≥0 and λL, λU ∈ RV

≥0 such that βU ≥ βL and λU ≥ λL. Let Erem

be a subset of edges. Then, the following holds:

(A) If v is light in ALG-CC(βU , λU , Erem), then v is light in ALG-CC(βL, λL, Erem).

(B) If v is heavy in ALG-CC(βL, λL, Erem), then v is heavy in ALG-CC(βU , λU , Erem).

(C) If an edge e is removed in ALG-CC(βU , λU , Erem), then e is removed in
ALG-CC(βL, λL, Erem) as well.

(D) If an edge e remains in ALG-CC(βL, λL, Erem), then e remains in ALG-CC(βU , λU , Erem)
as well.

Proof. Observe that |N(u)△N(v)| ≤ βL
u,v max{d(u), d(v)} implies |N(u)△N(v)| ≤

βU
u,v max{d(u), d(v)} as βL

u,v ≤ βU
u,v. Hence, if u and v are in agreement in

ALG-CC(βL, λL, Erem), then u and v are in agreement in ALG-CC(βU , λU , Erem) as well. Simi-
larly, if u and v are not in agreement in ALG-CC(βU , λU , Erem), then u and v are not in agreement
in ALG-CC(βL, λL, Erem) as well. These observations immediately yield Properties (A) and (B).

To prove Properties (C) and (D), observe that an edge e = {u, v} is removed from a graph if u
and v are not in agreement, or if u and v are light, or if e ∈ Erem. From our discussion above
and from Property (A), if e is removed from ALG-CC(βU , λU , Erem), then e is removed from
ALG-CC(βL, λL, Erem) as well. On the other hand, e /∈ Erem remains in ALG-CC(βL, λL, Erem) if
u and v are in agreement, and if u or v is heavy. Property (B) and our discussion about vertices in
agreement imply Property (D).1

As a corollary, we obtain the proof of Lemma 5.1.

Lemma 5.1. Let βL, βU ∈ RV×V
≥0 and λL, λU ∈ RV

≥0 such that βU ≥ βL and λU ≥ λL.

(i) If u and v are in the same cluster of ALG-CC(βL, λL, Erem), then u and v are in the same
cluster of ALG-CC(βU , λU , Erem).

(ii) If u and v are in different clusters of ALG-CC(βU , λU , Erem), then u and v are different
clusters of ALG-CC(βL, λL, Erem).

Proof. (i) Consider a path P between u and v that makes them being in the same
cluster/component in ALG-CC(βL, λL, Erem). Then, by Lemma B.1 (D) P remains
in ALG-CC(βU , λU , Erem) as well. Hence, u and v are in the same cluster of
ALG-CC(βU , λU , Erem).

(ii) Follows from Property (i) by contraposition.

B.2 Proof of Lemma 5.3

We begin by proving the following claim.

1Also, by contraposition, Property (D) follows from Property (C) and Property (B) follows from Property (A).

21

Lemma B.2. Let ALG-CC′ be a version of ALG-CC that does not make singletons of light vertices
on Line 4 of Algorithm 2. Let β ∈ RV×V

≥0 and λ ∈ RV
≥0 be two constant vectors, i.e., β = β1 and

λ = λ1. Assume that 5β + 2λ < 1. Then, it holds

cost(ALG-CC′(β, λ,E≤T)) ≤ O(OPT/(βλ)) +O(n · T/(1− 4β)3) ,

where OPT denotes the cost of the optimum clustering for the input graph.

Proof. Consider a non-singleton cluster C output by ALG-CC′(β, λ, ∅). Let u be a vertex in C. We
now show that for any v ∈ C, such that u or v is heavy, it holds that d(v) ≥ (1− 4β)d(u). To that
end, we recall that in [CALM+21] (Lemma 3.3 of the arXiv version) it was shown that

|N(u)△N(v)| ≤ 4βmax{d(u), d(v)}. (16)

Assume that d(u) ≥ d(v), as otherwise d(v) ≥ (1− 4β)d(u) holds directly. Then, from Eq. (16) we
have

d(u)− d(v) ≤ |N(u)△N(v)| ≤ 4βd(u),

further implying
d(v) ≥ (1− 4β)d(u).

Moreover, this provides a relation between d(v) and d(u) even if both vertices are light. To see
that, fix any heavy vertex z in the cluster. Any vertex u has d(u) ≤ d(z)/(1− 4β) and also d(u) ≥
(1 − 4β)d(z). This implies that if u and v belong to the same cluster than d(u) ≥ (1 − 4β)2d(v),
even if both u and v are light.

Let E≤T be a subset (any such) of edges incident to vertices with degree at most T . We will show
that forcing ALG-CC′ to remove E≤T does not affect how vertices of degree at least T/(1− 4β)3

are clustered by ALG-CC′. To see that, observe that a vertex x having degree at most T and a vertex
y having degree at least T/(1− β) + 1 are not in agreement. Hence, forcing ALG-CC′ to remove
E≤T does not affect whether vertex y is light or not.

However, removing E≤T might affect whether a vertex z with degree T/(1− β) < T/(1− 4β) is
light or not. Nevertheless, from our discussion above, a vertex y with degree at least T/(1− 4β)3 is
not clustered together with z by ALG-CC′(β, λ, ∅), regardless of whether z is heavy or light.

This implies that the cost of clustering vertices of degree at least T/(1−4β)3 by ALG-CC′(β, λ,E≤T)
is upper-bounded by cost(ALG-CC′(β, λ, ∅)) ≤ O(OPT/(βλ)). Notice that the inequality follows
since ALG-CC′(β, λ, ∅) is a O(1/(βλ))-approximation of OPT and β < 0.2.

It remains to account for the cost effect of ALG-CC′(β, λ,E≤T) on the vertices of degree less than
T/(1− 4β)3. This part of the analysis follows from the fact that forcing ALG-CC′ to remove E≤T
only reduces connectivity compared to the output of ALG-CC′ without removing E≤T . That is,
in addition to removing edges even between vertices that might be in agreement, removal of E≤T
increases a chance for a vertex to become light. Hence, the clusters of ALG-CC′ with removals of
E≤T are only potentially further clustered compared to the output of ALG-CC′ without the removal.
This means that ALG-CC′ with the removal of E≤T potentially cuts additional “+” edges, but it
does not include additional “-” edges in the same cluster. Given that only vertices of degree at most
T/(1− 4β)3 are affected, the number of additional “+” edges cut is O(n · T/(1− 4β)3).

This completes the analysis.

Lemma 5.3. Let Algorithm 1’ be a version of Algorithm 1 that does not make singletons of light
vertices on Line 4. Assume that 5β+2λ < 1/1.1 and also assume that β and λ are positive constants.
With probability at least 1− n−2, Algorithm 1’ provides a solution which has O(1) multiplicative

and O
(
n ·
(

logn
ϵ + log2 n·log(1/δ)

min(1,ϵ2)

))
additive approximation.

Proof. We now analyze under which condition noised agreement and l̂(v) can be seen as a slight
perturbation of β and λ. That will enable us to employ Lemmas 5.2 and B.2 to conclude the proof of
this theorem.

22

https://arxiv.org/pdf/2106.08448

Analyzing noised agreement. Recall that a noised agreement (Definition 3.1) states

|N(u)△N(v)|+ Eu,v < β ·max(d(u), d(v)).

This inequality can be rewritten as

|N(u)△N(v)| <
(
1− Eu,v

β ·max(d(u), d(v))

)
β ·max(d(u), d(v)).

As a reminder, Eu,v is drawn from Lap(Cu,v ·
√
max(d(u), d(v)) ln(1/δ)/ϵagr), where Cu,v can

be upper-bounded by C =
√

4ϵagr + 1 + 1. Let b = C ·
√
max(d(u), d(v)) ln(1/δ)/ϵagr. From

Fact 2.5 we have that
Pr [|Eu,v| > 5 · b · log n] ≤ n−5.

Therefore, with probability at least 1− n−5 we have that∣∣∣∣ Eu,v
β ·max(d(u), d(v))

∣∣∣∣ ≤ 5 · log n · C ·
√
max(d(u), d(v)) ln(1/δ)

ϵagr · β ·max(d(u), d(v))
=

5 · log n · C ·
√
ln(1/δ)

ϵagr · β ·
√

max(d(u), d(v))

Therefore, for max(d(u), d(v)) ≥ 2500·C2·log2 n·log(1/δ)
β2·ϵ2agr

we have that with probability at least 1−n−5

it holds
1− Eu,v

β ·max(d(u), d(v))
∈ [9/10, 11/10].

Analyzing noised l(v). As a reminder, l̂(v) = l(v) + Yv , where Yv is drawn from Lap(8/ϵ). The
condition l̂(v) > λd(v) can be rewritten as

l(v) >

(
1− Yv

λd(v)

)
λd(v).

Also, we have

Pr

[
|Yv| >

40 log n

ϵ

]
< n−5.

Hence, if d(v) ≥ 400 logn
λϵ then with probability at least 1− n−5 we have that

1− Yv

λd(v)
∈ [9/10, 11/10].

Analyzing noised degrees. Recall that noised degree d̂(v) is defined as d̂(v) = d(v) + Zv , where
Zv is drawn from Lap(8/ϵ). From Fact 2.5 we have

Pr

[
|Zv| >

40 log n

ϵ

]
< n−5.

Hence, with probability at least 1− n−5, a vertex of degree at least T0 + 40 log n/ϵ is in H defined
on Line 1 of Algorithm 1. Also, with probability at least 1 − n−5 a vertex with degree less than
T0 − 40 log n/ϵ is not in H .

Combining the ingredients. Define

T ′ = max

(
400 log n

λϵ
,
2500 · C2 · log2 n · log(1/δ)

β2 · ϵ2agr

)
Our analysis shows that for a vertex v such that d(v) ≥ T ′ the following holds with probability at
least 1− 2n−5:

(i) The perturbation by Eu,v in Definition 3.1 can be seen as multiplicatively perturbing βu,v

by a number from the interval [−1/10, 1/10].

(ii) The perturbation of l(v) by Yv can be seen as multiplicatively perturbing λv by a number
from the interval [−1/10, 1/10].

23

Let T = T0 +
40 logn

ϵ . Let T0 ≥ T ′ + 40 logn
ϵ . Note that this imposes a constraint on T1, which is

T1 ≥ T ′ +
40 log n

ϵ
− 8 log(16/δ)

ϵ
. (17)

Then, following our analysis above, each vertex in H has degree at least T ′, and each vertex of degree
at least T is in H . Let E≤T be the set of edges incident to vertices which are not in H; these edges
are effectively removed from the graph. Observe that for a vertex u which do not belong to H it is
irrelevant what βu,· values are or what λu is, as all its incident edges are removed. To conclude the
proof, define βL = 0.9 · β · 1, βU = 1.1 · β · 1, λL = 0.9 · λ · 1, and λU = 1.1 · λ · 1. By Lemma 5.2
and Properties (i) and (ii) we have that

cost(Algorithm 1′) ≤ cost(ALG-CC(βL, λL, E≤T)) + cost(ALG-CC(βU , λU , E≤T)).

By Lemma B.2 the latter sum is upper-bounded by O(OPT/(βλ)) +O(n · T/(1− 4β)3). Note that
we replace the condition 5β + 2λ in the statement of Lemma B.2 by 5β + 2λ < 1/1.1 in this lemma
so to account for the perturbations. Moreover, we can upper-bound T by

T ≤ O

(
log n

λϵ
+

log2 n · log(1/δ)
β2 ·min(1, ϵ2)

)
.

In addition, all discussed bound hold across all events with probability at least 1 − n−2. This
concludes the analysis.

B.3 Proof of Lemma 5.4

Lemma 5.4. Consider all lights vertices defined in Line 4 of Algorithm 1. Assume that 5β + 2λ <
1/1.1. Then, with probability at least 1− n−2, making as singleton clusters any subset of those light
vertices increases the cost of clustering by O(OPT/(β · λ)2), where OPT denotes the cost of the
optimum clustering for the input graph.

Proof. Consider first a single light vertex v which is not a singleton cluster. Let C be the cluster of
Ĝ′ that v initially belongs to. We consider two cases. First, recall that from our proof of Lemma 5.3
that, with probability at least 1 − n−2, we have that 0.9λ ≤ λv ≤ 1.1λ and 0.9β ≤ βu,v ≤ 1.1β,
where λ and β are inputs to ALG-CC.

Case 1: v has at least λv/2 fraction of neighbors outside C. In this case, the cost of having v in
C is already at least d(v) · λv/2 ≥ d(v) · 0.9 · λ/2, while having v as a singleton has cost d(v).

Case 2: v has less than λv/2 fraction of neighbors outside C. Since v is not in agreement with
at least λv fraction of its neighbors, this case implies that at least λv/2 ≥ 0.9 · λ/2 fraction of those
neighbors are in C. We now develop a charging arguments to derive the advertised approximation.

Let x ∈ C be a vertex that v is not in a agreement with. Then, for a fixed x and v in the same cluster
of Ĝ′, there are at least O(d(v)β) vertices z (incident to x or v, but not to the other vertex) that the
current clustering is paying for. In other words, the current clustering is paying for edges of the form
{z, x} and {z, v}; as a remark, z does not have to belong to C. Let Z(v) denote the multiset of all
such edges for a given vertex v. We charge each edge in Z(v) by O(1/(βλ)).

On the other hand, making v a singleton increases the cost of clustering by at most d(v). We now
want to argue that there is enough charging so that we can distribute the cost d(v) (for making v a
singleton cluster) over Z(v) and, moreover, do that for all light vertices v simultaneously. There are
at least O(β ·d(v) ·λ ·d(v)) edges in Z(v); recall that Z(v) is a multiset. We distribute uniformly the
cost d(v) (for making v a singleton) across Z(v), incurring O(1/(β · λ · d(v))) cost per an element
of Z(v).

Now it remains to comment on how many times an edge appears in the union of all Z(·) multisets.
Edge ze = {x, y} in included in Z(·) when x and its neighbor, or y and its neighbor are considered.
Moreover, those neighbors belong to the same cluster of Ĝ′ and hence have similar degrees (i.e., as
shown in the proof of Lemma B.2, their degrees differ by at most (1− 4β)2 factor). Hence, an edge
ze ∈ Z(v) appears O(d(v)) times across all Z(·), which concludes our analysis.

24

C Lower bound

In this section we show that any private algorithm for correlation clustering must incur at least Ω(n)
additive error in the approximation guarantee, regardless of its multiplicative approximation ratio.
The following is a restatement of Theorem 1.2.
Theorem C.1. Let A be an (ϵ, δ)-DP algorithm for correlation clustering on unweighted complete
graphs, where ϵ ≤ 1 and δ ≤ 0.1. Then the expected cost of A is at least n/20, even when restricted
to instances whose optimal cost is 0.

Proof. Fix an even number n = 2m of vertices and consider the fixed perfect matching (1, 2), (3, 4),
. . . , (2m − 1, 2m). For every vector τ ∈ {0, 1}m we consider the instance Iτ obtained by having
plus-edges (2i− 1, 2i) for those i = 1, ...,m where τi = 1 (and minus-edges for i with τi = 0, as
well as everywhere outside this perfect matching). Note that this instance is a complete unweighted
graph and has optimal cost 0.

For τ ∈ {0, 1}m and i ∈ {1, ...,m} define p(i)τ to be the marginal probability that vertices 2i− 1 and
2i are in the same cluster when A is run on the instance Iτ .

Finally, for σ ∈ {0, 1}m−1, i ∈ {1, ...,m} and b ∈ {0, 1} let σ[i← b] be the vector σ with the bit b
inserted at the i-th position to obtain an m-dimensional vector (note that σ is (m− 1)-dimensional).
Note that Iσ[i←0] and Iσ[i←1] are adjacent instances. Thus (ϵ, δ)-privacy gives

p
(i)
σ[i←1] ≤ eϵ · p(i)σ[i←0] + δ (18)

for all i and σ.

Towards a contradiction assume that A achieves expected cost at most 0.05n = 0.1m on every
instance Iτ . In particular, the expected cost on the matching minus-edges is at most 0.1m, i.e.,

0.1m ≥
∑

i:τi=0

p(i)τ .

Summing this up over all vectors τ ∈ {0, 1}m we get

2m · 0.1m ≥
∑

τ∈{0,1}m

∑
i:τi=0

p(i)τ =
∑
i

∑
σ∈{0,1}m−1

p
(i)
σ[i←0] (19)

and similarly since the expected cost on the matching plus-edges is at most 0.1m, we get

2m · 0.1m ≥
∑

τ∈{0,1}m

∑
i:τi=1

(1− p(i)τ)

=
∑
i

∑
σ∈{0,1}m−1

(1− p
(i)
σ[i←1])

(18)
≥
∑
i

∑
σ∈{0,1}m−1

(1− eϵ · p(i)σ[i←0] − δ)

= (1− δ) ·m · 2m−1 − eϵ ·
∑
i

∑
σ∈{0,1}m−1

p
(i)
σ[i←0]

(19)
≥ (1− δ) ·m · 2m−1 − eϵ · 2m · 0.1m
≥ 0.45 ·m · 2m − 0.1e · 2m ·m.

Dividing by 2m ·m gives 0.1 ≥ 0.45− 0.1e, which is a contradiction.

25

	Missing privacy proofs
	Proof of lem:lowprobbad
	Proof of thm:laststep

	Proofs Missing from sec:approximationanalysis
	Proof of corollary:same-cluster-different-clusters
	Proof of thm:approx-proof
	Proof of lem:appro-singletons

	Lower bound

