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A Proofs for Section 2

In this section we present a proof of the convergence of Algorithm 1 in the strongly convex case –
Section A.1. We also present a modification of Algorithm 1 for the convex case, as well as a proof of
its convergence – Section A.2.

A.1 Strongly convex case

Here we prove Theorem 1. First, we need the following lemmas:
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2Lp

. Then, under
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One can observe that Ak
✓(x) is 1

✓ -strongly convex. Hence,
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This completes the proof of Lemma.

Lemma 2. Consider Algorithm 1 for Problem 1 under Assumptions 1-3, with the following tuning:
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Using (18) with x̄ = x
⇤ and x̄ = x

k
f , we get

1

⌘
kx

k+1
� x

⇤
k
2


✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 + ↵kx

k+1
f � x

⇤
k
2 +

1

⌘
kx

k+1
� x

k
k
2
� ↵kx

k+1
f � x

k
k
2

+ 2
h
r(x⇤)� r(xk+1

f )
i
� µkx

k+1
f � x

⇤
k
2 +

2(1� ⌧)

⌧

h
r(xk

f )� r(xk+1
f )

i

�
1

2⌧Lp
krr(xk+1

f )k2 +
3✓

⌧

 
krA

k
✓(x

k+1
f )k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!

=

✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 + (↵� µ)kxk+1

f � x
⇤
k
2
� ↵kx

k+1
f � x

k
k
2

+
1

⌘
k⌘↵(xk+1

f � x
k)� ⌘rr(xk+1

f )k2 �
1

2⌧Lp
krr(xk+1

f )k2

+
2(1� ⌧)

⌧

⇥
r(xk

f )� r(x⇤)
⇤
�

2

⌧

h
r(xk+1

f )� r(x⇤)
i

+
3✓

⌧

 
krA

k
✓(x

k+1
f )k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!



✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 + (↵� µ)kxk+1

f � x
⇤
k
2

+ ↵(2⌘↵� 1)kxk+1
f � x

k
k
2 +

✓
2⌘ �

1

2⌧Lp

◆
krr(xk+1

f )k2

+
2(1� ⌧)

⌧

⇥
r(xk

f )� r(x⇤)
⇤
�

2

⌧

h
r(xk+1

f )� r(x⇤)
i

+
3✓

⌧

 
krA

k
✓(x

k+1
f )k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

The choice of ↵, ⌘, ⌧ defined by (19) gives

1

⌘
kx

k+1
� x

⇤
k
2


✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 +

2(1� ⌧)

⌧

⇥
r(xk

f )� r(x⇤)
⇤
�

2

⌧

h
r(xk+1

f )� r(x⇤)
i

+
3✓

⌧

 
krA

k
✓(x

k+1
f )k2 �

L
2
p

3
kx

k
g � argmin

x2Rd

A
k
✓(x)k

2

!
.

With (20), we have

1

⌘
kx

k+1
� x

⇤
k
2 +

2

⌧

h
r(xk+1

f )� r(x⇤)
i


✓
1

⌘
� ↵

◆
kx

k
� x

⇤
k
2 +

2(1� ⌧)

⌧

⇥
r(xk

f )� r(x⇤)
⇤

 (1� ⇢)


1

⌘
kx

k
� x

⇤
k
2 +

2

⌧

⇥
r(xk

f )� r(x⇤)
⇤�

,

where ⇢ is defined by (22).

To prove Theorem 1, it is sufficient to run the recursion (21):

kx
K
� x

⇤
k
2
 (1� ⇢)K


kx

0
� x

⇤
k
2 +

2⌘

⌧

⇥
r(x0)� r(x⇤)

⇤�
= C(1� ⇢)K ,

where C is defined as

C = kx
0
� x

⇤
k
2 +

2⌘

⌧

⇥
r(x0)� r(x⇤)

⇤
.

Hence, choosing number of iterations K given by (5) yields

kx
K
� x

⇤
k
2
 ".

18



A.2 Convex case

The next Algorithm 3 is an adaptation of Algorithm 1 for the convex case. In particular, time-varying
⌧k+1 and ⌘k+1 are used instead of the momentum ↵.

Algorithm 3 Accelerated Extragradient (modification for convex case)

1: Input: x
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0
f 2 Rd
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Finally, again with the choice of ⌧k defined by (23), we get (25).

Using (25), we get
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iterations of Algorithm 3. This is what Theorem 4 is about.
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B Proofs for Section 4

In this section we present a proof of the convergence of Algorithm 2 in the strongly monotone case –
Section B.1. We also present a modification of Algorithm 2 for the monotone case, as well as a proof
of its convergence – Section B.2.

B.1 Strongly monotone case

Here we prove Theorem 7. First, we need the following lemmas:
Lemma 4. Consider Algorithm 2. Let ✓ be defined as in Theorem 7: ✓ = 1

2Lp
. Then, under

Assumptions 7-9, the following inequality holds for all x̄ 2 Rd

2hx⇤
� x

k
, R(uk)i  � 2µkuk

� x
⇤
k
2
� ✓kR(uk)k2

+ 3✓

 
kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ
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Proof. Using property of the solution: R(x⇤) = 0 and µ-strong monotonicity of R(x), we get
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Hence,
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This completes the proof of Lemma.

Lemma 5. Consider Algorithm 2 for Problem 10 under Assumptions 7-9, with the following tuning:
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k
k
2
. (29)
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The choice of ↵, ⌘, ✓ defined by (28) gives
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Using (12) we get
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To prove Theorem 7, it is sufficient to run the recursion (30):

kx
K
� x

⇤
k
2
 (1� 2⌘µ)K


kx

0
� x

⇤
k
2 +

2⌘

⌧

⇥
r(x0)� r(x⇤)

⇤�
= C(1� ⇢)K ,

Hence, choosing number of iterations K given by (13) yields

kx
K
� x

⇤
k
2
 ".

B.2 Monotone case

The next Algorithm 4 is an adaptation of Algorithm 2 for the monotone case. In particular, we remove
the momentum ↵.

Algorithm 4 Extragradient (modification for monotone case)

1: Input: x
0
2 Rd

2: Parameters: ⌘, ✓ > 0,K 2 {1, 2, . . .}
3: for k = 0, 1, 2, . . . ,K � 1 do
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7: Output: x
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Lemma 6. Consider Algorithm 4 for Problem 10 under Assumptions 7(µ = 0)-9, with the following
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Then, the following inequality holds:
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Remark 1. Here we do not take the maximum over the entire set Rd (as in the classical version for
VIs [23]), but over C – a compact subset of Rd. Thus, we can also consider unbounded sets in Rd.
This is permissible, since such a version of the criterion is valid if the solution x

⇤ lies in C; for details
see the work of [36].
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Using (27) with µ = 0, we get

kx
k+1

� xk
2
kx

k
� xk

2 + kx
k+1

� x
k
k
2

� 2⌘hR(uk), uk
� xi � ⌘✓kR(uk)k2

+ 3⌘✓

 
kB

k
✓ (u

k)k2 �
L
2
p

3
kx

k
� ũ
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By taking the supremum over the set C, we get
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C Additional experiments

C.1 Additional experiments with saddle point problems

Here we consider a modification of (17), the Robust Linear Regression, which leads to the following
saddle-point formulation:

minw maxkrikRr

1
2N

NP
i=1

⇥
(wT (xi + ri)� yi)2 � �krik

2
⇤
+ �

2 kwk
2
, (34)

where ri is the so-called adversarial noise and � > 0 is the regularization associated with it; we set
� = � = 0, 1 and Rr = 0, 05. The network setting and data generation is the same as discussed in
Section 5.1. We compare with the only existing method for SPPs under similarity, as proposed in [9].
Results are summarized in Figure 2, on synthetic and real data.

Figure 2: Robust Linear Regression (34), under similarity assumption: Proposed method vs. Gradient-
Sliding; synthetic data (first two figures on the left) and real data (last to figures from the right).
Distance from optimality vs. number of communications (first/third panel from the left) and vs.
number of local iterations (second/fourth panel from the left).

It can be seen that our method compares favorably with [9] both on communication and gradient
iterations.

C.2 Experiment details

The numerical experiments are run on a machine with 8 Intel Core(TM) i7-9700KF 3.60GHz CPU
cores with 64GB RAM. The methods are implemented in Python 3.7 using NumPy and SciPy.

In this section, we estimate the smoothness, strong convexity as well as the similarity parameters for
objective (17). We denote the identity matrix as I (with the sizes determined by the context). Given a
set of data points X = (x1 . . . xN )> 2 RN⇥d and an associated set of labels y = (y1 . . . yN )> 2 RN ,
the Linear Regression problem (17) is

min
kwk
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We are now ready to estimate the spectrum of the Hessian
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Therefore, we can estimate the Lipschitz constant of rg(w) as Lg. The same way we can estimate
all Li and take final L = max(Lg, L1, . . . , Ln).

Let us discuss the bound on the similarity parameter. Given two datasets
�
X 2 RN⇥d

, y 2 RN
 

and
n
eX 2 R eN⇥d

, ey 2 R eN
o

, we define
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And then the similarity coefficient �g,eg between functions g and eg is

�
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>
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1
eN
eX> eX

◆
.

Hence, we can take � = max(�g,g1 , . . . , �g,gn).

Finally, we estimate the strong convexity parameter as µ = �.

As mentioned in the main body of the paper, we simulate the operation of 25 devices on one machine.
For the synthetic dataset, samples on the workers are generated by adding unbiased Gaussian noise to
the server data. For simulations with real data, we considered the LIBSVM datasets (a9a, w7a, w8a)
and give each worker a full data. Then, each device selects at random a part of size m from the full
dataset. Some samples can occur on more than one worker (in this way we artificially increase the
data size).

The parameters L, � are estimated as written above. For the synthetic dataset we choose the noise
level and the regularization parameter such that L/� = 200 and L/� = 105. For the real datasets the
regularization parameter is chosen such that L/� = 106. In Table 2, we give all values of L, �,m, µ.

Table 2: The value of the parameters L, �,m, µ in experiments.

Dataset L µ m �

synthetic 104 10�1 — 20

a9a 2 · 105 2 · 10�1 5000 300

w7a 6, 5 · 104 6, 5 · 10�2 7000 70

w8a 1, 3 · 105 1, 3 · 10�1 10000 90
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