A Missing privacy proofs

A. 1 Proof of Lemma 2.3

We restate the lemma for convenience.
Lemma 2.3. Let $M_{1}: \mathbb{G} \rightarrow \mathcal{M}_{1}$ be a randomized algorithm that is (ϵ, δ)-DP. Suppose $B \subseteq \mathcal{M}_{1}$ is a set of "bad outcomes" with $\operatorname{Pr}\left[M_{1}(G) \in B\right] \leq \delta^{*}$ for any $G \in \mathbb{G}$. Further let $M_{2}: \mathbb{G} \times$ $\mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ be a deterministic algorithm such that for every fixed "non-bad" $m_{1} \in \mathcal{M}_{1} \backslash B$ we have $M_{2}\left(G, m_{1}\right)=M_{2}\left(G^{\prime}, m_{1}\right)$ for adjacent $G, G^{\prime} \in \mathbb{G}$. Then the composed mechanism $\mathbb{G} \ni G \mapsto M_{2}\left(G, M_{1}(G)\right) \in \mathcal{M}_{2}$ is $\left(\epsilon, \delta+\delta^{*}\right)$-DP.

The proof is routine:
Proof. Fix $G, G^{\prime} \in \mathbb{G}$ and a set of outcomes $S_{2} \subseteq \mathcal{M}_{2}$. Define

$$
S_{1}^{*}:=\left\{m_{1} \in \mathcal{M}_{1} \backslash B: M_{2}\left(G, m_{1}\right) \in S_{2}\right\}
$$

By assumption we have

$$
\begin{equation*}
S_{1}^{*}=\left\{m_{1} \in \mathcal{M}_{1} \backslash B: M_{2}\left(G^{\prime}, m_{1}\right) \in S_{2}\right\} \tag{4}
\end{equation*}
$$

Now we can write

$$
\begin{aligned}
\operatorname{Pr}\left[M_{2}\left(G, M_{1}(G)\right) \in S_{2}\right] & \leq \operatorname{Pr}\left[M_{1}(G) \in B\right]+\operatorname{Pr}\left[M_{1}(G) \notin B \text { and } M_{2}\left(G, M_{1}(G)\right) \in S_{2}\right] \\
& \leq \delta^{*}+\operatorname{Pr}\left[M_{1}(G) \in S_{1}^{*}\right] \\
& \stackrel{\mathrm{DP}}{\leq} \delta^{*}+e^{\epsilon} \cdot \operatorname{Pr}\left[M_{1}\left(G^{\prime}\right) \in S_{1}^{*}\right]+\delta \\
& \stackrel{4}{=} \delta^{*}+e^{\epsilon} \cdot \operatorname{Pr}\left[M_{1}\left(G^{\prime}\right) \notin B \text { and } M_{2}\left(G^{\prime}, M_{1}\left(G^{\prime}\right)\right) \in S_{2}\right]+\delta \\
& \leq \delta^{*}+e^{\epsilon} \cdot \operatorname{Pr}\left[M_{2}\left(G^{\prime}, M_{1}\left(G^{\prime}\right)\right) \in S_{2}\right]+\delta .
\end{aligned}
$$

A. 2 Proof of Theorem 4.4

We restate the theorem for convenience.
Theorem 4.4. By a state let us denote the noised-agreement status of all edges in $E(G) \cup E\left(G^{\prime}\right)$ and heavy/light status of all vertices. Under a fixed state, consider Line 4 as a deterministic algorithm that, given G or G^{\prime}, outputs the final clustering. Then this clustering does not depend on whether the input graph is G or G^{\prime}, except on a set of states that arises with probability at most $\frac{3}{4} \delta$ (when steps before Line 4 are executed on either of G or G^{\prime}).

Let us analyze how adding a single edge (x, y) can influence the output of Line 4 Namely, we will show that it cannot, unless at least one of certain bad events happens. We will list a collection of these bad events, and then we will upper-bound their probability.
First, if x and y are not in noised agreement, then (x, y) was removed in Line 2 and the two outputs will be the same. In the remainder we assume that x and y are in noised agreement. Similarly, we can assume that $x, y \in H$ (otherwise they cannot be in noised agreement).
If x and y are both light, then similarly (x, y) will be removed in Line 4 and the two outputs will be the same.

If x and y are both heavy, then (x, y) will survive in \tilde{G}. It will affect the output if and only if it connects two components that would otherwise not be connected. However, intuitively this is unlikely, because x and y are heavy and in noised agreement and thus they should have common neighbors in \tilde{G}. Below Lemma A.3 we will show that if no bad events (also defined below) happen, then x and y indeed have common neighbors in \tilde{G}.
If x is heavy and y is light, then similarly (x, y) will survive in \tilde{G}, and it will affect the output if and only if it connects two components that would otherwise not be connected and that each contain a heavy vertex. More concretely, we claim that if the outputs are not equal, then y must have a heavy neighbor $z \neq x$ (in \tilde{G}) that has no common neighbors with x (except possibly y). For otherwise:

- if y has a heavy neighbor $z \neq x$ that does have a common neighbor with x (that is not y), then x and y are in the same component in \tilde{G} regardless of the presence of (x, y),
- if y has no heavy neighbor except x, then (as light-light edges are removed) y only has at most x as a neighbor and therefore (x, y) does not influence the output.

Let us call such a neighbor z a bad neighbor. Below (Lemma A.4) we will show that if no bad events (also defined below) happen, then y has no bad neighbors.

Finally, if x is light and y is heavy: analogous to the previous point. We will require that x have no bad neighbor, i.e., neighbor $z \neq y$ that has no common neighbors with y.

Bad events. We start with two helpful definitions.
Definition A.1. We say that a vertex v is TV-light (Truly Very light) if $l(v) \geq\left(\lambda+\lambda^{\prime}\right) d(v)$, i.e., v lost a $\left(\lambda+\lambda^{\prime}\right)$-fraction of its neighbors in Line 2
Definition A.2. We say that two vertices u, v TV-disagree (Truly Very disagree) if $|N(u) \triangle N(v)| \geq$ $\left(\beta+\beta^{\prime}\right) \max (d(u), d(v))$.

Recall from Section 3 that we can set $\lambda^{\prime}=\beta^{\prime}=0.1$.
Our bad events are the following:

1. x and y TV-disagree but are in noised agreement,
2. x is TV-light but is heavy,
3. the same for y,
4. $x \in H$ but $d(x)<T_{1}$,
5. the same for y,
6. for each $z \in N(y) \backslash\{x, y\}$:

6a. y and z do not TV-disagree, and z is TV-light but is heavy, (or)
6b. y and z TV-disagree, but are in noised agreement.
7. similarly for each $z \in N(x) \backslash\{x, y\}$.

Recall that we can assume that $x, y \in H$, so if bad event 4 does not happen, we have

$$
\begin{equation*}
d(x) \geq T_{1} \tag{5}
\end{equation*}
$$

and similarly for y and bad event 5 .
Heavy-heavy case. Let us denote the neighbors of a vertex v in \tilde{G} by $\tilde{N}(v)$; also here we adopt the convention that $v \in \tilde{N}(v)$.
Lemma A.3. If x and y are heavy and bad events $1-5$ do not happen, then $|\tilde{N}(x) \cap \tilde{N}(y)| \geq 3$, i.e., x and y have another common neighbor in \tilde{G}.

Proof. Recall that we can assume that x and y are in noised agreement (otherwise the two outputs are equal). Since bad event 1 does not happen, x and y do not TV-disagree, i.e.,

$$
|N(x) \triangle N(y)|<\left(\beta+\beta^{\prime}\right) \max (d(x), d(y))
$$

From this we get $\min (d(x), d(y)) \geq\left(1-\beta-\beta^{\prime}\right) \max (d(x), d(y))$ and thus $d(x)+d(y)=$ $\min (d(x), d(y))+\max (d(x), d(y)) \geq\left(2-\beta-\beta^{\prime}\right) \max (d(x), d(y))$ and so

$$
|N(x) \triangle N(y)|<\frac{\beta+\beta^{\prime}}{2-\beta-\beta^{\prime}}(d(x)+d(y))
$$

Since x is heavy but bad event 2 does not happen, x is not TV-light, i.e., $l(x)<\left(\lambda+\lambda^{\prime}\right) d(x)$. Moreover, $l(x)=|N(x) \backslash \tilde{N}(x)|$ because x is heavy (so there are no light-light edges incident to it). We use bad event 3 similarly for y.

We will use the following property of any two sets A, B :

$$
|A \cap B|=\frac{|A|+|B|-|A \triangle B|}{2}
$$

Taking these together, we have

$$
\begin{aligned}
|\tilde{N}(x) \cap \tilde{N}(y)| & \geq|N(x) \cap N(y)|-|N(x) \backslash \tilde{N}(x)|-|N(y) \backslash \tilde{N}(y)| \\
& =\frac{d(x)+d(y)-|N(x) \triangle N(y)|}{2}-l(x)-l(y) \\
& \geq \frac{1-\beta-\beta^{\prime}}{2-\beta-\beta^{\prime}}(d(x)+d(y))-\left(\lambda+\lambda^{\prime}\right)(d(x)+d(y)) \\
& =\left(\frac{1-\beta-\beta^{\prime}}{2-\beta-\beta^{\prime}}-\lambda-\lambda^{\prime}\right)(d(x)+d(y)) \\
& \geq 3
\end{aligned}
$$

where the last inequality follows since

$$
\frac{1-\beta-\beta^{\prime}}{2-\beta-\beta^{\prime}}-\lambda-\lambda^{\prime} \geq \frac{1-0.2-0.1}{2}-0.2-0.1=0.05>0
$$

and as, by [5], we have $d(x)+d(y) \geq 2 T_{1}$, and T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq \frac{1.5}{\frac{1-\beta-\beta^{\prime}}{2-\beta-\beta^{\prime}}-\lambda-\lambda^{\prime}} \tag{6}
\end{equation*}
$$

Heavy-light case. Without loss of generality assume that x is heavy and y is light. Recall that a bad neighbor of y is a vertex $z \in \tilde{N}(y) \backslash\{x, y\}$ that is heavy and has no common neighbors with x (except possibly y).

Lemma A.4. If x is heavy, y is light, and bad events do not happen, then y has no bad neighbors.

Proof. Suppose that a vertex $z \in \tilde{N}(y) \backslash\{x, y\}$ is heavy; we will show that z must have common neighbors with x.

Since $z \in \tilde{N}(y)$, we have that y and z must be in noised agreement (otherwise (y, z) would have been removed). Since bad event 6 b does not happen, y and z do not TV-disagree, i.e.,

$$
|N(y) \triangle N(z)|<\left(\beta+\beta^{\prime}\right) \max (d(y), d(z))
$$

which also implies that $d(z) \geq\left(1-\beta-\beta^{\prime}\right) d(y)$.
Since bad event 6a does not happen, and y and z do not TV-disagree, and z is heavy, thus z is not TV-light, i.e., $l(z)<\left(\lambda+\lambda^{\prime}\right) d(z)$.
As in the proof of Lemma A.3, since bad events 1 and 2 do not happen, we have

$$
|N(x) \triangle N(y)|<\left(\beta+\beta^{\prime}\right) \max (d(x), d(y))
$$

which also implies that $d(x) \geq\left(1-\beta-\beta^{\prime}\right) d(y)$ and $l(x)<\left(\lambda+\lambda^{\prime}\right) d(x)$. Similarly as in that proof, we write

$$
\begin{aligned}
|\tilde{N}(x) \cap \tilde{N}(z)| & \geq|N(x) \cap N(z)|-|N(x) \backslash \tilde{N}(x)|-|N(z) \backslash \tilde{N}(z)| \\
& =\frac{d(x)+d(z)-|N(x) \triangle N(z)|}{2}-l(x)-l(z) \\
& \geq \frac{d(x)+d(z)-|N(x) \triangle N(y)|-|N(y) \triangle N(z)|}{2}-l(x)-l(z) \\
& \geq \frac{d(x)+d(z)-\left(\beta+\beta^{\prime}\right)(d(x)+d(z))}{2}-\left(\lambda+\lambda^{\prime}\right)(d(x)+d(z)) \\
& =\left(1-\beta-\beta^{\prime}-2\left(\lambda+\lambda^{\prime}\right)\right) \frac{d(x)+d(z)}{2} \\
& \geq\left(1-\beta-\beta^{\prime}-2\left(\lambda+\lambda^{\prime}\right)\right) \frac{d(x)+\left(1-\beta-\beta^{\prime}\right) d(y)}{2} \\
& \geq\left(1-\beta-\beta^{\prime}-2\left(\lambda+\lambda^{\prime}\right)\right) \frac{2-\beta-\beta^{\prime}}{2} T_{1} \\
& \geq 2
\end{aligned}
$$

where the second-last inequality follows as, by (5), we have $d(x), d(y) \geq T_{1}$, and the last inequality follows because

$$
1-\beta-\beta^{\prime}-2\left(\lambda+\lambda^{\prime}\right) \geq 1-0.2-0.1-2 \cdot(0.2+0.1) \geq 0.1>0
$$

and T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq \frac{2 \cdot 2}{\left(1-\beta-\beta^{\prime}-2\left(\lambda+\lambda^{\prime}\right)\right)\left(2-\beta-\beta^{\prime}\right)} \tag{7}
\end{equation*}
$$

Bounding the probability of bad events. Roughly, our strategy is to union-bound over all the bad events.
Fact A.5. Let $A, c, d \geq 0$. If $d \geq \frac{\ln \left(\frac{c / 2}{\delta}\right)}{A}$, then $\frac{1}{2} \exp (-A \cdot d) \leq \frac{\delta}{c}$.
Proof. A straightforward calculation.
Claim A.6. The probability of bad event 1, conditioned on bad events 4 and 5 not happening, is at most $\delta / 8$.

Proof. Start by recalling that by $(5), d(x), d(y) \geq T_{1}$. We have that the sought probability is at most

$$
\operatorname{Pr}\left[\mathcal{E}_{x, y}<-\beta^{\prime} \cdot \max (d(x), d(y))\right] \leq \frac{1}{2} \exp \left(-\frac{\beta^{\prime} \cdot \max (d(x), d(y))}{\mathcal{E}}\right)
$$

where we use \mathcal{E} to denote the magnitude of $\mathcal{E}_{x, y}$, i.e.,

$$
\mathcal{E}=\max \left(1, \frac{\gamma \sqrt{\max (d(x), d(y)) \cdot \ln \left(1 / \delta_{\mathrm{agr}}\right)}}{\epsilon_{\mathrm{agr}}}\right)
$$

We will satisfy both

$$
\frac{1}{2} \exp \left(-\beta^{\prime} \cdot \max (d(x), d(y))\right) \leq \frac{\delta}{8}
$$

and

$$
\frac{1}{2} \exp \left(-\frac{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime} \cdot \max (d(x), d(y))}{\gamma \sqrt{\max (d(x), d(y)) \cdot \ln \left(1 / \delta_{\mathrm{agr}}\right)}}\right) \leq \frac{\delta}{8}
$$

For the former, by applying Fact A.5 (for $c=8, A=\beta^{\prime}$ and $d=\max (d(x), d(y))$) we get that it is enough to have $\max (d(x), d(y)) \geq \frac{\ln (4 / \delta)}{\beta^{\prime}}$, which holds when T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq \frac{\ln (4 / \delta)}{\beta^{\prime}} \tag{8}
\end{equation*}
$$

For the latter, we want to satisfy

$$
\frac{1}{2} \exp \left(-\frac{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime} \cdot \sqrt{\max (d(x), d(y))}}{\gamma \sqrt{\ln \left(1 / \delta_{\mathrm{agr}}\right)}}\right) \leq \frac{\delta}{8}
$$

Use Fact A.5 (for $c=8, A=\frac{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime}}{\gamma \sqrt{\ln \left(1 / \delta_{\mathrm{agr})}\right.}}$ and $\left.d=\sqrt{\max (d(x), d(y))}\right)$ to get that it is enough to have

$$
\sqrt{\max (d(x), d(y))} \geq \frac{\ln (4 / \delta) \cdot \gamma \cdot \sqrt{\ln \left(1 / \delta_{\mathrm{agr}}\right)}}{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime}}
$$

which is true when T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq\left(\frac{\ln (4 / \delta) \cdot \gamma}{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime}}\right)^{2} \cdot \ln \left(1 / \delta_{\mathrm{agr}}\right) \tag{9}
\end{equation*}
$$

Claim A.7. The probability of bad event 2, conditioned on bad events 4 and 5 not happening, is at most $\delta / 32$.

Proof. Start by recalling that by 5 , $d(x) \geq T_{1}$. If x is TV-light but heavy, then we must have $Y_{x}<\lambda^{\prime} \cdot d(x)$. We have that the sought probability is at most

$$
\frac{1}{2} \exp \left(-\frac{\lambda^{\prime} \cdot d(x) \cdot \epsilon}{8}\right)
$$

and by Fact A. 5 (with $c=32, d=d(x)$ and $A=\frac{\lambda^{\prime} \cdot \epsilon}{8}$) this is at most $\delta / 32$ because $d(x) \geq T_{1}$ and T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq \frac{8 \ln (16 / \delta)}{\lambda^{\prime} \cdot \epsilon} \tag{10}
\end{equation*}
$$

Claim A.8. The probability of bad event 4 is at most $\delta / 32$.

Proof. For bad event 4 to happen, we must have $Z_{x} \geq T_{0}-T_{1}=\frac{8 \ln (16 / \delta)}{\epsilon}$; as $Z_{x} \sim \operatorname{Lap}(8 / \epsilon)$, this happens with probability $\frac{1}{2} \exp (-\ln (16 / \delta))=\delta / 32$.

The following two facts are more involved versions of Fact A. 5 .
Fact A.9. Let $A, d \geq 0$. If $d \geq \frac{1.6 \ln \left(\frac{4}{\delta A}\right)}{A}$, then $\frac{1}{2} \exp (-A \cdot d) \leq \frac{\delta}{8 d}$.

Proof. We use the following analytic inequality: for $\alpha, x>0$, if $x \geq 1.6 \ln (\alpha)$, then $x \geq \ln (\alpha x)$. We substitute $x=A \cdot d$ and $\alpha=\frac{4}{\delta A}$. Then by the analytic inequality, $A \cdot d \geq \ln \left(\frac{4 d}{\delta}\right)$. Negate and then exponentiate both sides.

Fact A.10. Let $A, d \geq 0$. If $\sqrt{d} \geq \frac{2.8 \cdot\left(1+\ln \left(\frac{2}{\sqrt{\delta A}}\right)\right)}{A}$, then $\frac{1}{2} \exp (-A \cdot \sqrt{d}) \leq \frac{\delta}{8 d}$.

Proof. We use the following analytic inequality: for $\alpha, x>0$, if $x \geq 2.8(\ln (\alpha)+1)$, then $x \geq$ $2 \ln (\alpha x)$. We substitute $x=A \sqrt{d}$ and $\alpha=\frac{2}{\sqrt{\delta} A}$. Then by the analytic inequality, $A \cdot \sqrt{d} \geq \ln \left(\frac{4 d}{\delta}\right)$. Negate and then exponentiate both sides.

Claim A.11. For any $z \in N(y) \backslash\{x, y\}$, the probability of bad event 6 a for z, conditioned on bad events 4 and 5 not happening, is at most $\frac{\delta}{8 d(y)}$.

Proof. The proof is similar as for Claim A. 7 but somewhat more involved as $d(y)$ appears also in the probability bound.
When z is TV-light but heavy, we must have $Y_{z}<-\lambda^{\prime} \cdot d(z)$. When y and z do not TV-disagree, we have $d(z) \geq\left(1-\beta-\beta^{\prime}\right) d(y)$. Thus, if bad event 6a happens, we must have $Y_{z}<-\lambda^{\prime} \cdot\left(1-\beta-\beta^{\prime}\right) d(y)$. Thus the sought probability is at most

$$
\operatorname{Pr}\left[Y_{z}<-\lambda^{\prime} \cdot\left(1-\beta-\beta^{\prime}\right) d(y)\right]=\frac{1}{2} \exp \left(-\frac{\lambda^{\prime} \cdot\left(1-\beta-\beta^{\prime}\right) d(y) \cdot \epsilon}{8}\right)
$$

By Fact A. 9 (invoked for $d=d(y)$ and $A=\frac{\lambda^{\prime} \cdot\left(1-\beta-\beta^{\prime}\right) \cdot \epsilon}{8}$), this is at most $\frac{\delta}{8 d(y)}$ because $d(y) \geq T_{1}$ by (5) and T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq \frac{1.6 \ln \left(\frac{4 \cdot 8}{\delta \lambda^{\prime} \cdot\left(1-\beta-\beta^{\prime}\right) \cdot \epsilon}\right) \cdot 8}{\lambda^{\prime} \cdot\left(1-\beta-\beta^{\prime}\right) \cdot \epsilon} \tag{11}
\end{equation*}
$$

Claim A.12. For any $z \in N(y) \backslash\{x, y\}$, the probability of bad event $6 b$ for z, conditioned on bad events 4 and 5 not happening, is at most $\frac{\delta}{8 d(y)}$.

Proof. The proof is similar as for Claim A. 6 but somewhat more involved as $d(y)$ appears also in the probability bound. Start by recalling that by (5), $d(y) \geq T_{1}$. We have that the sought probability is at most

$$
\operatorname{Pr}\left[\mathcal{E}_{y, z}<-\beta^{\prime} \cdot \max (d(y), d(z))\right] \leq \frac{1}{2} \exp \left(-\frac{\beta^{\prime} \cdot \max (d(y), d(z))}{\mathcal{E}}\right)
$$

where we use \mathcal{E} to denote the magnitude of $\mathcal{E}_{y, z}$, i.e.,

$$
\mathcal{E}=\max \left(1, \frac{\gamma \sqrt{\max (d(y), d(z)) \cdot \ln \left(1 / \delta_{\mathrm{agr}}\right)}}{\epsilon_{\mathrm{agr}}}\right)
$$

We will satisfy both

$$
\begin{equation*}
\frac{1}{2} \exp \left(-\beta^{\prime} \cdot \max (d(y), d(z))\right) \leq \frac{1}{2} \exp \left(-\beta^{\prime} \cdot d(y)\right) \leq \frac{\delta}{8 d(y)} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \exp \left(-\frac{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime} \cdot \max (d(y), d(z))}{\gamma \sqrt{\max (d(y), d(z)) \cdot \ln \left(1 / \delta_{\mathrm{agr}}\right)}}\right) \leq \frac{1}{2} \exp \left(-\frac{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime} \cdot \sqrt{d(y)}}{\gamma \sqrt{\ln \left(1 / \delta_{\mathrm{agr}}\right)}}\right) \leq \frac{\delta}{8 d(y)} \tag{13}
\end{equation*}
$$

For the former, by applying Fact A.9 (for $A=\beta^{\prime}$ and $d=d(y)$) we get that 12 holds because $d(y) \geq T_{1}$ and T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq \frac{1.6 \ln \left(\frac{4}{\delta \cdot \beta^{\prime}}\right)}{\beta^{\prime}} \tag{14}
\end{equation*}
$$

For the latter, by applying Fact A.10 (for $A=\frac{\epsilon_{\text {agr }} \cdot \beta^{\prime}}{\gamma \sqrt{\ln \left(1 / \delta_{\text {agr }}\right)}}$ and $d=d(y)$) we get that (13) holds because $d(y) \geq T_{1}$ and T_{1} is large enough:

$$
\begin{equation*}
T_{1} \geq\left(\frac{2.8\left(1+\ln \left(\frac{2}{\sqrt{\delta} A}\right)\right)}{A}\right)^{2}=\left(\frac{2.8\left(1+\ln \left(\frac{2 \gamma \sqrt{\ln \left(1 / \delta_{\mathrm{agr}}\right)}}{\sqrt{\delta} \epsilon_{\mathrm{agr}} \cdot \beta^{\prime}}\right)\right) \gamma \sqrt{\ln \left(1 / \delta_{\mathrm{agr}}\right)}}{\epsilon_{\mathrm{agr}} \cdot \beta^{\prime}}\right)^{2} \tag{15}
\end{equation*}
$$

Now we may conclude the proof of Theorem 4.4. We use the property that if A, B are events, then $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B \mid$ not $A]$ (with A being bad events 4 or 5). By Claim A.8, the probability of bad events 4 or 5 is at most $\delta / 16$. Conditioned on these not happening, bad event 1 is handled by Claim A.6 and bad events 2-3 are handled by Claim A.7, these incur $\delta / 8+2 \cdot \delta / 32$, in total $\delta / 4$ so far. Next, there are $d(y)$ bad events of type 6 (and the same for $6 \mathbf{b}$), thus we get $2 \cdot d(y) \cdot \frac{\delta}{8 d(y)}=\delta / 4$ by Claims A. 11 and A.12, and we get the same from bad events 7 a and 7 b . Summing everything up yields $\frac{3}{4} \delta$.

B Proofs Missing from Section 5

B. 1 Proof of Lemma 5.1

First, we prove the following claim.
Lemma B.1. Let $\overline{\beta^{L}}, \overline{\beta^{U}} \in \mathbb{R}_{\geq 0}^{V \times V}$ and $\overline{\lambda^{L}}, \overline{\lambda^{U}} \in \mathbb{R}_{\geq 0}^{V}$ such that $\overline{\beta^{U}} \geq \overline{\beta^{L}}$ and $\overline{\lambda^{U}} \geq \overline{\lambda^{L}}$. Let $E_{\text {rem }}$ be a subset of edges. Then, the following holds:
(A) If v is light in ALG- $\operatorname{CC}\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$, then v is light in ALG- $\operatorname{CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$.
(B) If v is heavy in $\operatorname{ALG-CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$, then v is heavy in $\operatorname{ALG-CC}\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$.
(C) If an edge e is removed in $\operatorname{ALG}-\mathrm{CC}\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$, then e is removed in $\operatorname{ALG}-\mathrm{CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$ as well.
(D) If an edge e remains in $\operatorname{ALG}-\mathrm{CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$, then e remains in $\operatorname{ALG-CC}\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$ as well.

Proof. Observe that $|N(u) \triangle N(v)| \leq \bar{\beta}^{L}{ }_{u, v} \max \{d(u), d(v)\}$ implies $|N(u) \triangle N(v)| \leq$ $\bar{\beta}^{U}{ }_{u, v} \max \{d(u), d(v)\}$ as $\bar{\beta}^{L}{ }_{u, v} \leq \bar{\beta}^{U}{ }_{u, v}$. Hence, if u and v are in agreement in $\operatorname{ALG}-\operatorname{CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$, then u and v are in agreement in ALG-CC $\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$ as well. Similarly, if u and v are not in agreement in ALG-CC $\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$, then u and v are not in agreement in ALG-CC $\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$ as well. These observations immediately yield Properties (A) and (B).
To prove Properties (C) and (D), observe that an edge $e=\{u, v\}$ is removed from a graph if u and v are not in agreement, or if u and v are light, or if $e \in E_{\mathrm{rem}}$. From our discussion above and from Property (A), if e is removed from ALG-CC $\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$, then e is removed from $\operatorname{ALG}-\mathrm{CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$ as well. On the other hand, $e \notin E_{\text {rem }}$ remains in ALG-CC $\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$ if u and v are in agreement, and if u or v is heavy. Property (B) and our discussion about vertices in agreement imply Property (D) ${ }^{1}$

As a corollary, we obtain the proof of Lemma 5.1
Lemma 5.1. Let $\overline{\beta^{L}}, \overline{\beta^{U}} \in \mathbb{R}_{\geq 0}^{V \times V}$ and $\overline{\lambda^{L}}, \overline{\lambda^{U}} \in \mathbb{R}_{\geq 0}^{V}$ such that $\overline{\beta^{U}} \geq \overline{\beta^{L}}$ and $\overline{\lambda^{U}} \geq \overline{\lambda^{L}}$.
(i) If u and v are in the same cluster of $\operatorname{ALG-CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$, then u and v are in the same cluster of ALG-CC $\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$.
(ii) If u and v are in different clusters of $\operatorname{ALG}-\mathrm{CC}\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$, then u and v are different clusters of ALG-CC $\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$.

Proof. (i) Consider a path P between u and v that makes them being in the same cluster/component in $\operatorname{ALG}-\operatorname{CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\text {rem }}\right)$. Then, by Lemma B. 1 (D) P remains in ALG-CC $\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\text {rem }}\right)$ as well. Hence, u and v are in the same cluster of $\operatorname{ALG}-\mathrm{CC}\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\mathrm{rem}}\right)$.
(ii) Follows from Property (i) by contraposition.

B. 2 Proof of Lemma 5.3

We begin by proving the following claim.

[^0]Lemma B.2. Let ALG-CC' be a version of ALG-CC that does not make singletons of light vertices on Line 4 of Algorithm 2. Let $\bar{\beta} \in \mathbb{R}_{\geq 0}^{V \times V}$ and $\bar{\lambda} \in \mathbb{R}_{\geq 0}^{V}$ be two constant vectors, i.e., $\bar{\beta}=\beta \overline{1}$ and $\bar{\lambda}=\lambda \overline{1}$. Assume that $5 \beta+2 \lambda<1$. Then, it holds

$$
\operatorname{cost}\left(\operatorname{ALG}-\mathrm{CC}^{\prime}\left(\bar{\beta}, \bar{\lambda}, E_{\leq T}\right)\right) \leq O(O P T /(\beta \lambda))+O\left(n \cdot T /(1-4 \beta)^{3}\right),
$$

where OPT denotes the cost of the optimum clustering for the input graph.

Proof. Consider a non-singleton cluster C output by $\operatorname{AlG-CC}^{\prime}(\bar{\beta}, \bar{\lambda}, \emptyset)$. Let u be a vertex in C. We now show that for any $v \in C$, such that u or v is heavy, it holds that $d(v) \geq(1-4 \beta) d(u)$. To that end, we recall that in [CALM ${ }^{+}$21] (Lemma 3.3 of the arXiv version) it was shown that

$$
\begin{equation*}
|N(u) \triangle N(v)| \leq 4 \beta \max \{d(u), d(v)\} \tag{16}
\end{equation*}
$$

Assume that $d(u) \geq d(v)$, as otherwise $d(v) \geq(1-4 \beta) d(u)$ holds directly. Then, from Eq. (16) we have

$$
d(u)-d(v) \leq|N(u) \triangle N(v)| \leq 4 \beta d(u)
$$

further implying

$$
d(v) \geq(1-4 \beta) d(u)
$$

Moreover, this provides a relation between $d(v)$ and $d(u)$ even if both vertices are light. To see that, fix any heavy vertex z in the cluster. Any vertex u has $d(u) \leq d(z) /(1-4 \beta)$ and also $d(u) \geq$ $(1-4 \beta) d(z)$. This implies that if u and v belong to the same cluster than $d(u) \geq(1-4 \beta)^{2} d(v)$, even if both u and v are light.

Let $E_{\leq T}$ be a subset (any such) of edges incident to vertices with degree at most T. We will show that forcing ALG-CC' to remove $E_{\leq T}$ does not affect how vertices of degree at least $T /(1-4 \beta)^{3}$ are clustered by ALG-CC'. To see that, observe that a vertex x having degree at most T and a vertex y having degree at least $T /(1-\beta)+1$ are not in agreement. Hence, forcing ALG-CC' to remove $E_{\leq T}$ does not affect whether vertex y is light or not.

However, removing $E_{\leq T}$ might affect whether a vertex z with degree $T /(1-\beta)<T /(1-4 \beta)$ is light or not. Nevertheless, from our discussion above, a vertex y with degree at least $T /(1-4 \beta)^{3}$ is not clustered together with z by $\operatorname{ALG-CC}(\beta, \lambda, \emptyset)$, regardless of whether z is heavy or light.
This implies that the cost of clustering vertices of degree at least $T /(1-4 \beta)^{3}$ by $\operatorname{ALG}^{\prime} \mathrm{CC}^{\prime}\left(\beta, \lambda, E_{\leq T}\right)$ is upper-bounded by $\operatorname{cost}\left(\operatorname{ALG}-\mathrm{CC}^{\prime}(\bar{\beta}, \bar{\lambda}, \emptyset)\right) \leq O(O P T /(\beta \lambda))$. Notice that the inequality follows since ALG-CC ${ }^{\prime}(\bar{\beta}, \bar{\lambda}, \emptyset)$ is a $O(1 /(\beta \lambda))$-approximation of $O P T$ and $\beta<0.2$.

It remains to account for the cost effect of $\operatorname{ALG-CC}^{\prime}\left(\bar{\beta}, \bar{\lambda}, E_{\leq T}\right)$ on the vertices of degree less than $T /(1-4 \beta)^{3}$. This part of the analysis follows from the fact that forcing ALG-CC' to remove $E_{\leq T}$ only reduces connectivity compared to the output of ALG-CC' without removing $E_{\leq T}$. That is, in addition to removing edges even between vertices that might be in agreement, removal of $E_{\leq T}$ increases a chance for a vertex to become light. Hence, the clusters of ALG-CC' with removals of $E_{\leq T}$ are only potentially further clustered compared to the output of ALG-CC' without the removal. This means that ALG-CC' with the removal of $E_{\leq T}$ potentially cuts additional " + " edges, but it does not include additional "-" edges in the same cluster. Given that only vertices of degree at most $T /(1-4 \beta)^{3}$ are affected, the number of additional " + " edges cut is $O\left(n \cdot T /(1-4 \beta)^{3}\right)$.
This completes the analysis.
Lemma 5.3. Let Algorithm 1' be a version of Algorithm 1 that does not make singletons of light vertices on Line 4 Assume that $5 \beta+2 \lambda<1 / 1.1$ and also assume that β and λ are positive constants. With probability at least $1-n^{-2}$, Algorithm 1, provides a solution which has $O(1)$ multiplicative and $O\left(n \cdot\left(\frac{\log n}{\epsilon}+\frac{\log ^{2} n \cdot \log (1 / \delta)}{\min \left(1, \epsilon^{2}\right)}\right)\right)$ additive approximation.

Proof. We now analyze under which condition noised agreement and $\hat{l}(v)$ can be seen as a slight perturbation of β and λ. That will enable us to employ Lemmas 5.2 and B.2 to conclude the proof of this theorem.

Analyzing noised agreement. Recall that a noised agreement Definition 3.1) states

$$
|N(u) \triangle N(v)|+\mathcal{E}_{u, v}<\beta \cdot \max (d(u), d(v))
$$

This inequality can be rewritten as

$$
|N(u) \triangle N(v)|<\left(1-\frac{\mathcal{E}_{u, v}}{\beta \cdot \max (d(u), d(v))}\right) \beta \cdot \max (d(u), d(v))
$$

As a reminder, $\mathcal{E}_{u, v}$ is drawn from $\operatorname{Lap}\left(C_{u, v} \cdot \sqrt{\max (d(u), d(v)) \ln (1 / \delta)} / \epsilon_{\text {agr }}\right)$, where $C_{u, v}$ can be upper-bounded by $C=\sqrt{4 \epsilon_{\text {agr }}+1}+1$. Let $b=C \cdot \sqrt{\max (d(u), d(v)) \ln (1 / \delta)} / \epsilon_{\mathrm{agr}}$. From Fact 2.5we have that

$$
\operatorname{Pr}\left[\left|\mathcal{E}_{u, v}\right|>5 \cdot b \cdot \log n\right] \leq n^{-5}
$$

Therefore, with probability at least $1-n^{-5}$ we have that

$$
\left|\frac{\mathcal{E}_{u, v}}{\beta \cdot \max (d(u), d(v))}\right| \leq \frac{5 \cdot \log n \cdot C \cdot \sqrt{\max (d(u), d(v)) \ln (1 / \delta)}}{\epsilon_{\mathrm{agr}} \cdot \beta \cdot \max (d(u), d(v))}=\frac{5 \cdot \log n \cdot C \cdot \sqrt{\ln (1 / \delta)}}{\epsilon_{\mathrm{agr}} \cdot \beta \cdot \sqrt{\max (d(u), d(v))}}
$$

Therefore, for $\max (d(u), d(v)) \geq \frac{2500 \cdot C^{2} \cdot \log ^{2} n \cdot \log (1 / \delta)}{\beta^{2} \cdot \epsilon_{\text {agr }}^{2}}$ we have that with probability at least $1-n^{-5}$ it holds

$$
1-\frac{\mathcal{E}_{u, v}}{\beta \cdot \max (d(u), d(v))} \in[9 / 10,11 / 10]
$$

Analyzing noised $l(v)$. As a reminder, $\hat{l}(v)=l(v)+Y_{v}$, where Y_{v} is drawn from $\operatorname{Lap}(8 / \epsilon)$. The condition $\hat{l}(v)>\lambda d(v)$ can be rewritten as

$$
l(v)>\left(1-\frac{Y_{v}}{\lambda d(v)}\right) \lambda d(v) .
$$

Also, we have

$$
\operatorname{Pr}\left[\left|Y_{v}\right|>\frac{40 \log n}{\epsilon}\right]<n^{-5}
$$

Hence, if $d(v) \geq \frac{400 \log n}{\lambda \epsilon}$ then with probability at least $1-n^{-5}$ we have that

$$
1-\frac{Y_{v}}{\lambda d(v)} \in[9 / 10,11 / 10] .
$$

Analyzing noised degrees. Recall that noised degree $\hat{d}(v)$ is defined as $\hat{d}(v)=d(v)+Z_{v}$, where Z_{v} is drawn from $\operatorname{Lap}(8 / \epsilon)$. From Fact 2.5 we have

$$
\operatorname{Pr}\left[\left|Z_{v}\right|>\frac{40 \log n}{\epsilon}\right]<n^{-5}
$$

Hence, with probability at least $1-n^{-5}$, a vertex of degree at least $T_{0}+40 \log n / \epsilon$ is in H defined on Line 1 of Algorithm 1. Also, with probability at least $1-n^{-5}$ a vertex with degree less than $T_{0}-40 \log n / \epsilon$ is not in H.

Combining the ingredients. Define

$$
T^{\prime}=\max \left(\frac{400 \log n}{\lambda \epsilon}, \frac{2500 \cdot C^{2} \cdot \log ^{2} n \cdot \log (1 / \delta)}{\beta^{2} \cdot \epsilon_{\mathrm{agr}}^{2}}\right)
$$

Our analysis shows that for a vertex v such that $d(v) \geq T^{\prime}$ the following holds with probability at least $1-2 n^{-5}$:
(i) The perturbation by $\mathcal{E}_{u, v}$ in Definition 3.1 can be seen as multiplicatively perturbing $\bar{\beta}_{u, v}$ by a number from the interval $[-1 / 10,1 / 10]$.
(ii) The perturbation of $l(v)$ by Y_{v} can be seen as multiplicatively perturbing $\bar{\lambda}_{v}$ by a number from the interval $[-1 / 10,1 / 10]$.

Let $T=T_{0}+\frac{40 \log n}{\epsilon}$. Let $T_{0} \geq T^{\prime}+\frac{40 \log n}{\epsilon}$. Note that this imposes a constraint on T_{1}, which is

$$
\begin{equation*}
T_{1} \geq T^{\prime}+\frac{40 \log n}{\epsilon}-\frac{8 \log (16 / \delta)}{\epsilon} \tag{17}
\end{equation*}
$$

Then, following our analysis above, each vertex in H has degree at least T^{\prime}, and each vertex of degree at least T is in H. Let $E_{\leq T}$ be the set of edges incident to vertices which are not in H; these edges are effectively removed from the graph. Observe that for a vertex u which do not belong to H it is irrelevant what $\bar{\beta}_{u, \text {. values are or what }} \bar{\lambda}_{u}$ is, as all its incident edges are removed. To conclude the proof, define $\overline{\beta^{L}}=0.9 \cdot \beta \cdot \overline{1}, \overline{\beta^{U}}=1.1 \cdot \beta \cdot \overline{1}, \overline{\lambda^{L}}=0.9 \cdot \lambda \cdot \overline{1}$, and $\overline{\lambda^{U}}=1.1 \cdot \lambda \cdot \overline{1}$. By Lemma 5.2 and Properties (i) and (ii) we have that

$$
\operatorname{cost}(\text { Algorithm } 1) \leq \operatorname{cost}\left(\operatorname{ALG}-\operatorname{CC}\left(\overline{\beta^{L}}, \overline{\lambda^{L}}, E_{\leq T}\right)\right)+\operatorname{cost}\left(\operatorname{ALG}-\operatorname{CC}\left(\overline{\beta^{U}}, \overline{\lambda^{U}}, E_{\leq T}\right)\right)
$$

By Lemma B. 2 the latter sum is upper-bounded by $O(O P T /(\beta \lambda))+O\left(n \cdot T /(1-4 \beta)^{3}\right)$. Note that we replace the condition $5 \beta+2 \lambda$ in the statement of Lemma B. 2 by $5 \beta+2 \lambda<1 / 1.1$ in this lemma so to account for the perturbations. Moreover, we can upper-bound T by

$$
T \leq O\left(\frac{\log n}{\lambda \epsilon}+\frac{\log ^{2} n \cdot \log (1 / \delta)}{\beta^{2} \cdot \min \left(1, \epsilon^{2}\right)}\right)
$$

In addition, all discussed bound hold across all events with probability at least $1-n^{-2}$. This concludes the analysis.

B. 3 Proof of Lemma 5.4

Lemma 5.4. Consider all lights vertices defined in Line 4 of Algorithm 1 Assume that $5 \beta+2 \lambda<$ $1 / 1.1$. Then, with probability at least $1-n^{-2}$, making as singleton clusters any subset of those light vertices increases the cost of clustering by $O\left(\mathrm{OPT} /(\beta \cdot \lambda)^{2}\right)$, where OPT denotes the cost of the optimum clustering for the input graph.

Proof. Consider first a single light vertex v which is not a singleton cluster. Let C be the cluster of \hat{G}^{\prime} that v initially belongs to. We consider two cases. First, recall that from our proof of Lemma 5.3 that, with probability at least $1-n^{-2}$, we have that $0.9 \lambda \leq \bar{\lambda}_{v} \leq 1.1 \lambda$ and $0.9 \beta \leq \bar{\beta}_{u, v} \leq 1.1 \beta$, where $\bar{\lambda}$ and $\bar{\beta}$ are inputs to ALG-CC.

Case 1: v has at least $\bar{\lambda}_{v} / 2$ fraction of neighbors outside C. In this case, the cost of having v in C is already at least $d(v) \cdot \bar{\lambda}_{v} / 2 \geq d(v) \cdot 0.9 \cdot \lambda / 2$, while having v as a singleton has cost $d(v)$.

Case 2: v has less than $\bar{\lambda}_{v} / 2$ fraction of neighbors outside C. Since v is not in agreement with at least $\bar{\lambda}_{v}$ fraction of its neighbors, this case implies that at least $\bar{\lambda}_{v} / 2 \geq 0.9 \cdot \lambda / 2$ fraction of those neighbors are in C. We now develop a charging arguments to derive the advertised approximation.
Let $x \in C$ be a vertex that v is not in a agreement with. Then, for a fixed x and v in the same cluster of \hat{G}^{\prime}, there are at least $O(d(v) \beta$) vertices z (incident to x or v, but not to the other vertex) that the current clustering is paying for. In other words, the current clustering is paying for edges of the form $\{z, x\}$ and $\{z, v\}$; as a remark, z does not have to belong to C. Let $Z(v)$ denote the multiset of all such edges for a given vertex v. We charge each edge in $Z(v)$ by $O(1 /(\beta \lambda))$.
On the other hand, making v a singleton increases the cost of clustering by at most $d(v)$. We now want to argue that there is enough charging so that we can distribute the cost $d(v)$ (for making v a singleton cluster) over $Z(v)$ and, moreover, do that for all light vertices v simultaneously. There are at least $O(\beta \cdot d(v) \cdot \lambda \cdot d(v))$ edges in $Z(v)$; recall that $Z(v)$ is a multiset. We distribute uniformly the cost $d(v)$ (for making v a singleton) across $Z(v)$, incurring $O(1 /(\beta \cdot \lambda \cdot d(v)))$ cost per an element of $Z(v)$.

Now it remains to comment on how many times an edge appears in the union of all $Z(\cdot)$ multisets. Edge $z_{e}=\{x, y\}$ in included in $Z(\cdot)$ when x and its neighbor, or y and its neighbor are considered. Moreover, those neighbors belong to the same cluster of \hat{G}^{\prime} and hence have similar degrees (i.e., as shown in the proof of Lemma B.2, their degrees differ by at most $(1-4 \beta)^{2}$ factor). Hence, an edge $z_{e} \in Z(v)$ appears $O(d(v))$ times across all $Z(\cdot)$, which concludes our analysis.

C Lower bound

In this section we show that any private algorithm for correlation clustering must incur at least $\Omega(n)$ additive error in the approximation guarantee, regardless of its multiplicative approximation ratio. The following is a restatement of Theorem 1.2 .
Theorem C.1. Let \mathcal{A} be an $(\epsilon, \delta)-D P$ algorithm for correlation clustering on unweighted complete graphs, where $\epsilon \leq 1$ and $\delta \leq 0.1$. Then the expected cost of \mathcal{A} is at least $n / 20$, even when restricted to instances whose optimal cost is 0 .

Proof. Fix an even number $n=2 m$ of vertices and consider the fixed perfect matching (1, 2), (3, 4), $\ldots,(2 m-1,2 m)$. For every vector $\tau \in\{0,1\}^{m}$ we consider the instance I_{τ} obtained by having plus-edges $(2 i-1,2 i)$ for those $i=1, \ldots, m$ where $\tau_{i}=1$ (and minus-edges for i with $\tau_{i}=0$, as well as everywhere outside this perfect matching). Note that this instance is a complete unweighted graph and has optimal cost 0 .
For $\tau \in\{0,1\}^{m}$ and $i \in\{1, \ldots, m\}$ define $p_{\tau}^{(i)}$ to be the marginal probability that vertices $2 i-1$ and $2 i$ are in the same cluster when \mathcal{A} is run on the instance I_{τ}.
Finally, for $\sigma \in\{0,1\}^{m-1}, i \in\{1, \ldots, m\}$ and $b \in\{0,1\}$ let $\sigma[i \leftarrow b]$ be the vector σ with the bit b inserted at the i-th position to obtain an m-dimensional vector (note that σ is $(m-1)$-dimensional). Note that $I_{\sigma[i \leftarrow 0]}$ and $I_{\sigma[i \leftarrow 1]}$ are adjacent instances. Thus (ϵ, δ)-privacy gives

$$
\begin{equation*}
p_{\sigma[i \leftarrow 1]}^{(i)} \leq e^{\epsilon} \cdot p_{\sigma[i \leftarrow 0]}^{(i)}+\delta \tag{18}
\end{equation*}
$$

for all i and σ.
Towards a contradiction assume that \mathcal{A} achieves expected cost at most $0.05 n=0.1 \mathrm{~m}$ on every instance I_{τ}. In particular, the expected cost on the matching minus-edges is at most 0.1 m , i.e.,

$$
0.1 m \geq \sum_{i: \tau_{i}=0} p_{\tau}^{(i)}
$$

Summing this up over all vectors $\tau \in\{0,1\}^{m}$ we get

$$
\begin{equation*}
2^{m} \cdot 0.1 m \geq \sum_{\tau \in\{0,1\}^{m}} \sum_{i: \tau_{i}=0} p_{\tau}^{(i)}=\sum_{i} \sum_{\sigma \in\{0,1\}^{m-1}} p_{\sigma[i \leftarrow 0]}^{(i)} \tag{19}
\end{equation*}
$$

and similarly since the expected cost on the matching plus-edges is at most 0.1 m , we get

$$
\begin{aligned}
& 2^{m} \cdot 0.1 m \geq \sum_{\tau \in\{0,1\}^{m}} \sum_{i: \tau_{i}=1}\left(1-p_{\tau}^{(i)}\right) \\
& =\sum_{i} \sum_{\sigma \in\{0,1\}^{m-1}}\left(1-p_{\sigma[i \leftarrow 1]}^{(i)}\right) \\
& \stackrel{18}{\geq} \sum_{i} \sum_{\sigma \in\{0,1\}^{m-1}}\left(1-e^{\epsilon} \cdot p_{\sigma[i \leftarrow 0]}^{(i)}-\delta\right) \\
& =(1-\delta) \cdot m \cdot 2^{m-1}-e^{\epsilon} \cdot \sum_{i} \sum_{\sigma \in\{0,1\}^{m-1}} p_{\sigma[i \leftarrow 0]}^{(i)} \\
& \xrightarrow{19}(1-\delta) \cdot m \cdot 2^{m-1}-e^{\epsilon} \cdot 2^{m} \cdot 0.1 m \\
& \geq 0.45 \cdot m \cdot 2^{m}-0.1 e \cdot 2^{m} \cdot m \text {. }
\end{aligned}
$$

Dividing by $2^{m} \cdot m$ gives $0.1 \geq 0.45-0.1 e$, which is a contradiction.

[^0]: ${ }^{1}$ Also, by contraposition, Property (D) follows from Property (C) and Property (B) follows from Property (A)

