
APPENDIX

Contents

1 Introduction 1

1.1 Main contributions . 2

1.2 Related works . 4

2 Optimal Gradient Sliding for Minimization Problems 4

2.1 Solving the auxiliary subproblems . 5

2.2 Overall complexity of the optimal gradient-sliding 5

3 Application to Distributed Optimization Under Similarity 6

4 Optimal Gradient Sliding for VIs 7

4.1 Sliding via Extragradient . 7

4.2 Solving the auxiliary problem . 8

4.3 Complexity of the optimal gradient sliding . 8

4.4 Application to distributed saddle-point problem under similarity 8

5 Experiments 9

5.1 Minimization . 9

A Proofs for Section 2 16

A.1 Strongly convex case . 16

A.2 Convex case . 19

B Proofs for Section 4 21

B.1 Strongly monotone case . 21

B.2 Monotone case . 23

C Additional experiments 25

C.1 Additional experiments with saddle point problems 25

C.2 Experiment details . 25

15

A Proofs for Section 2

In this section we present a proof of the convergence of Algorithm 1 in the strongly convex case –
Section A.1. We also present a modification of Algorithm 1 for the convex case, as well as a proof of
its convergence – Section A.2.

A.1 Strongly convex case

Here we prove Theorem 1. First, we need the following lemmas:

Lemma 1. Consider Algorithm 1. Let ✓ be defined as in Theorem 1: ✓ = 1
2Lp

. Then, under
Assumptions 1-3, the following inequality holds for all x̄ 2 Rd

2hx̄� x
k
g ,rr(xk+1

f)i 2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
� ✓krr(xk+1

f)k2

+ 3✓

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

(18)

Proof. Using µ-strong convexity of r(x), we get

2hx̄� x
k
g ,rr(xk+1

f)i =2hx̄� x
k+1
f ,rr(xk+1

f)i+ 2hxk+1
f � x

k
g ,rr(xk+1

f)i

2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2 + 2hxk+1
f � x

k
g ,rr(xk+1

f)i

=2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2 + 2✓h✓�1(xk+1
f � x

k
g),rr(xk+1

f)i

=2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2

�
1

✓
kx

k+1
f � x

k
gk

2
� ✓krr(xk+1

f)k2

+ ✓k✓
�1(xk+1

f � x
k
g) +rr(xk+1

f)k2.

The definition of Ak
✓(x) and Lp-Lipschitzness of rp (Assumption 3) give

2hx̄� x
k
g ,rr(xk+1

f)i 2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
�

1

✓
kx

k+1
f � x

k
gk

2
� ✓krr(xk+1

f)k2

+ ✓krA
k
✓(x

k+1
f) +rp(xk+1

f)�rp(xk
g)k

2

2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
�

1

✓
kx

k+1
f � x

k
gk

2
� ✓krr(xk+1

f)k2

+ 2✓krA
k
✓(x

k+1
f)k2 + 2✓L2

pkx
k+1
f � x

k
gk

2

=2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
�

1

✓

�
1� 2✓2L2

p

�
kx

k+1
f � x

k
gk

2

� ✓krr(xk+1
f)k2 + 2✓krA

k
✓(x

k+1
f)k2.

With ✓ = 1
2Lp

, we have

2hx̄� x
k
g ,rr(xk+1

f)i 2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
�

1

2✓
kx

k+1
f � x

k
gk

2

� ✓krr(xk+1
f)k2 + 2✓krA

k
✓(x

k+1
f)k2

=2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
�

1

4✓
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

+
1

2✓
kx

k+1
f � argmin

x2Rd

A
k
✓(x)k

2
� ✓krr(xk+1

f)k2 + 2✓krA
k
✓(x

k+1
f)k2.

16

One can observe that Ak
✓(x) is 1

✓ -strongly convex. Hence,

2hx̄� x
k
g ,rr(xk+1

f)i 2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
�

1

4✓
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

+
✓

2
krA

k
✓(x

k+1
f)k2 � ✓krr(xk+1

f)k2 + 2✓krA
k
✓(x

k+1
f)k2

2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
�

1

4✓
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

+ 3✓krA
k
✓(x

k+1
f)k2 � ✓krr(xk+1

f)k2

=2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
� ✓krr(xk+1

f)k2

+ 3✓

✓
krA

k
✓(x

k+1
f)k2 �

1

12✓2
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

◆

=2
h
r(x̄)� r(xk+1

f)
i
� µkx

k+1
f � x̄k

2
� ✓krr(xk+1

f)k2

+ 3✓

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

This completes the proof of Lemma.

Lemma 2. Consider Algorithm 1 for Problem 1 under Assumptions 1-3, with the following tuning:

⌧ = min

(
1,

p
µ

2
p
Lp

)
, ✓ =

1

2Lp
, ⌘ = min

(
1

2µ
,

1

2
p
µLp

)
, ↵ = µ, (19)

and let xk+1
f in line 5 satisfy

krA
k
✓(x

k+1
f)k2

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2
. (20)

Then, the following inequality holds:

1

⌘
kx

k+1
� x

⇤
k
2 +

2

⌧

h
r(xk+1

f)� r(x⇤)
i
 (1� ⇢)

1

⌘
kx

k
� x

⇤
k
2 +

2

⌧

⇥
r(xk

f)� r(x⇤)
⇤�

, (21)

where
⇢ :=

1

2
min

⇢
1,
r

µ

Lp

�
. (22)

Proof. Using line 6 of Algorithm 1, we get
1

⌘
kx

k+1
� x

⇤
k
2 =

1

⌘
kx

k
� x

⇤
k
2 +

2

⌘
hx

k+1
� x

k
, x

k
� x

⇤
i+

1

⌘
kx

k+1
� x

k
k
2

=
1

⌘
kx

k
� x

⇤
k
2 + 2↵hxk+1

f � x
k
, x

k
� x

⇤
i

� 2hrr(xk+1
f), xk

� x
⇤
i+

1

⌘
kx

k+1
� x

k
k
2

=
1

⌘
kx

k
� x

⇤
k
2 + ↵kx

k+1
f � x

⇤
k
2
� ↵kx

k
� x

⇤
k
2
� ↵kx

k+1
f � x

k
k
2

� 2hrr(xk+1
f), xk

� x
⇤
i+

1

⌘
kx

k+1
� x

k
k
2
.

Line 4 of Algorithm 1 gives

1

⌘
kx

k+1
� x

⇤
k
2 =

✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 + ↵kx

k+1
f � x

⇤
k
2 +

1

⌘
kx

k+1
� x

k
k
2
� ↵kx

k+1
f � x

k
k
2

+ 2hrr(xk+1
f), x⇤

� x
k
gi+

2(1� ⌧)

⌧
hrr(xk+1

f), xk
f � x

k
gi.

17

Using (18) with x̄ = x
⇤ and x̄ = x

k
f , we get

1

⌘
kx

k+1
� x

⇤
k
2

✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 + ↵kx

k+1
f � x

⇤
k
2 +

1

⌘
kx

k+1
� x

k
k
2
� ↵kx

k+1
f � x

k
k
2

+ 2
h
r(x⇤)� r(xk+1

f)
i
� µkx

k+1
f � x

⇤
k
2 +

2(1� ⌧)

⌧

h
r(xk

f)� r(xk+1
f)

i

�
1

2⌧Lp
krr(xk+1

f)k2 +
3✓

⌧

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!

=

✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 + (↵� µ)kxk+1

f � x
⇤
k
2
� ↵kx

k+1
f � x

k
k
2

+
1

⌘
k⌘↵(xk+1

f � x
k)� ⌘rr(xk+1

f)k2 �
1

2⌧Lp
krr(xk+1

f)k2

+
2(1� ⌧)

⌧

⇥
r(xk

f)� r(x⇤)
⇤
�

2

⌧

h
r(xk+1

f)� r(x⇤)
i

+
3✓

⌧

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!

✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 + (↵� µ)kxk+1

f � x
⇤
k
2

+ ↵(2⌘↵� 1)kxk+1
f � x

k
k
2 +

✓
2⌘ �

1

2⌧Lp

◆
krr(xk+1

f)k2

+
2(1� ⌧)

⌧

⇥
r(xk

f)� r(x⇤)
⇤
�

2

⌧

h
r(xk+1

f)� r(x⇤)
i

+
3✓

⌧

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

The choice of ↵, ⌘, ⌧ defined by (19) gives

1

⌘
kx

k+1
� x

⇤
k
2

✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 +

2(1� ⌧)

⌧

⇥
r(xk

f)� r(x⇤)
⇤
�

2

⌧

h
r(xk+1

f)� r(x⇤)
i

+
3✓

⌧

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

With (20), we have

1

⌘
kx

k+1
� x

⇤
k
2 +

2

⌧

h
r(xk+1

f)� r(x⇤)
i

✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 +

2(1� ⌧)

⌧

⇥
r(xk

f)� r(x⇤)
⇤

 (1� ⇢)

1

⌘
kx

k
� x

⇤
k
2 +

2

⌧

⇥
r(xk

f)� r(x⇤)
⇤�

,

where ⇢ is defined by (22).

To prove Theorem 1, it is sufficient to run the recursion (21):

kx
K
� x

⇤
k
2
 (1� ⇢)K

kx

0
� x

⇤
k
2 +

2⌘

⌧

⇥
r(x0)� r(x⇤)

⇤�
= C(1� ⇢)K ,

where C is defined as

C = kx
0
� x

⇤
k
2 +

2⌘

⌧

⇥
r(x0)� r(x⇤)

⇤
.

Hence, choosing number of iterations K given by (5) yields

kx
K
� x

⇤
k
2
 ".

18

A.2 Convex case

The next Algorithm 3 is an adaptation of Algorithm 1 for the convex case. In particular, time-varying
⌧k+1 and ⌘k+1 are used instead of the momentum ↵.

Algorithm 3 Accelerated Extragradient (modification for convex case)

1: Input: x
0 = x

0
f 2 Rd

2: Parameters: K 2 {1, 2, . . .}, {⌧k}Kk=1 ⇢ (0, 1], {⌘k}Kk=1 ⇢ R+, ✓ > 0
3: for k = 0, 1, 2, . . . ,K � 1 do

4: x
k
g = ⌧k+1x

k + (1� ⌧k+1)xk
f

5: x
k+1
f ⇡ argminx2Rd

⇥
A

k
✓(x) := p(xk

g) + hrp(xk
g), x� x

k
gi+

1
2✓kx� x

k
gk

2 + q(x)
⇤

6: x
k+1 = x

k
� ⌘k+1rr(xk+1

f)
7: end for

8: Output: x
K
f

Lemma 3. Consider Algorithm 3 for Problem 1 under Assumptions 1(µ = 0)-3, with the following
tuning:

⌧k =
2

k + 1
, ✓ =

1

2Lp
, ⌘k =

1

2⌧kLp
, (23)

and let xk+1
f in line 5 satisfy

krA
k
✓(x

k+1
f)k2

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2
. (24)

Then, the following inequality holds:

r(xk
f)� r(x⇤)

4Lp

(k + 1)2
kx

0
� x

⇤
k
2
. (25)

Proof. We start from line 6 of Algorithm 3 and get

1

⌘k+1
kx

k+1
� x

⇤
k
2 =

1

⌘k+1
kx

k
� x

⇤
k
2 +

2

⌘k+1
hx

k+1
� x

k
, x

k
� x

⇤
i+

1

⌘k+1
kx

k+1
� x

k
k
2

=
1

⌘k+1
kx

k
� x

⇤
k
2
� 2hrr(xk+1

f), xk
� x

⇤
i+

1

⌘k+1
kx

k+1
� x

k
k
2
.

Line 4 of Algorithm 3 gives

1

⌘k+1
kx

k+1
� x

⇤
k
2 =

1

⌘k+1
kx

k
� x

⇤
k
2 +

1

⌘k+1
kx

k+1
� x

k
k
2

+ 2hrr(xk+1
f), x⇤

� x
k
gi+

2(1� ⌧k+1)

⌧k+1
hrr(xk+1

f), xk
f � x

k
gi.

Using (18) with µ = 0, x̄ = x
⇤ and x̄ = x

k
f , we get

1

⌘k+1
kx

k+1
� x

⇤
k
2

1

⌘k+1
kx

k
� x

⇤
k
2 +

1

⌘k+1
kx

k+1
� x

k
k
2 + 2

h
r(x⇤)� r(xk+1

f)
i

+
2(1� ⌧k+1)

⌧k+1

h
r(xk

f)� r(xk+1
f)

i
�

1

2⌧k+1Lp
krr(xk+1

f)k2

+
3✓

⌧k+1

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!

=
1

⌘k+1
kx

k
� x

⇤
k
2 +

1

⌘k+1
k⌘krr(xk+1

f)k2 �
1

2⌧k+1Lp
krr(xk+1

f)k2

+
2(1� ⌧k+1)

⌧k+1

⇥
r(xk

f)� r(x⇤)
⇤
�

2

⌧k+1

h
r(xk+1

f)� r(x⇤)
i

19

+
3✓

⌧k+1

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!

=
1

⌘k+1
kx

k
� x

⇤
k
2 +

✓
⌘k+1 �

1

2⌧k+1Lp

◆
krr(xk+1

f)k2

+
2(1� ⌧k+1)

⌧k+1

⇥
r(xk

f)� r(x⇤)
⇤
�

2

⌧k+1

h
r(xk+1

f)� r(x⇤)
i

+
3✓

⌧k+1

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

The choice of ⌘k defined by (23) gives

kx
k+1

� x
⇤
k
2
kx

k
� x

⇤
k
2 +

1� ⌧k+1

⌧2k+1Lp

⇥
r(xk

f)� r(x⇤)
⇤
�

1

⌧2k+1Lp

h
r(xk+1

f)� r(x⇤)
i

+
3✓

2⌧2k+1Lp

krA

k
✓(x

k+1
f)k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

With (24), we have

kx
k+1

� x
⇤
k
2 +

1

⌧2k+1Lp

h
r(xk+1

f)� r(x⇤)
i
 kx

k
� x

⇤
k
2 +

1� ⌧k+1

⌧2k+1Lp

⇥
r(xk

f)� r(x⇤)
⇤
. (26)

Let us define k:

 k := kx
k
� x

⇤
k
2 +

1

⌧2kLp

⇥
r(xk

f)� r(x⇤)
⇤
.

Using (26), k defined above and ⌧k defined by (23) we get:
1

⌧k+1Lp

h
r(xk+1

f)� r(x⇤)
i
 k+1

 kx
k
� x

⇤
k
2 +

1� ⌧k+1

⌧2k+1Lp

⇥
r(xk

f)� r(x⇤)
⇤

= kx
k
� x

⇤
k
2 +

(k + 2)2 � 2(k + 2)

4Lp

⇥
r(xk

f)� r(x⇤)
⇤

= kx
k
� x

⇤
k
2 +

(k + 2)k

4Lp

⇥
r(xk

f)� r(x⇤)
⇤

 kx
k
� x

⇤
k
2 +

(k + 1)2

4Lp

⇥
r(xk

f)� r(x⇤)
⇤

= kx
k
� x

⇤
k
2 +

1

⌧2kLp

⇥
r(xk

f)� r(x⇤)
⇤
= k.

Next, we apply the previous inequality
1

⌧k+1Lp

h
r(xk+1

f)� r(x⇤)
i
 k+1 k . . . 1 kx

0
� x

⇤
k
2 +

1� ⌧1

⌧21Lp

⇥
r(x1

f)� r(x⇤)
⇤
.

With ⌧1 = 1, we have
1

⌧k+1Lp

h
r(xk+1

f)� r(x⇤)
i
 kx

0
� x

⇤
k
2
.

Finally, again with the choice of ⌧k defined by (23), we get (25).

Using (25), we get

r(xK
f)� r(x⇤) "

after

T =

r
4Lp

"
kx

0
� x

⇤
k

iterations of Algorithm 3. This is what Theorem 4 is about.

20

B Proofs for Section 4

In this section we present a proof of the convergence of Algorithm 2 in the strongly monotone case –
Section B.1. We also present a modification of Algorithm 2 for the monotone case, as well as a proof
of its convergence – Section B.2.

B.1 Strongly monotone case

Here we prove Theorem 7. First, we need the following lemmas:
Lemma 4. Consider Algorithm 2. Let ✓ be defined as in Theorem 7: ✓ = 1

2Lp
. Then, under

Assumptions 7-9, the following inequality holds for all x̄ 2 Rd

2hx⇤
� x

k
, R(uk)i � 2µkuk

� x
⇤
k
2
� ✓kR(uk)k2

+ 3✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!
.

(27)

Proof. Using property of the solution: R(x⇤) = 0 and µ-strong monotonicity of R(x), we get

2hx⇤
� x

k
, R(uk)i =2hx⇤

� u
k
, R(uk)i+ 2huk

� x
k
, R(uk)i

2hx⇤
� u

k
, R(uk)�R(x⇤)i+ 2huk

� x
k
, R(uk)i

 � 2µkuk
� x

⇤
k
2 + 2huk

� x
k
, R(uk)i

=� 2µkuk
� x

⇤
k
2 + 2✓h✓�1(uk

� x
k), R(uk)i

=� 2µkuk
� x

⇤
k
2

�
1

✓
ku

k
� x

k
k
2
� ✓kR(uk)k2 + ✓k✓

�1(uk
� x

k) +R(uk)k2.

The definition of Bk
✓ (x) and Lp-Lipschitzness of P (Assumption 9) give

2hx⇤
� x

k
, R(uk)i � 2µkuk

� x
⇤
k
2
�

1

✓
ku

k
� x

k
k
2
� ✓kR(uk)k2

+ ✓kB
k
✓ (u

k) + P (uk)� P (xk)k2

� 2µkuk
� x

⇤
k
2
�

1

✓
ku

k
� x

k
k
2
� ✓kR(uk)k2

+ 2✓kBk
✓ (u

k)k2 + 2✓L2
pku

k
� x

k
k
2

=� 2µkuk
� x

⇤
k
2
�

1

✓

�
1� 2✓2L2

p

�
ku

k
� x

k
k
2

� ✓kR(uk)k2 + 2✓kBk
✓ (u

k)k2.

With ✓ = 1
2Lp

, we have

2hx⇤
� x

k
, R(uk)i � 2µkuk

� x
⇤
k
2
�

1

2✓
ku

k
� x

k
k
2
� ✓kR(uk)k2 + 2✓kBk

✓ (u
k)k2

=� 2µkuk
� x̄k

2
�

1

4✓
kx

k
� ũ

k
k
2

+
1

2✓
ku

k
� ũ

k
k
2
� ✓kR(uk)k2 + 2✓kBk

✓ (u
k)k2.

One can observe that Bk
✓ (x) is 1

✓ -strongly monotone. It gives that

1

✓
kx� yk

2
 hB

k
✓ (x)�B

k
✓ (y);x� yi kB

k
✓ (x)�B

k
✓ (y)k · kx� yk,

and with B
k
✓ (ũ

k) = 0 (since ũ
k is the solution of line 4), we get

1

✓2
ku

k
� ũ

k
k
2
 kB

k
✓ (u

k)�B
k
✓ (ũ

k)k2 = kB
k
✓ (u

k)k2.

21

Hence,

2hx⇤
� x

k
, R(uk)i � 2µkuk

� x
⇤
k
2
�

1

4✓
kx

k
� ũ

k
k
2

+
✓

2
kB

k
✓ (u

k)k2 � ✓kR(uk)k2 + 2✓kBk
✓ (u

k)k2

� 2µkuk
� x̄k

2
�

1

4✓
kx

k
� ũ

k
k
2

+ 3✓kBk
✓ (u

k)k2 � ✓kR(uk)k2

=� 2µkuk
� x̄k

2
� ✓kR(uk)k2

+ 3✓

✓
kB

k
✓ (u

k)k2 �
1

12✓2
kx

k
� ũ

k
k
2

◆

=� 2µkuk
� x̄k

2
� ✓kR(uk)k2

+ 3✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!
.

This completes the proof of Lemma.

Lemma 5. Consider Algorithm 2 for Problem 10 under Assumptions 7-9, with the following tuning:

✓ =
1

2Lp
, ⌘ = min

⇢
1

4µ
,

1

4Lp

�
, ↵ = 2µ, (28)

and let uk in line 4 satisfies

kB
k
✓ (u

k)k2
L
2
p

3
kx

k
� ũ

k
k
2
. (29)

Then, the following inequality holds:

kx
k+1

� x
⇤
k
2
 (1� 2µ⌘)K kx

0
� x

⇤
k
2
. (30)

Proof. Using line 5 of Algorithm 2, we get

kx
k+1

� x
⇤
k
2 =kx

k
� x

⇤
k
2 + 2hxk+1

� x
k
, x

k
� x

⇤
i+ kx

k+1
� x

k
k
2

=kx
k
� x

⇤
k
2 + 2⌘↵huk

� x
k
, x

k
� x

⇤
i

� 2⌘hR(uk), xk
� x

⇤
i+ kx

k+1
� x

k
k
2

=kx
k
� x

⇤
k
2 + ⌘↵ku

k
� x

⇤
k
2
� ⌘↵kx

k
� x

⇤
k
2
� ⌘↵ku

k
� x

k
k
2

� 2⌘hR(uk), xk
� x

⇤
i+ kx

k+1
� x

k
k
2
.

With (27), we get

kx
k+1

� x
⇤
k
2
 (1� ⌘↵) kxk

� x
⇤
k
2 + ⌘↵ku

k
� x

⇤
k
2 + kx

k+1
� x

k
k
2
� ⌘↵ku

k
� x

k
k
2

� 2⌘µkuk
� x

⇤
k
2
� ⌘✓kR(uk)k2

+ 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!

=(1� ⌘↵) kxk
� x

⇤
k
2 + k⌘↵(uk

� x
k)� ⌘R(uk)k2 � ⌘↵ku

k
� x

k
k
2

� ⌘(2µ� ↵)kuk
� x

⇤
k
2
� ⌘✓kR(uk)k2

+ 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!

 (1� ⌘↵) kxk
� x

⇤
k
2
� ⌘↵(1� 2⌘↵)kuk

� x
k
k
2

� ⌘(2µ� ↵)kuk
� x

⇤
k
2
� ⌘(✓ � 2⌘)kR(uk)k2

+ 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!
.

22

The choice of ↵, ⌘, ✓ defined by (28) gives

kx
k+1

� x
⇤
k
2
 (1� 2⌘µ) kxk

� x
⇤
k
2 + 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!
.

Using (12) we get

kx
k+1

� x
⇤
k
2
 (1� 2⌘µ) kxk

� x
⇤
k
2
.

To prove Theorem 7, it is sufficient to run the recursion (30):

kx
K
� x

⇤
k
2
 (1� 2⌘µ)K

kx

0
� x

⇤
k
2 +

2⌘

⌧

⇥
r(x0)� r(x⇤)

⇤�
= C(1� ⇢)K ,

Hence, choosing number of iterations K given by (13) yields

kx
K
� x

⇤
k
2
 ".

B.2 Monotone case

The next Algorithm 4 is an adaptation of Algorithm 2 for the monotone case. In particular, we remove
the momentum ↵.

Algorithm 4 Extragradient (modification for monotone case)

1: Input: x
0
2 Rd

2: Parameters: ⌘, ✓ > 0,K 2 {1, 2, . . .}
3: for k = 0, 1, 2, . . . ,K � 1 do

4: Find u
k
⇡ ũ

k where ũ
k is a solution for

Find ũ
k
2 Rd : B

k
✓ (ũ

k) = 0 with B
k
✓ (x) := P (xk) +Q(x) +

1

✓
(x� x

k)

5: x
k+1 = x

k
� ⌘R(uk)

6: end for

7: Output: x
K

Lemma 6. Consider Algorithm 4 for Problem 10 under Assumptions 7(µ = 0)-9, with the following
tuning:

✓ =
1

2Lp
, ⌘ =

1

4Lp
, (31)

and let uk in line 4 satisfies

kB
k
✓ (u

k)k2
L
2
p

3
kx

k
� ũ

k
k
2
. (32)

Then, the following inequality holds:

sup
x2C

hR(x),

1

K

K�1X

k=0

u
k

!
� xi

2Lpkx
0
� xk

2

K
. (33)

Remark 1. Here we do not take the maximum over the entire set Rd (as in the classical version for
VIs [23]), but over C – a compact subset of Rd. Thus, we can also consider unbounded sets in Rd.
This is permissible, since such a version of the criterion is valid if the solution x

⇤ lies in C; for details
see the work of [36].

Proof. We start from line 5 of Algorithm 4 and get

kx
k+1

� xk
2 = kx

k
� xk

2 + 2hxk+1
� x

k
, x

k
� xi+ kx

k+1
� x

k
k
2

= kx
k
� xk

2
� 2⌘hR(uk), xk

� xi+ kx
k+1

� x
k
k
2
.

23

Using (27) with µ = 0, we get

kx
k+1

� xk
2
kx

k
� xk

2 + kx
k+1

� x
k
k
2

� 2⌘hR(uk), uk
� xi � ⌘✓kR(uk)k2

+ 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!

=kx
k
� xk

2
� 2⌘hR(uk), uk

� xi+ ⌘
2
kR(uk)k2 � ⌘✓kR(uk)k2

+ 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!

kx
k
� xk

2
� 2⌘hR(uk), uk

� xi � ⌘(✓ � ⌘)kR(uk)k2

+ 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!
.

The choice of ✓, ⌘ defined by (23) give

kx
k+1

� xk
2
kx

k
� xk

2
� 2⌘hR(uk), uk

� xi

+ 3⌘✓

kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ

k
k
2

!
.

With (32), we have
kx

k+1
� xk

2
 kx

k
� xk

2
� 2⌘hR(uk), uk

� xi.

Summing from k = 0 to K � 1, we obtain

1

K

K�1X

k=0

hR(uk), uk
� xi

kx
0
� xk

2
� kx

K
� xk

2

2⌘K

kx

0
� xk

2

2⌘K
.

Monotonicity of R gives

hR(x),

1

K

K�1X

k=0

u
k

!
� xi =

1

K

K�1X

k=0

hR(x), uk
� xi

1

K

K�1X

k=0

hR(uk), uk
� xi

kx

0
� xk

2

2⌘K

2Lpkx
0
� xk

2

K
.

By taking the supremum over the set C, we get

sup
x2C

hR(x),

1

K

K�1X

k=0

u
k

!
� xi

2Lpkx
0
� xk

2

K
.

Using (33), we get

sup
x2C

hR(x),

1

K

K�1X

k=0

u
k

!
� xi "

after

T =
2Lp

"
kx

0
� x

⇤
k
2

iterations of Algorithm 4. This is what Theorem 10 is about.

24

C Additional experiments

C.1 Additional experiments with saddle point problems

Here we consider a modification of (17), the Robust Linear Regression, which leads to the following
saddle-point formulation:

minw maxkrikRr

1
2N

NP
i=1

⇥
(wT (xi + ri)� yi)2 � �krik

2
⇤
+ �

2 kwk
2
, (34)

where ri is the so-called adversarial noise and � > 0 is the regularization associated with it; we set
� = � = 0, 1 and Rr = 0, 05. The network setting and data generation is the same as discussed in
Section 5.1. We compare with the only existing method for SPPs under similarity, as proposed in [9].
Results are summarized in Figure 2, on synthetic and real data.

Figure 2: Robust Linear Regression (34), under similarity assumption: Proposed method vs. Gradient-
Sliding; synthetic data (first two figures on the left) and real data (last to figures from the right).
Distance from optimality vs. number of communications (first/third panel from the left) and vs.
number of local iterations (second/fourth panel from the left).

It can be seen that our method compares favorably with [9] both on communication and gradient
iterations.

C.2 Experiment details

The numerical experiments are run on a machine with 8 Intel Core(TM) i7-9700KF 3.60GHz CPU
cores with 64GB RAM. The methods are implemented in Python 3.7 using NumPy and SciPy.

In this section, we estimate the smoothness, strong convexity as well as the similarity parameters for
objective (17). We denote the identity matrix as I (with the sizes determined by the context). Given a
set of data points X = (x1 . . . xN)> 2 RN⇥d and an associated set of labels y = (y1 . . . yN)> 2 RN ,
the Linear Regression problem (17) is

min
kwk

g(w) :=
1

2N

NX

i=1

(wT
xi � yi)

2 +
�

2
kwk

2
.

Equivalently, g(w) can be expressed as

g(w) =
1

2N
kXw � yk

2 +
�

2
kwk

2
,

and its gradient writes as

rg(w) =
1

N

�
X

>
Xw �X

>
y
�
�w.

The Hessian of g(w) is

r
2
g(w) =

1

N
X

>
X + �I.

We are now ready to estimate the spectrum of the Hessian

kr
2
g(w)vk

1

N
�max(X

>
X)kvk+ �kvk

✓
1

N
�max(X

>
X) + �

◆
· kvk =: Lgkvk.

25

Therefore, we can estimate the Lipschitz constant of rg(w) as Lg. The same way we can estimate
all Li and take final L = max(Lg, L1, . . . , Ln).

Let us discuss the bound on the similarity parameter. Given two datasets
�
X 2 RN⇥d

, y 2 RN

and
n
eX 2 R eN⇥d

, ey 2 R eN
o

, we define

eg(w) = 1

2 eN
k eXw � ỹk

2 +
�

2
kwk

2
.

And then the similarity coefficient �g,eg between functions g and eg is

�
g,eg = �max

✓
1

N
X

>
X �

1
eN
eX> eX

◆
.

Hence, we can take � = max(�g,g1 , . . . , �g,gn).

Finally, we estimate the strong convexity parameter as µ = �.

As mentioned in the main body of the paper, we simulate the operation of 25 devices on one machine.
For the synthetic dataset, samples on the workers are generated by adding unbiased Gaussian noise to
the server data. For simulations with real data, we considered the LIBSVM datasets (a9a, w7a, w8a)
and give each worker a full data. Then, each device selects at random a part of size m from the full
dataset. Some samples can occur on more than one worker (in this way we artificially increase the
data size).

The parameters L, � are estimated as written above. For the synthetic dataset we choose the noise
level and the regularization parameter such that L/� = 200 and L/� = 105. For the real datasets the
regularization parameter is chosen such that L/� = 106. In Table 2, we give all values of L, �,m, µ.

Table 2: The value of the parameters L, �,m, µ in experiments.

Dataset L µ m �

synthetic 104 10�1 — 20

a9a 2 · 105 2 · 10�1 5000 300

w7a 6, 5 · 104 6, 5 · 10�2 7000 70

w8a 1, 3 · 105 1, 3 · 10�1 10000 90

26

	Introduction
	Main contributions
	Related works

	Optimal Gradient Sliding for Minimization Problems
	Solving the auxiliary subproblems
	Overall complexity of the optimal gradient-sliding

	Application to Distributed Optimization Under Similarity
	Optimal Gradient Sliding for VIs
	Sliding via Extragradient
	Solving the auxiliary problem
	Complexity of the optimal gradient sliding
	Application to distributed saddle-point problem under similarity

	Experiments
	Minimization

	Proofs for Section 2
	Strongly convex case
	Convex case

	Proofs for Section 4
	Strongly monotone case
	Monotone case

	Additional experiments
	Additional experiments with saddle point problems
	Experiment details

