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Abstract

We study structured convex optimization problems, with additive objective r :=
p + q, where r is (µ-strongly) convex, q is Lq-smooth and convex, and p is Lp-
smooth, possibly nonconvex. For such a class of problems, we proposed an inexact
accelerated gradient sliding method that can skip the gradient computation for one
of these components while still achieving optimal complexity of gradient calls of
p and q, that is, O(

p
Lp/µ) and O(

p
Lq/µ), respectively. This result is much

sharper than the classic black-box complexity O(
p
(Lp + Lq)/µ), especially when

the difference between Lp and Lq is large. We then apply the proposed method to
solve distributed optimization problems over master-worker architectures, under
agents’ function similarity, due to statistical data similarity or otherwise. The
distributed algorithm achieves for the first time lower complexity bounds on both
communication and local gradient calls, with the former having being a long-
standing open problem. Finally the method is extended to distributed saddle-
problems (under function similarity) by means of solving a class of variational
inequalities, achieving lower communication and computation complexity bounds.

1 Introduction

We consider structured convex programming in the form [6, 13, 35]:

min
x2Rd

r(x) := q(x) + p(x), (1)

where r is assumed to be convex and decomposed as the sum of a smooth, possibly nonconvex
function p and a smooth convex function q. First order information of p and q is accessible separately.
We are interested in scenarios where the cost of evaluating the gradient of the two functions is not
even, but computing, say rp, is much more resource demanding than rq. The motivating application
for this scenario is distributed optimization over master-worker systems, as discussed next.
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Consider the following distributed optimization problem over a network of n agents:

min
x2Rd

r(x) =
1

n

nX

i=1

fi(x), (2)

where fi is the loss function of agent i, assumed to be convex, which is not known to other agents.
Agents are embedded in a star-topology, with agent 1 being the master node, without loss of
generality–this is the typical federated learning setup [24]. An instance of (2) of particular interest
is the empirical risk minimization (ERM) whereby the goal is to minimize the average loss over
some dataset, distributed across the nodes of the network, with fi being the empirical risk of agent i,
i.e., fi(x) = 1

m

Pm
j=1 `

�
x; zji

�
, where z

(1)
i , . . . , z

(m)
i is the set of m samples owned by agent i, and

`(x; zji ) measures the loss of the model x on the sample z
j
i .

Several solutions methods have been proposed to solve (2); the prototype approach consists in
interleaving local computations at the workers sides (nodes i = 1, . . . n) with communications to/from
the master node (i = 1), which maintains and updates the authoritative copy of the optimization
variables, producing eventually the final solution estimate. Since the cost of communications is often
the bottleneck in distributed computing (e.g., [7, 32]), a lot of research has been devoted to designing
distributed algorithms that are communication efficient. Acceleration (in the sense of Nesterov) has
been extensively investigated as a procedure to reduce the communication burden. For L-smooth
and µ-strongly convex functions r in (2), linear convergence is certified by employing first-order
methods, with computation (gradient evaluations) and communication complexities proportional
to

p
 ( , L/µ is the condition number of r). For ill-conditioned functions ( very large), the

polynomial dependence on  may be unsatisfactory. This is, e.g., the typical setting of many ERM
problems wherein the optimal regularization parameter for test predictive performance is very small.

Further improvements on the communication complexity can be obtained exploiting the extra structure
typical in ERM problems, also known as function similarity (see, e.g., [4, 51, 44, 48]): kr2

fi(x)�
r

2
fjk  �, for all x in a proper domain of interest and all i 6= j = 1, . . . , n, where � > 0 measures

the degree of similarity between the Hessian matrices of the local losses. When data are i.i.d.
among agents, fi’s reflect statistical similarities in local data, resulting in � = Õ(1/

p
m) with high-

probability (Õ hides log-factors and dependence on d). In this scenario, in general, 1 + �/µ ⌧  [4].
This motivated a surge of studies aiming at exploiting function similarity coupled with acceleration to
boost communication efficiency (see Sec. 1.2 for an overview of relevant works): linear convergence
is certified with a number of communication steps (for nonquadratic losses) scaling with eO(

p
�/µ),

where eO hides log-factors. This matches lower (communication) complexity bounds [4] ıt only up to
log-factors. Furthermore, these methods are not computationally optimal, yielding local gradients
calls larger than lower complexity bounds O(

p
). In fact, Table 1 shows that, to the date, there

exists no distributed algorithm achieving the best of the two worlds, that is, optimal (lower bound)
communication complexity and local gradient (oracle) complexity.

This paper fills this gap. Our starting point is the reformulation of (2) in the equivalent form

min
x2Rd

r(x) = f1(x)| {z }
:=q(x)

+
1

n

nX

i=1

[fi(x)� f1(x)]

| {z }
:=p(x)

, (3)

which exploits function similarity at the agents’ side via preconditioning. Problem (3) is an instance of
(1): all fi (thus q) are convex but p is nonconvex. Also, evaluating rq and rp has different costs; the
former involves only local computations at the master node while the latter requires communications
from/to master and workers nodes. At high-level the idea is then clear: one would like to design
a distributed algorithm for (3) [or more generally for (1)] that skips gradient computations of rp

(saving thus communications) without slowing down the overall optimal rate of convergence.

This naturally suggests the use of gradient-sliding techniques [19, 41, 10], yielding algorithms
that skip from time to time computation of the gradient of one function in the summand objective.
However, existing gradient-sliding algorithms are not applicable to (1) [and thus (3)] because they all
require p and q to be convex. This calls for new designs, accounting for the nonconvexity of p.

1.1 Main contributions

Our contribution is threefold:
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• A new gradient-sliding algorithm for (1): We propose a new Accelerated ExtraGradient sliding
method that skips the computation of rp from time to time. The method builds on an inexact
acceleration of a proximal envelop (outer-loop) coupled with a suitable termination criterion and
inner-loop algorithm to approximately solve the proximal subproblem. When applied to (1), with
r being (µ-strongly) convex, q being Lq-smooth and convex, and p being Lp-smooth (possibly
nonconvex), the proposed algorithm achieves optimal complexity of gradient calls of q and p, that is,

r rq rp

strongly convex O

✓q
Lq
µ log 1

"

◆
O

✓q
Lp
µ log 1

"

◆

convex O

✓q
Lq
" kx0

� x⇤
k

◆
O

✓q
Lp
" kx0

� x⇤
k

◆

Notice that the above complexity bounds are sharper than the complexity bound obtained by the
Nesterov’s optimal first-order method for smooth (strongly) convex optimization applied to (1). For
instance for strongly convex r, that would yield rq, rp complexity scaling as O(

p
(Lq + Lp)/µ),

which is less favorable than our separate complexity bounds above. To the best of our knowledge,
this is the first time that such bounds are achieved for nonconvex p.

• Optimal complexity bounds for (2) under function similarity: We customize the proposed
accelerated gradient-sliding algorithm to the distributed optimization problem (2) under �-function
similarity. As showed in Table 1 for strongly convex r (see Sec. 3 for the case of convex r), the new
distributed algorithm achieves lower complexity bounds on both the number of communications [4]
and on the number of gradient computations (without logarithmic factors!) [37]. Achieving optimal
communication complexity (for nonquadratic losses) was a long-standing open problem.

• Gradient sliding for variational inequalities: We extend the proposed gradient-sliding machinery
to solve distributed saddle-points under similarity by means of solving a class of strongly-monotone
Variational Inequalities (VI). We improve existing complexity bounds for such problems [9] achieving
for the first time both optimal communication complexity and gradient oracle complexity–see Table 1.

Table 1: Existing convergence results for distributed (saddle point) optimization under �-similarity.

Reference Communication complexity Local gradient complexity Order Limitations

M
in

im
iz

a
ti

o
n

U
p

p
e
r

DANE [42] O

⇣
�2

µ2 log 1
"

⌘
O

⇣q
L
µ

q
�3

µ3 log2 1
"

⌘
(2) 1st quadratic

DiSCO [51] O

⇣q
�
µ (log 1

" + C2�F0)log L
µ

⌘
O

⇣q
L
µ (log 1

" + C2�F0)log L
µ

⌘
2nd C - self-concordant (3)

AIDE [40] O

⇣q
�
µ log 1

" log
L
�

⌘
O

⇣q
L
µ

q
�
µ log 1

" log
L
�

⌘
(4) 1st quadratic

DANE-LS [50] O

⇣
�
µ log 1

"

⌘
O

✓q
L
µ

�3/2

µ3/2 log 1
"

◆
(5) 1st/2nd quadratic (6)

DANE-HB [50] O

⇣q
�
µ log 1

"

⌘
O

⇣q
L
µ

�
µ log 1

"

⌘
(5) 1st/2nd quadratic (6)

SONATA [45] O

⇣
�
µ log 1

"

⌘
O

⇣q
L
µ

q
�
µ log2 1

"

⌘
(2) 1st decentralized

SPAG [21] O

⇣q
L
µ log 1

"

⌘
(1)

O

✓q
L
µ

q
L
� log2 1

"

◆
(1,2) 1st M - Lipshitz hessian

DiRegINA [12] O

✓
�
µ log 1

" +
q

M�R0
µ

◆
O

✓q
L
µ

q
�
µ log2 1

" +
q

MLR0
µ log 1

"

◆
(2) 2nd M -Lipshitz hessian

ACN [1] O

✓q
�
µ log 1

" + 3
q

M�R0
µ

◆
O

✓q
L
µ log2 1

" + 3
q

M�R0
µ

q
L
� log 1

"

◆
(2) 2nd M -Lipshitz hessian

AccSONATA [46] O

⇣q
�
µ log 1

" log
L
µ

⌘
O

⇣q
L
µ log2 1

" log
�
µ

⌘
(2) 1st decentralized

This paper O

⇣q
�
µ log 1

"

⌘
O

⇣q
L
µ log 1

"

⌘
1st

L
o
w

e
r [4] O

⇣q
�
µ log 1

"

⌘
—

[37] — O

⇣q
L
µ log 1

"

⌘
non-distributed

S
a
d

d
le

s U
p

p
e
r SMMDSA [9] O

⇣
�
µ log 1

"

⌘
O

⇣
L
µ log 1

" log
L
µ

⌘
1st

This paper O

⇣
�
µ log 1

"

⌘
O

⇣
L
µ log 1

"

⌘
1st

L
o
w

e
r [9] O

⇣
�
µ log 1

"

⌘
—

[39] - O

⇣
L
µ log 1

"

⌘
non-distributed

(1) This is the worst-case complexity, as pointed out in the paper; the convergence of the method might be better, based upon an
additional sequence Gt [21]; (2) proximal local computations (exact solution of local subproblems), we filled these cells assuming
that the proximal operator is computed using Accelerated Gradient Descent [37] with accuracy "2; (3) from Lipschitzness of the
Hessian and strong convexity follows self-concordance; (4) gradient complexity not provided, we derived it using [37]; (5) gradient
complexity not provided, we derived it using [38]; (6) gradient complexity holds for nonquadratic functions;
Notation: � = similarity parameter, L=smoothness constant of fi, µ = strong convexity constant of r, " =accuracy of the
solution, R0 := kx0 � x⇤k, �F0 := r(x0)� r(x⇤).
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1.2 Related works

Gradient-Sliding: Since the seminal paper [28], the idea of gradient-sliding for structured convex
optimization such as (1) has received significant attention as tool to skip gradient computations of
one function in the summand; examples and generalization include first-order accelerated methods
[28, 29, 31], zero-order (derivative-free) schemes [14, 22, 8, 43], high-order methods [25, 17, 2, 20],
and slidings for saddle point problems and variational inequalities [3, 30, 47, 9]. Albeit applicable to
more general classes of optimization problems than (1) (e.g., allowing either p and q to be nonsmooth),
none of the existing methods provide guarantees when p is nonconvex. The proposed algorithm fills
this gap. Furthermore, it achieves optimal lower complexity bounds on the calls of rp and rq.

Distributed optimization under function similarity: The literature of distributed optimization is
vast; given the focus of this work, we comment next solution methods exploiting function similarity
via proper preconditioning–Table 1 summarizes complexity results of existing distributed methods
solving either minimization problems or saddle-point formulations, and is commented next.

The seminal paper [4] established lower communication complexity bounds for (2) under �-similarity:
"-optimality cannot be achieve in less than ⌦(

p
�/µ log 1/") communication rounds. Since then, a lot

of effort has been devoted to design distributed schemes aiming at achieving optimal communication
complexity. The authors in [42] proposed DANE, a mirror-descent based algorithm whereby workers
perform a local data preconditioning via a suitably chosen Bregman divergence, and the master
averages the solutions of the workers. For quadratic losses, DANE achieves communication complexity
eO((�/µ)2 log 1/"); this was later improved to O((�/µ) log 1/") for nonquadratic losses in [45],

where the SONATA algorithm was proposed (also implementable over mesh-networks).

Improvements were achieved employing acceleration; efforts include: DiSCO [51], an inexact damped
Newton method coupled with a preconditioned conjugate gradient (to compute the Newton direction),
which achieves communication complexity eO(

p
�/µ) log 1/") for self-concordant losses (see Table

1 for the log-factors hidden in the eO); AIDE [40], which uses the Catalyst framework [33], matching
the rate of DiSCO for quadratic losses; DANE-HB [50], a variant of DANE equipped with Heavy Ball
momentum and matching for quadratic functions the communication complexity of DiSCO and
AIDE; and SPAG [21], a preconditioned direct accelerated method, achieving for nonquadradic losses
asymptotically the convergence rate O((1 � 1/

p
�/µ)k) (k is the iteration index)–the worst-case

rate is still O(
p
L/µ) log 1/").

Finally, higher order methods employing preconditioning have been studied in [12, 1, 46]: [12]
proposed DiRegINA, a decentralization of the cubic regularization of the Newton method, where
workers build Newton direction sampling local Hessians; [1] introduced ACN, an inexact accelerated
cubic-regularized Newton’s method, with improved complexity with respect to [12]; and [46] extended
the Catalyst framework [33] to the distributed setting (including mesh networks), proposing Acc
SONATA–the communication complexity of these methods is reported in Table 1.

In summary, the above tour on the relevant literature shows that none of the existing methods can
match lower communication complexity bounds for (non quadratic) optimization problems (2) under
function similarity (all complexity bounds contain log-factors). The proposed distributed method
achieves lower communication and computation complexity bounds.

2 Optimal Gradient Sliding for Minimization Problems

We study the minimization problem (1), under the following blanket assumptions.

Assumption 1. r(x) : Rd
! R is µ-strongly convex on Rd.

Assumption 2. q(x) : Rd
! R is convex and Lq-smooth on Rd.

Assumption 3. p(x) : Rd
! R is Lp-smooth on Rd.

The proposed Accelerated ExtraGradient sliding is formally introduced in Algorithm 1. Convergence
of the outer loop is established in Theorem 1, while Theorem 2 determines complexity of solving the
inner loop up to a suitable termination. Finally Theorem 3 provides the overall complexity merging
inner and outer loop results. The proof of all the theorems can be found in Appendix A.1.
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Algorithm 1 Accelerated Extragradient

1: Input: x
0 = x

0
f 2 Rd

2: Parameters: ⌧ 2 (0, 1], ⌘, ✓,↵ > 0,K 2 {1, 2, . . .}
3: for k = 0, 1, 2, . . . ,K � 1 do

4: x
k
g = ⌧x

k + (1� ⌧)xk
f

5: x
k+1
f ⇡ argminx2Rd

⇥
A

k
✓(x) := p(xk

g) + hrp(xk
g), x� x

k
gi+

1
2✓kx� x

k
gk

2 + q(x)
⇤

6: x
k+1 = x

k + ⌘↵(xk+1
f � x

k)� ⌘rr(xk+1
f )

7: end for

8: Output: x
K

Theorem 1. Consider Algorithm 1 for Problem 1 under Assumptions 1-3, with the following tuning:

⌧ = min

⇢
1,

p
µ

2
p

Lp

�
, ✓ = 1

2Lp
, ⌘ = min

⇢
1
2µ ,

1
2
p

µLp

�
, ↵ = µ;

and let xk+1
f in line 5 satisfy

krA
k
✓(x

k+1
f )k2 

L2
p

3 kx
k
g � argminx2Rd A

k
✓(x)k

2
. (4)

Then, for any

K � 2max
n
1,
q

Lp

µ

o
log

kx0
�x⇤

k
2+ 2⌘

⌧ [r(x
0)�r(x⇤)]

" , (5)

we have the following estimate for the distance to the solution x
⇤:

kx
K
� x

⇤
k
2
 ". (6)

2.1 Solving the auxiliary subproblems

At each iteration of Algorithm 1, one needs to solve the subproblem:

minx2Rd A
k
✓(x) := p(xk

g) + hrp(xk
g), x� x

k
gi+

1
2✓kx� x

k
gk

2 + q(x). (7)

According to Theorem 1, (7) need not be solved to arbitrary precision; inexact solutions x
k+1
f

satisfying condition (4) suffice. Condition (4) means that gradient norm krA
k
✓(x

k+1
f )k should be

sufficiently small. Notice that Ak
✓(x) in (7) is (2Lp + Lq)-smooth and convex.

Problem 7 can be solved up to the termination (4) using any of the algorithms in [27, 26, 38]. We
obtain the following complexity.
Theorem 2 ([38] Remark 1). There exists a certain algorithm such that, when applied to problem (7)
with the starting point xk

g , returns xk+1
f satisfying

krA
k
✓(x

k+1
f )k 

D
2
·max{Lp, Lq}kx

k
g � argminx2Rd A

k
✓(x)k

T 2
, (8)

where D > 0 is some universal constant (independent of Lp, Lq , T etc) and T is the number of calls
of rq by the algorithm.

2.2 Overall complexity of the optimal gradient-sliding

Theorem 2 suggests that, to satisfy condition (4) in Theorem 1, it is sufficient to choose the number
T of iterations of the inner algorithm as

T = 4
p
3Dmax

n
1,
q

Lq

Lp

o
. (9)

We can now determine the overal complexity of Algorithm 1. At each iteration of Algorithm 1 we
call rp twice (at xk

g – line 5 and at xk+1
f – line 6), and rq is computed T + 1 times (T times in the

5



auxiliary problem – line 5, and at xk+1
f – line 6). Hence, to find an "-solution of problem (1), i.e., to

find x
K

2 Rd that satisfies (6), Algorithm 1 requires K iterations as given in (5),

2⇥K = O

⇣
max

n
1,
q

Lp

µ

o
log 1

"

⌘
calls of rp(x), and

(T + 1)⇥K = O

⇣
max

n
1,
q

Lq

Lp
,

q
Lp

µ ,

q
Lq

µ

o
log 1

"

⌘
calls of rq(x).

Putting everything together we obtain the following final convergence result.
Theorem 3. Consider Problem (1) under Assumptions 1 to 3, with µ  Lp  Lq . Then, to reach an
"-solution, Algorithm 1 requires

O

⇣q
Lq

µ log 1
"

⌘
calls of rq(x) and O

⇣q
Lp

µ log 1
"

⌘
calls of rp(x).

This matches optimal complexity for the individual gradient calls.

We conclude this section providing convergence of variant of the proposed algorithm suitable for
convex r in (1) (Assumption 1 with µ = 0). The algorithm is described in Appendix A.2. Here we
only provide the final convergence result, the analogous of Theorem 3.
Theorem 4. Consider Problem (1) under Assumptions 1 (with µ = 0)-3, with Lp  Lq. Then, to
find an "-solution of (1) (in objective value), Algorithm 3 in Appendix A.2 requires

O

✓q
Lq

" kx
0
� x

⇤
k

◆
calls of rq(x) and O

✓q
Lp

" kx
0
� x

⇤
k

◆
calls of rp(x).

3 Application to Distributed Optimization Under Similarity

In this section, we apply the proposed algorithm the the distributed optimization problem (2), under
the following assumptions.
Assumption 4. Each fi(x) : Rd

! R is convex and L-smooth.
Assumption 5. r(x) : Rd

! R is µ-strongly convex.
Assumption 6. f1(x), . . . , fn(x) are �-related: kr

2
fi(x) � r

2
fj(x)k  �, for all i 6= j and

x 2 Rd, and some � > 0.

From the last assumption it is easy to get that for all i and x 2 Rd we have kr
2
fi(x)�r

2
r(x)k =

k
1
n

Pn
j=1[r

2
fi(x)�r

2
fj(x)]k 

1
n

Pn
j=1 kr

2
fi(x)�r

2
fj(x)k  �.

We leverage now Algorithm 1 to solve (2), using the equivalent reformulation (3). The algorithm
applied to the distributed system can be described as follows. The server computes xk

g and sends
it to all the workers (line 4). Workers compute rfi(xk

g) and send it to the server. After collecting
all rfi(xk

g), the server builds rp(xk
g) = rr(xk

g)�rf1(xk
g), and then solves (inexactly) the local

problem A
k
✓ (line 5). The inexact solution x

k+1
f is then broadcast to the workers, which update their

own receives rfi(x
k+1
f ) and send back to the server, which can then evaluate rr(xk+1

f ) (line 6).

Using Assumptions 4 and 5, we infer that r is µ-strongly convex; and q = f1 is Lq-smooth and
convex, with Lq = L. It follows from Assumption 6 that kr2

pk  �. Therefore, p has Lp-Lipschitz
gradient, with Lp = �. This shows that we can leverage Theorems 3 and 4 to establish convergence
for strongly convex and convex r, as given next.
Theorem 5. Let Assumptions 4 to 6 be satisfied with µ  �  L. Then, to find "-solution of the
distributed optimization problem (2) Algorithm 1 requires

O

⇣q
�
µ log 1

"

⌘
communication rounds and O

⇣q
L
µ log 1

"

⌘
local gradient computations.

Theorem 6. Let Assumptions 4, 5 (with µ = 0), 6 be satisfied and �  L. Then, to find "-solution of
the distributed optimization problem (2) Algorithm 1 requires

O

✓q
�
"kx

0
� x

⇤
k

◆
communication rounds and O

⇣q
L
" kx

0
� x

⇤
k

⌘
local computations.
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Such estimates are optimal from both communications [4] and local computations point of views [37].
It is important to remark that Algorithm 1 solves the local subproblem A✓ with some precision, while
most of existing works (see Table 1) assume that local problems are solved with infinite precision
(column Local gradient complexity), which is not practical. Note also that the subproblems in line 5
of Algorithm 1 do not necessarily have to be solved by a deterministic algorithm as in Theorem 2.
Stochastic methods can also be used, as long as they guarantee that condition (4) is met.

4 Optimal Gradient Sliding for VIs

In this section we consider the composite variational inequality [16, 5] in the form:
Find x

⇤
2 Rd : R(x⇤) = 0 with R(x) := Q(x) + P (x), (10)

where Q(x), P (x) : Rd
! Rd. Variational inequalities are a unified umbrella for a variety of

problems–two examples follow.

Example 1 [Minimization]. Consider problem (1), choose Q(x) = rq(x) and P (x) = rp(x).
Then the solution of the variational inequality (10) means that we need to find the point x⇤ where the
operator R(x⇤) = rr(x⇤). For the convex function r, this is equivalent to finding the minimum.

Example 2 [Saddle point problems]. Consider the convex-concave saddle point problem
miny2Rdy maxz2Rdz r(y, z) := q(y, z) + p(y, z). (11)

If we take Q(x) := Q(y, z) = [ryq(y, z),�rzq(y, z)] and P (x) := P (y, z) =
[ryp(y, z),�rzp(y, z)], then it can be proved that x⇤ = (y⇤, z⇤) is a solution for (10) if and
only if x⇤ = (y⇤, z⇤) is a solution for (11), i.e.

r(y⇤, z)  r(y⇤, z⇤)  r(y, z⇤) for all y 2 Rdy and z 2 Rdz .

While minimization problems are widely considered separately from variational inequalities, saddle
point problems are often analyzed under the VI lens. In recent years the popularity of saddles has
grown, this is due to the fact that they have both classical [15] and new ML [18, 34] applications.

We study problem (10) under the following assumptions.
Assumption 7. R(x) is µ-strongly monotone: hR(x1)�R(x2), x1 � x2i � µkx1 � x2k

2, for all
x1, x2 2 Rd.
Assumption 8. Q(x) is monotone and Lq-Lipschitz: hQ(x1)�Q(x2), x1 � x2i � 0 and kQ(x1)�
Q(x2)k  Lqkx1 � x2k, for all x1, x2 2 Rd.
Assumption 9. P (x) is Lp-Lipschitz: kP (x1)� P (x2)k  Lpkx1 � x2k for all x1, x2 2 Rd.

For saddle point problems these assumptions are equivalent to (strong) convexity–(strong) concavity
and Lipschitzness of gradients.

4.1 Sliding via Extragradient

This algorithm is a non-accelerated version of Algorithm 1. A similar non-accelerated sliding is used
in [9]. Our version however has better theoretical and practical guarantees because of the effective
stopping criterion (12). Convergence of the outer loop is established in Theorem 7; Theorem 8
establishes convergence of the inner loop up to the required termination; and finally Theorem 9
combine the two-loop complexity. The proofs of the theorems can be found in Appendix B.1.

Algorithm 2 Extragradient Sliding for VIs

1: Input: x
0
2 Rd

2: Parameters: ⌘, ✓,↵ > 0,K 2 {1, 2, . . .}
3: for k = 0, 1, 2, . . . ,K � 1 do

4: Find u
k
⇡ ũ

k where ũ
k is a solution for

Find ũ
k
2 Rd : B

k
✓ (ũ

k) = 0 with B
k
✓ (x) := P (xk) +Q(x) +

1

✓
(x� x

k)

5: x
k+1 = x

k + ⌘↵(uk
� x

k)� ⌘R(uk)
6: end for

7: Output: x
K
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Theorem 7. Consider Algorithm 2 for Problem (10) under Assumptions 7-9, with the following
tuning:

✓ = 1
2Lp

, ⌘ = min
n

1
4µ ,

1
4Lp

o
, ↵ = 2µ.

Assume that uk (line 4) satisfies

kB
k
✓ (u

k)k2 
L2

p

3 kx
k
� ũ

k
k
2
. (12)

Then, for any
K � 2max

n
1, Lp

µ

o
log kx0

�x⇤
k
2

" , (13)

we have the following estimate for the distance to the solution x
⇤:

kx
K
� x

⇤
k
2
 ". (14)

The proof is given in Appendix B.1.

4.2 Solving the auxiliary problem

As for Algorithm 1, we need an auxiliary solver for the subproblem in line 4, which ensures that (12)
is met. One can observe that Bk

✓ (x) is (2Lp +Lq)-Lipschitz and monotone. For this type of problem,
the authors in [49] proposes an approach that guarantees convergence on kB

k
✓ (u

k)k2.
Theorem 8 ([49] Corollary 2). There exists a certain algorithm that, applied to the subproblem (12)
with starting point xk, returns uk satisfying

kB
k
✓ (u

k)k2 
D2

·max{L2
p,L

2
q}kx

k
�ũk

k
2

T 2 , (15)

where D > 0 is some universal numerical constant (independent of Lp, Lq, T etc) and T is the
number of calls of the operator Q.

4.3 Complexity of the optimal gradient sliding

Leveraging Theorems 7 and 8 while following the same reasoning as in Section 2.2, we obtain the
following convergence (inner plus outer loops) for Algorithm 2.
Theorem 9. Let Assumptions 7 to 9 be satisfied with µ  Lp  Lq . Then, Algorithm 2 requires

O

⇣
Lq

µ log 1
"

⌘
calls of Q(x) and O

⇣
Lq

µ log 1
"

⌘
calls of P (x)

to find an "-solution of problem (10).

We also consider the case of monotone VIs (Assumption 7 with µ = 0). For this we modify Algorithm
2 as in Appendix B.2 and obtain the following convergence result.
Theorem 10. Let Assumption 7 (with µ = 0), 8, 9 be satisfied and Lp  Lq. Then, Algorithm 4,
described in Appendix B.2, requires

O

⇣
Lq

" kx
0
� x

⇤
k
2
⌘

calls of Q(x) and O

⇣
Lp

" kx
0
� x

⇤
k
2
⌘

calls of P (x)

to find an "-solution of the problem (10). Here "-solution is measured by the value of the gap function.

4.4 Application to distributed saddle-point problem under similarity

We apply now Algorithm 2 to solve a distributed saddle-point problem under statistical similarity, as
introduced in [9]:

miny2Rdy maxz2Rdz r(y, z) := 1
n

Pn
i=1 fi(y, z). (16)

Assumption 10. Each fi(y, z) : Rdy ⇥ Rdz ! R is convex-concave and L-smooth on Rdy ⇥ Rdz .
Assumption 11. r(z, y) is µ-strongly convex (first argument)–µ-strongly concave (second argument).
Assumption 12. f1(y, z), . . . , fn(y, z) are �-related: for all i 6= j and for all y 2 Rdy and z 2 Rdz ,

kr
2
yyfi(y, z)�r

2
yyfj(y, z)k  �, kr

2
yzfi(y, z)�r

2
yzfj(y, z)k  �, kr

2
zzfi(y, z)�r

2
zzfj(y, z)k  �.
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Casting (16) into the VI formulation (10), by taking Q(x) = Q(y, z) = [ryf1(y, z),�rzf1(y, z)]
and P (x) = P (y, z) = [ry[r � f1](y, z),�rz[r � f1](y, z)], we have that Q is monotone and
L-Lipschitz, P is �-Lipschitz, R is µ-strongly monotone. Therefore, we can apply Theorems 9 and
10 and obtain the following convergence results for Algorithm 2 applied to (16).
Theorem 11. Let Assumptions 10 to 12 be satisfied with µ  �  L. Then, to find "-solution of the
distributed saddle problem (16), Algorithm 2 requires

O

⇣
�
µ log 1

"

⌘
communication rounds and O

⇣
L
µ log 1

"

⌘
local gradient computations.

Theorem 12. Let Assumptions 10, 11 (with µ = 0), 12 be satisfied and �  L. Then, to find
"-solution of the distributed saddle problem (16), Algorithm 2 requires

O
�
�
"kx

0
� x

⇤
k
2
�

communication rounds and O
�
L
" kx

0
� x

⇤
k
2
�

local computations.

Our communication estimates are optimal, as in [9], but our algorithm also achieve optimal local
complexity (see Table 1).

5 Experiments

5.1 Minimization

We consider the Ridge Regression problem

minw2Rd


f(w) :=

1

2N

NP
i=1

(wT
xi � yi)2 +

�
2 kwk

2

�
, (17)

where w is the vector of weights of the model, {xi, yi}
N
i=1 is the training dataset, and � > 0 is the

regularization parameter.

We consider a network with 25 workers (simulated on a single-CPU machine), and use two types of
datasets, namely: synthetic and real data. Synthetic data permit to control the similarity constant �.
To do so, we generate data on the server, say {x̂i, ŷi}

n=100
i=1 . Data on the workers are generated by

adding unbiased Gaussian noise to the server data. The lower the variance of this noise, the more
similar the data, and thus the smaller �. For simulations with real data, we considered the LIBSVM
library [11] and give each agent a full dataset. Then, each device selects at random a part of size m

from the full dataset. In Section C.2 we explain how the parameters L and � are estimated. For the
synthetic dataset we choose the noise level and the regularization parameter such that L/� = 200
and L/� = 105. For the real datasets the regularization parameter is chosen such that L/� = 106.
See Table 2 for all values of L, �, µ and m.

For comparison, we use distributed version of Accelerated Gradient Descent (AcGD) [37] as the basic,
classical and optimal method for minimization problems without additional similarity assumptions,
as well as state-of-the-art schemes for the similarity condition: DANE [42], DANE-HB [50], SPAG
[21] and AccSONATA [46]. The settings of the methods are made as described in the original
papers. For algorithms that assume an absolutely accurate solution of local problems (DANE, SPAG,
AccSONATA), we use AcGD with an accuracy of 10�12 as a subsolver.

Results are summarized in Figure 1–the first two figures from the top left correspond to synthetic
data while the other 6 on real data.

The results show that our method outperforms almost all methods in terms of communication (only
in one experiment SPAG is slightly faster). In terms of local iterations, our method is slightly inferior
to AcGD, but superior to all other methods.

In Appendix C.1, one can find a comparison of our method with a competitor for distributed saddle
point problems under similarity assumption.
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(a) synthetic (b) real: w8a

(c) real: w7a (d) real: a9a

Figure 1: Ridge regression problem (17): Comparison of state-of-the-art methods, under similarity;
synthetic data (a) and real data (b,c,d). Distance from optimality vs. number of communications
(first/third panel from the left in the both lines) and vs. number of local iterations (second/fourth
panel from the left in the both lines).
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