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This appendix consists of three sections: section 8 provides some basic notions and notations that
will be used in the proof, section 9 presents the proofs of all the lemmas and theorem in the paper,
and section 10 gives the simulation details. At last, we provide some extra explanations to help
better understand the paper.

8 Notions and notations

We define the concatenated reward feature vector as ϕr ≜ [(ϕ
[1]
r )⊤, · · · , (ϕ[NE ]

r )⊤]⊤ and the
augmented reward feature under ωc as ϕr,ωc

≜ [ϕ⊤r , cωc
]⊤. The augmented reward feature ex-

pectation starting from state-action pair (s, a) under policy π is µπ
r,ωc

(s, a) ≜ ϕr,ωc
(s, a) +

γ
∫
s′∈S P (s

′|s, a)µπ
r,ωc

(s′)ds′ and the augmented reward feature expectation starting from state s
is µπ

r,ωc
(s) ≜

∫
a∈A π(a|s)µ

π
r,ωc

(s, a)da. Moreover, we denote µr,ωc(π) ≜ [(µr(π))
⊤, Jωc(π)]

⊤.
The empirical augmented reward feature expectation vector is defined as µ̂r,ωc

≜ [µ̂⊤
r , b̂ωc

]⊤ and
its estimate from learner v is defined as µ̂[v]

r,ωc ≜ [(µ̂
[v]
r )⊤, b̂

[v]
ωc ]

⊤. For a given vector η̄, we de-
fine the augmented Q-function as Qπ

η̄,ωc
(s, a) = η̄⊤µπ

r,ωc
(s, a) and the augmented value-function

as V π
η̄,ωc

(s) = η̄⊤µπ
r,ωc

(s). The concatenated cost feature expectation starting from state-action
pair (s, a) under policy π is µπ

c (s, a) ≜ ϕc(s, a) + γ
∫
s′∈S P (s

′|s, a)µπ
c (s

′)ds′ and the concate-
nated cost feature expectation starting from state s is µπ

c (s) ≜
∫
a∈A π(a|s)µ

π
c (s, a)da. We de-

note µc(π) ≜ Eπ
S,A[

∑∞
t=0 γ

tϕc(St, At)]. The empirical concatenated cost feature expectation
is µ̂c ≜ 1

m

∑m
j=1

∑∞
t=0 γ

tϕc(s
j
t , a

j
t ). The causal entropy staring from (s, a) under policy π is

Hπ(s, a) = − lnπ(a|s) + γ
∫
s′∈S P (s

′|s, a)Hπ(s′)ds′ and the casual entropy from state s is
Hπ(s) =

∫
a∈A π(a|s)H

π(a|s)da. We define the state-action visitation frequency as ψπ(s, a) ≜

Eπ[
∑∞

t=0 γ
t1{St = s}1{At = a}] and state visitation frequency as ψπ(s) ≜ Eπ[

∑∞
t=0 γ

t1{St =
s}], where 1{·} is the indicator function. It is obvious that ψπ(s) ≤ 1

1−γ for any s ∈ S and∫
s∈S ψ

π(s)ds = 1
1−γ . We use 0m×n to denote an m× n matrix whose entries are all zero.

Lemma 4. For any (s, a) ∈ S × A, any ωc ∈ Ωc, and any π, ||µπ
r,ωc

(s)||, ||µπ
r,ωc

(s, a)||, ||µπ
c (s)||,

and ||µπ
c (s, a)|| are bounded.

Proof. We know that µπ
r,ωc

(s, a) = ϕr,ωc(s, a) + Eπ
S,A[

∑∞
t=1 γ

tϕr,ωc(St, At)|S0 = s,A0 =

a]. Since ||ϕr,ωc
(s, a)|| ≤

√∑NE

i=1(l
[i]
r d21) + (

∑NE

i=1 l
[i]
c d2)2), we know that ||µπ

r,ωc
(s, a)|| ≤

1
1−γ

√∑NE

i=1(l
[i]
r d21) + (

∑NE

i=1 l
[i]
c d2)2). Because µπ

r,ωc
(s) =

∫
a∈A π(a|s)µ

π
r,ωc

(s, a)da, we can
see that ||µπ

r,ωc
(s)|| is bounded given that ||µπ

r,ωc
(s, a)|| is bounded. Analogously, ||µπ

c (s)|| and
||µπ

c (s, a)|| are also bounded.
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Constrained soft Bellman policy. We provide the formula of the constrained soft Bellman policy
under continuous state-action space and the policy can be approximated through soft Q learning [1]:

πη;ωc(a|s) =
exp(Qsoft

η;ωc
(s, a))

exp(V soft
η;ωc

(s))
, V soft

η;ωc
(s) = ln(

∫
a∈A

exp(Qsoft
η;ωc

(s, a)) da),

Qsoft
η;ωc

(s, a) =

NE∑
i=1

(ω[i]
r )⊤ϕ[i]r (s, a) + λcωc

(s, a) + γ

∫
s′∈S

P (s′|s, a)V soft
η;ωc

(s′) ds′.

It is obvious that the constrained soft Bellman policy is continuous in (ωc, η) as it is a composition
of continuous functions of (ωc, η).

9 Proof

This section focuses on the continuous state-action space and has seven subsections. Subsection
9.1 includes some preliminary results for the later subsections, subsection 9.2 presents the proof
of Lemma 1, subsection 9.3 provides some intermediate results for the remaining subsections, sub-
section 9.4 proves Lemma 3, subsection 9.5 presents the derivation of LGA, subsection 9.6 proves
Lemma 2, and subsection 9.7 presents the proof of the theorem.

9.1 Preliminary results

In this section, we prove two lemmas which serve as building blocks for the remaining subsections.
Lemma 5. The gradient ∇η lnπη;ωc

(a|s) = µ
πη;ωc
r,ωc (s, a)− µ

πη;ωc
r,ωc (s).

Proof. Define Zs,η;ωc
≜ exp(V soft

η;ωc
(s)) and Za|s,η;ωc

≜ exp(Qsoft
η;ωc

(s, a)), therefore Za|s,η;ωc
is

smooth in η because it is a composition of logarithmic, exponential and linear functions of η. From
Leibniz integral rule, we know that ∇η

∫
a
Za|s,η;ωc

da =
∫
a
∇ηZa|s,η;ωc

da. Therefore,

∇η lnZs,η;ωc
=

∫
a∈A ∇ηZa|s,η;ωc

da

Zs,η;ωc

=

∫
a∈A

πη;ωc
(a|s)

[
ϕr,ωc

(s, a) + γ

∫
s′∈S

P (s′|s, a)·

∇η lnZs′,η;ωc
ds′

]
da,

=

∫
a∈A

πη;ωc
(a|s)

{
ϕr,ωc

(s, a) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

πη;ωc
(a′|s′)

[
ϕr,ωc

(s′, a′)

+ γ

∫
s′′∈S

P (s′′|s′, a′)∇η lnZs′′,η;ωc
ds′′

]
da′ds′

}
da.

Continuing the expansion, we can get:

∇η lnZs,η;ωc = E
πη;ωc

S,A [

∞∑
t=0

γtϕr,ωc(St, At)|S0 = s] = µ
πη;ωc
r,ωc (s),

∇η lnZa|s,η;ωc
= ϕr,ωc

(s, a) + E
πη;ωc

S,A [

∞∑
t=1

γtϕr,ωc
(St, At)|S0 = s,A0 = a] = µ

πη;ωc
r,ωc (s, a).

Therefore, ∇η lnπη;ωc
(a|s) = ∇η lnZa|s,η;ωc

−∇η lnZs,η;ωc
= µ

πη;ωc
r,ωc (s, a)− µ

πη;ωc
r,ωc (s).

Lemma 6. The gradients ∇ηµr,ωc
(πη;ωc

) =
∫
s∈S ψ

πη;ωc (s)
∫
a∈A ∇ηπη;ωc

(a|s)(µπη;ωc
r,ωc (s, a))⊤da

ds, ∇ηH(πη;ωc
) =

∫
s∈S ψ

πη;ωc (s)
∫
a∈A πη;ωc

(a|s)∇η lnπη;ωc
(a|s)(Hπη;ωc (s, a)− 1)dads.

Proof.

∇ηµr,ωc
(πη;ωc

) =

∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ηπη;ωc

(a0|s0)(µ
πη;ωc
r,ωc (s0, a0))

⊤
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+ πη;ωc
(a0|s0)∇ηµ

πη;ωc
r,ωc (s0, a0)

]
da0ds0,

=

∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ηπη;ωc(a0|s0)(µ

πη;ωc
r,ωc (s0, a0))

⊤ + πη;ωc(a0|s0)∇η

(
ϕr,ωc(s0, a0)

+ γ

∫
s1∈S

P (s1|s0, a0)µ
πη;ωc
r,ωc (s1)ds1

)]
da0ds0,

=

∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ηπη;ωc

(a0|s0)(µ
πη;ωc
r,ωc (s0, a0))

⊤ + πη;ωc
(a0|s0)γ

∫
s1∈S

P (s1|s0, a0)·

∇ηµ
πη;ωc
r,ωc (s1)ds1

]
da0ds0,

=

∫
s0∈S

P0(s0)

∫
a0∈A

{
∇ηπη;ωc(a0|s0)(µ

πη;ωc
r,ωc (s0, a0))

⊤ + γπη;ωc(a0|s0)
∫
s1∈S

P (s1|s0, a0)·∫
a1∈A

[
∇ηπη;ωc

(a1|s1)(µ
πη;ωc
r,ωc (s1, a1))

⊤ + πη;ωc
(a1|s1)

∫
s2∈S

P (s2|s1, a1)∇ηµ
πη;ωc
r,ωc (s2)ds2

]
da1ds1

}
da0ds0.

Keep the expansion and we can get:

∇ηµr,ωc
(πη;ωc

) =

∫
s∈S

ψπη;ωc (s)

∫
a∈A

∇ηπη;ωc
(a|s)(µπη;ωc

r,ωc (s, a))⊤dads,

=

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc
(a|s)∇η lnπη;ωc

(a|s)(µπη;ωc
r,ωc (s, a))⊤dads,

Analogously, we have that

∇ηH(πη;ωc) =

∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ηπη;ωc(a0|s0)(Hπη;ωc (s0, a0))

+ πη;ωc
(a0|s0)∇η

(
− lnπη;ωc

(a0|s0) + γ

∫
s1∈S

P (s1|s0, a0)Hπη;ωc (s1)ds1
)]
da0ds0.

Keep the expansion, we have:

∇ηH(πη;ωc) =

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc(a|s)∇η lnπη;ωc(a|s)(Hπη;ωc (s, a)− 1)dads.

9.2 Proof of Lemma 1

The Lagrangian of problem (2) is L(π, η;ωc) = H(π)+
∑NE

i=1(ω
[i]
r )⊤(µ

[i]
r (π)− µ̂[i]

r )+λ(Jωc
(π)−

b̂ωc). To find the maximizer of maxπ∈Π L(π, η;ωc), we remove the constant terms and formulate
the following problem:

argmax
π∈Π

∞∑
t=0

γtEπ
S,A

[NE∑
i=1

(ω[i]
r )⊤ϕ[i]r (St, At) + λcωc(St, At)− lnπ(At|St)

]
. (5)

From [1], we can see that the continuous constrained soft Bellman policy is the optimal solution of
(5) by setting the hyperparameter α = 1 in equation (2) in [1].

Let p∗ be the optimal value of the primal problem (2) and d∗ be the optimal value of the dual
problem minη G(η;ωc). We know that p∗ exists (proof of Lemma 2 in [2]). For any η, G(η;ωc) is
an upper bound of p∗ because any optimal solution of the primal problem (2) is a feasible solution
of maxπ∈Π L(π, η;ωc), therefore, d∗ is finite.

We change the policy π to be time-dependent but force it to be stationary, then
∂L(π, η;ωc)

∂πt(a|s)
= −γtP (St = s)(lnπt(a|s) + 1)
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+ P (St = s)Eπ
S,A[

∞∑
τ=t+1

−γτ lnπτ (Aτ |Sτ )|St = s,At = a] + P (St = s)·

(
γt

NE∑
i=1

(ω[i]
r )⊤ϕ[i]r (s, a) + λγtcωc

(s, a) + Eπ
S,A[

∞∑
τ=t+1

γτ
NE∑
i=1

(ω[i]
r )⊤ϕ[i]r (Sτ , Aτ )

+ λcωc
(Sτ , Aτ )|St = s,At = a]

)
,

= γtP (St = s)[Hπ(s, a)− 1 + η⊤µπ
r,ωc

(s, a)], (6)

where P (St = s) is the probability (density) of state s being reached at time t.

From the formula of the constrained soft Bellman policy, we know that πη;ωc
(a|s) > 0 for any

s ∈ S and a ∈ A, thus πη;ωc
is an interior point of Π. Therefore ∂L(π,η;ωc)

∂π(a|s) = 0 at πη;ωc
and from

(6) we have that for any (s, a) ∈ S ×A such that P (St = s) ̸= 0 for at least one time t:

Hπη;ωc (s, a)− 1 + η⊤µ
πη;ωc
r,ωc (s, a) = 0. (7)

Now, we derive the gradient of G(η;ωc) = H(πη;ωc
) +

∑NE

i=1(ω
[i]
r )⊤(µ

[i]
r (πη;ωc

) − µ̂
[i]
r ) +

λ(Jωc
(πη;ωc

)− b̂ωc
):

∇ηG(η;ωc) = ∇ηH(πη;ωc
) +∇ηµr,ωc

(πη;ωc
)η + (µr,ωc

(πη;ωc
)− µ̂r,ωc

),

=

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc(a|s)∇η lnπη;ωc(a|s)(Hπη;ωc (s, a)− 1 + (µ
πη;ωc
r,ωc (s, a))⊤η)dads

+ (µr,ωc
(πη;ωc

)− µ̂r,ωc
),

= µr,ωc
(πη;ωc

)− µ̂r,ωc
,

where the second equality follows from Lemma 6 and the third equality follows from (7) and
the fact that ψπη;ωc (s) = 0 if P (St = s) = 0 for all time t. Notice that µr,ωc

(πη;ωc
) −

µ̂r,ωc = [(µr(πη;ωc) − µ̂r)
⊤, Jωc(πη;ωc) − b̂ωc ]

⊤. Analogously, we can see that ∇ηG
[v](η;ωc) =

[(µr(πη;ωc)− µ̂
[v]
r )⊤, Jωc(πη;ωc)− b̂

[v]
ωc ]

⊤.

As G(η;ωc) attains its minimum at η∗(ωc), given that minη G(η;ωc) is unconstrained, the gradient
of G(η;ωc) with respect to η should be 0 at this point (i.e. µr(πη;ωc

) − µ̂r = 0 and Jωc
(πη;ωc

) −
b̂ωc = 0). It implies that πη;ωc is a feasible solution of the primal problem (2). Thus, we have:

H(πη∗(ωc);ωc
) = G(η∗(ωc);ωc) = d∗ ≥ p∗ ≥ H(πη∗(ωc);ωc

),

Therefore, we know that p∗ = d∗ and p∗ is obtained at πη∗(ωc);ωc
.

9.3 Intermediate results

In this section, we prove three lemmas which will be used in the remaining subsections.

Lemma 7. The dual functionsG(η;ωc) andG[v](η;ωc) are both strictly convex in η for any nonzero
cost weight vector ωc.

We know that

∇2
ηηG(η;ωc) = ∇ηµr,ωc(πη;ωc),

=

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc
(a|s)∇η lnπη;ωc

(a|s)(µπη;ωc
r,ωc (s, a))⊤dads,

=

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc
(a|s)

[
µ
πη;ωc
r,ωc (s, a)− µ

πη;ωc
r,ωc (s)

]
(µ

πη;ωc
r,ωc (s, a))⊤dads,

where the second equality follows from Lemma 6 and the last equality follows from Lemma 5.

For any nonzero vector η̄, we have:

η̄⊤∇2
ηηG(η;ωc)η̄ =

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πωc,η(a|s)
[
η⊤µ

πη;ωc
r,ωc (s, a)− η⊤µ

πη;ωc
r,ωc (s)

]
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· (µπη;ωc
r,ωc (s, a))⊤η̄dads,

=

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc
(a|s)

[
Q

πη;ωc
η̄,ωc

(s, a)− V
πη;ωc
η̄,ωc

(s)

]
(Q

πη;ωc
η̄,ωc

(s, a))dads,

=

∫
s∈S

ψπη;ωc (s)Var(Qπη;ωc
η̄,ωc

(s, ·))ds,

where Var(Qπη;ωc
η̄,ωc

(s, ·)) is the variance of the augmented Q-function Qπη;ωc
η̄,ωc

at state s.

We know that Qπη;ωc
η̄;ωc

(s, a) = η̄⊤µ
πη;ωc
r,ωc (s, a) and µπη;ωc

r,ωc,j
(s, a) is in essence a discounted cumula-

tive sum of ϕr,ωc,j . Because each component of ϕr,ωc can be chosen independently, the variance
Var(Qπη;ωc

η̄,ωc
(s, ·)) =

∑
j η̄

2
j Var(µπη;ωc

r,ωc,j
(s, ·)). From the formula of the constrained soft Bellman

policy, we know that whatever η and ωc are, πη;ωc
(a|s) > 0 for any a ∈ A at state s. There-

fore, the variance Var(µπη;ωc
r,ωc,j

(s, ·)) is zero only under the situation that µπη;ωc
r,ωc,j

(s, a) is a constant
almost everywhere over A and we can choose ϕr,ωc,j whose values always vary over a to avoid this.
Therefore, Var(µπη;ωc

r,ωc,j
(s, ·)) > 0 and thus Var(Qπη;ωc

η̄,ωc
(s, ·)) > 0.

Because ψπη;ωc (s) ≥ 0 for all s ∈ S and
∫
s∈S ψ

πη;ωc (s)ds = 1
1−γ , the measure of the

set where ψπη;ωc (s) > 0 is strictly greater than 0, otherwise
∫
s∈S ψ

πη;ωc (s)ds = 0. Thus,∫
s∈S ψ

πη;ωc (s)Var(Qπη;ωc
η̄,ωc

(s, ·))ds > 0 and ∇2
ηηG(η;ωc) is positive definite. Analogously,

∇2
ηηG

[v](η;ωc) is also positive definite. Therefore,G(η;ωc) andG[v](η;ωc) are both strictly convex
for any nonzero ωc.

Lemma 8. (i) There is a positive constant C∇ηG[v] such that for any ωc ∈ Ωc and η ∈ R
∑NE

i=1 l[i]r +1,

it holds that ||m[v]∇ηG
[v](η;ωc)|| ≤ C∇ηG[v] and ||m∇ηG(η;ωc)|| ≤ C∇ηG ≜

∑NL

v=1 C∇ηG[v] .

(ii) For any ωc ∈ Ωc and η ∈ R
∑NE

i=1 +1, G[v](η;ωc) and G(η;ωc) are continuously twice differen-
tiable in (ωc, η).

Proof. (i) From Lemma 1, we know that ||∇ηG
[v](η;ωc)|| = ||µr,ωc

(πη;ωc
) − µ̂

[v]
r,ωc || ≤

||µr,ωc
(πη;ωc

)||+ ||µ̂[v]
r,ωc ||, thus from Lemma 4, we know that ||m[v]∇ηG

[v](η;ωc)|| ≤ C∇ηG[v] for

some positive constant C∇ηG[v] . Therefore, ||∇ηmG(η;ωc)|| = ||
∑NL

v=1m
[v]∇ηG

[v](η;ωc)|| ≤∑NL

v=1 ||m[v]∇ηG
[v](η;ωc)|| ≤

∑NL

v=1 C∇ηG[v] ≜ C∇ηG

(ii) From the proof in Lemma 7, we know that:

∇2
ηηG(η;ωc) =

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc
(a|s) ·

[
µ
πη;ωc
r,ωc (s, a)− µ

πη;ωc
r,ωc (s)

]
(µ

πη;ωc
r,ωc (s, a))⊤dads,

= E
πη;ωc

S,A

[
(µ

πη;ωc
r,ωc (S,A)− µ

πη;ωc
r,ωc (S))(µ

πη;ωc
r,ωc (S,A))⊤

]
.

Thus,

∇3
ηηηG(η;ω) = E

πη;ωc

S,A

{
∇η

[
(µ

πη;ωc
r,ωc (S,A)− µ

πη;ωc
r,ωc (S))(µ

πη;ωc
r,ωc (S,A))⊤

]}
= E

πη;ωc

S,A

[
2(∇ηµ

πη;ωc
r,ωc (S,A))(µ

πη;ωc
r,ωc (S,A))⊤ − (∇ηµ

πη;ωc
r,ωc (S))(µ

πη;ωc
r,ωc (S,A))⊤

− µ
πη;ωc
r,ωc (S)(∇ηµ

πη;ωc
r,ωc (S,A))⊤

]
,

where the formula of ∇ηµ
πη;ωc
r,ωc (s) can be found in Lemma 6 and the formula of ∇ηµ

πη;ωc
r,ωc (s, a) can

be derived in a similar way to Lemma 6.

With similar process, we can also get the formulas of ∇3
ωcωcωc

G(η;ωc), ∇3
ηωcωc

G(η;ωc),
∇3

ηηωc
G(η;ωc), and ∇3

ηωcηG(η;ωc). Therefore, G(η;ωc) is three-times differentiable. Analo-
gously, G[v](η;ωc) is also three-times differentiable. Thus, they are both continuously twice dif-
ferentiable.
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Lemma 9. There are positive constants τ∇2
ηηG

and τ∇2
ηηG

[v] such that ∇2
ηηG(ωc, η

∗(ω′
c)) ⪰

τ∇2
ηηG

I , ∇2
ηηG(ωc, η̄

[v](ωc)) ⪰ τ∇2
ηηG

I , ∇2
ηηG

[v](ωc, η
∗(ω′

c)) ⪰ τ∇2
ηηG

[v]I and

∇2
ηηG

[v](ωc, η̄
[v](ωc)) ⪰ τ∇2

ηηG
[v]I for all ωc ∈ Ωc\{0}

Proof. The proof of Lemma 9 is divided into two steps where the first step shows that
∇2

ηηG(ωc, η
∗(ω′

c)) ⪰ τ∇2
ηηG

I and the second step shows that ∇2
ηηG(ωc, η̄

[v](ωc)) ⪰ τ∇2
ηηG

I . The
part for ∇2

ηηG
[v] can be derived analogously.

Step (i). Lemma 7 shows that G(η;ωc) is strictly convex in η, thus there is a unique η∗(ωc).
Since the problem minη G(η;ωc) is unconstrained and ∇ηG(η

∗(ωc);ωc) = 0 holds for any ωc ∈
R

∑NE
i=1 l[i]c , taking derivative with respect to ωc on both sides renders
∇2

ηωc
G(η∗(ωc);ωc) +∇2

ηηG(η
∗(ωc);ωc)∇η∗(ωc) = 0 ⇒ ∇η∗(ωc) = −M(ωc, η

∗(ωc))
⊤ (8)

where M(ωc, η) ≜ ∇2
ωcηG(η;ωc)

[
∇2

ηηG(η;ωc)
]−1

.

Since η∗(ω′
c) is differentiable (equation (8)) and ∇2

ηηG(η;ωc) is continuous in (ωc, η) (Lemma 8
(ii)), ∇2

ηηG(η
∗(ω′

c);ωc) is continuous in (ωc, ω
′
c). Since Ωc is compact, Ωc × Ωc is compact (Ty-

chonoff’s theorem, Theorem 1.9.7 in [3]), then the image of ∇2
ηηG(η

∗(ω′
c);ωc) is compact (Theo-

rem 4.14 in [4]). We denote the eigenvalues of ∇2
ηηG(η

∗(ω′
c);ωc) by λi(ωc, ω

′
c) and we know that

λi(ωc, ω
′
c) > 0 for any ωc and ω′

c because ∇2
ηηG(η

∗(ω′
c);ωc) is positive definite and symmetric.

Now, we prove that the image of every λi(ωc, ω
′
c) is compact. The characteristic polynomial of

∇2
ηηG(η

∗(ω′
c);ωc) is (λ − λ1(ωc, ω

′
c)) · · · (λ − λd(ωc, ω

′
c)) = λd + pd−1(ωc, ω

′
c)λ

d−1 + · · · +
p1(ωc, ω

′
c)λ + p0(ωc, ω

′
c), where λi(ωc, ω

′
c) is the root and pi(ωc, ω

′
c) is the coefficient. Each

pi(ωc, ω
′
c) is in essence a polynomial function of the entries of ∇2

ηηG(η
∗(ω′

c);ωc) and the entries of
∇2

ηηG(η
∗(ω′

c);ωc) are continuous in (ωc, ω
′
c) as ∇2

ηηG(η
∗(ω′

c);ωc) is continuous in (ωc, ω
′
c), then

pi(ωc, ω
′
c) is continuous in (ωc, ω

′
c) (Theorem 4.7 in [4]). Then λi(ωc, ω

′
c) is also continuous in

(ωc, ω
′
c) (Theorem 3.9.1 in [5]), thus the image of λi(ωc, ω

′
c) is compact.

According to Heine-Borel theorem (Theorem 2.41 in [4]), the image of λi(ωc, ω
′
c) is closed

and bounded. Therefore, minλi(ωc, ω
′
c) exists and belongs to the image of λi(ωc, ω

′
c),

then minλi(ωc, ω
′
c) is positive. Thus, we can choose a positive number τ∇2

ηηG
∗ =

min{minλ1(ωc, ω
′
c), · · · ,minλd(ωc, ω

′
c)} and ∇2

ηηG(η
∗(ω′

c);ωc) ⪰ τ∇2
ηηG

∗I .

Step (ii). For the distributed gradient descent in Algorithm 2, we know that (equation (5) in [6])

η[v](ωc, k) =

NL∑
v′=1

[Φ(k − 1, 0)]vv′η[v
′](0)−

k−1∑
s=1

α(s− 1)

NL∑
v′=1

[Φ(k − 1, s)]vv′ ·

m[v′]∇ηG
[v′](η[v

′](ωc, s− 1);ωc)− α(k − 1)m[v]∇ηG
[v](η[v](ωc, k − 1);ωc),

where Φ(k, s) ≜ W (s)W (s+ 1) · · ·W (k) is the state transition matrix and [Φ(k, s)]vv′ is the entry
at the v-th row and v′-th column.

We define y(ωc, k) ≜ 1
NL

∑NL

v′=1 η
[v′](0)−

∑k
s=1 α(s−1)

∑NL

v′=1
m[v′]

NL
∇ηG

[v′](η[v
′](ωc, s−1);ωc),

then y(ωc, k + 1) = y(ωc, k)− α(k)
NL

∑NL

v′=1m
[v′]∇ηG

[v′](η[v
′](ωc, k);ωc).

Following the proof of Lemma 5 (a) and proposition 3 in [6], we can get
||y(ωc, k + 1)− η∗(ωc)||2,

≤ ||y(ωc, k)− η∗(ωc)||2 +
4α(k)

NL

NL∑
v′=1

C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)||

− 2α(k)m

NL

[
G(y(ωc, k);ωc)−G(η∗(ωc);ωc)

]
+

(α(k))2

NL
C2

∇ηG, (9)

≤ ||y(ωc, k)− η∗(ωc)||2 +
4α(k)

NL

NL∑
v′=1

C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)||+

(α(k))2

NL
C2

∇ηG,

(10)
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||y(ωc, k)− η[v](ωc, k)|| ≤ 2
1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1
B0

NL∑
v′=1

||η[v
′](0)||

+

k−1∑
s=1

2α(s− 1)C∇ηG
1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1−s
B0 +

α(k − 1)

NL
(C∇ηG +NLC∇ηG[v]),

where B0 = (NL − 1)B.

We can find cη such that
∑NL

v=1 ||η[v](0)|| ≤ cη . Therefore,

4α(k)

NL

NL∑
v′=1

C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)|| ≤

8α(k)C∇ηGcη

NL

1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1
B0

+
4α(k)

NL

NL∑
v′=1

C∇ηG[v′]

k−1∑
s=1

2α(s− 1)C∇ηG
1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1−s
B0

+
4α(k)α(k − 1)

N2
L

NL∑
v′=1

C∇ηG[v′](C∇ηG +NLC∇ηG[v]),

=
8α(k)C∇ηGcη

NL

1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1
B0 +

8α(k)C2
∇ηG

NL

k−1∑
s=1

α(s− 1)
1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1−s
B0

+
4α(k)α(k − 1)C∇ηG(C∇ηG +NLC∇ηG[v])

N2
L

. (11)

Notice that the second term in (11) does not exist if k < 2.

Claim 1.
∑K

k=1
4α(k)
NL

∑NL

v′=1 C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)|| is bounded for any K.

Proof. Because the upper bound of 4α(k)
NL

∑NL

v′=1 C∇ηG[v′] ||y(ωc, k) − η[v
′](ωc, k)||, i.e., formula

(11), is positive, it suffices to show that
∑∞

k=1
4α(k)
NL

∑NL

v′=1 C∇ηG[v′] ||y(ωc, k) − η[v
′](ωc, k)|| is

bounded.

Now, we prove that the summation of each term in (11) is finite one by one.

First,
∑∞

k=1

8α(k)cηC∇ηG

NL

1+ϵ−B0

1−ϵB0
(1 − ϵB0)

k−1
B0 ≤ 8ᾱcηC∇ηG

NL

1+ϵ−B0

1−ϵB0

∑∞
k=1(1 − ϵB0)

k−1
B0 =

8ᾱcηC∇ηG

NL

1+ϵ−B0

(1−ϵB0 )[1−(1−ϵB0 )
1

B0 ]
is bounded.

Second,
∞∑
k=2

8α(k)C2
∇ηG

NL

k−1∑
s=1

α(s− 1)
1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1−s
B0 =

8C2
∇ηG

(1 + ϵ−B0)

NL(1− ϵB0)
·

[ ∞∑
k=2

ᾱ

k + 1

k−1∑
s=1

ᾱ

s
(1− ϵB0)

k−1−s
B0

]
.

Let Sk =
∑k−1

s=1
ᾱ
s (1 − ϵB0)

k−1−s
B0 , then k

ᾱSk−1 − k+1
ᾱ Sk = k

ᾱ

∑k−2
s=1

ᾱ
s (1 − ϵB0)

k−2−s
B0 −

k+1
ᾱ

∑k−1
s=1

ᾱ
s (1 − ϵB0)

k−1−s
B0 =

∑k−2
s=1

k
s (1 − ϵB0)

k−2−s
B0 −

∑k−2
s=0

k+1
s+1 (1 − ϵB0)

k−2−s
B0 =∑k−2

s=1
k−s

s(s+1) (1−ϵ
B0)

k−2−s
B0 −(k+1)(1−ϵB0)

k−2
B0 =

∑k−3
s=1

k−s
s(s+1) (1−ϵ

B0)
k−2−s

B0 + 2
(k−2)(k−1) −

(k + 1)(1− ϵB0)
k−2
B0 .

Because (1−ϵB0)
k−2
B0 decays faster than 1

(k−2)(k−1)(k+1) , there exists a positive integer K̄ such that
2

(k−2)(k−1) − (k + 1)(1− ϵB0)
k−2
B0 > 0 if k > K̄. Therefore, k

ᾱSk−1 − k+1
ᾱ Sk > 0 if k > K̄. We

can find a positive number M such that k+1
ᾱ Sk < M for any k > 0. Then, ᾱ

k+1Sk <
ᾱ2M

(k+1)2 and∑∞
k=2

ᾱ
k+1Sk is finite.
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Third,
∑∞

k=1

4α(k)α(k−1)C∇ηG(C∇ηG+NLC∇ηG[v] )

N2
L

=
4C∇ηG(C∇ηG+NLC∇ηG[v] )

N2
L

∑∞
k=1 α(k)α(k −

1) ≤
4C∇ηG(C∇ηG+NLC∇ηG[v] )

N2
L

∑∞
k=1

ᾱ2

k2 is bounded.

Equation (10) shows that ||y(ωc, k + 1) − η∗(ωc)||2 ≤ ||y(ωc, k) − η∗(ωc)||2 +
4α(k)
NL

∑NL

v′=1 C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)||+ (α(k))2

NL
C2

∇ηG
.

Telescoping from k = 0 to K − 1, we have:

||y(ωc, k)− η∗(ωc)||2 ≤ ||y(ωc, 0)− η∗(ωc)||2 +
4α(0)

NL

NL∑
v′=1

C∇ηG[v′] ||y(ωc, 0)− η[v
′](0)||

+

K−1∑
k=1

4α(k)

NL

NL∑
v′=1

C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)||+

K−1∑
k=0

(α(k))2C2
∇ηG

N2
L

≤ Dmax,

where Dmax = ||y(ωc, 0) − η∗(ωc)||2 + 4α(0)

NL

∑NL

v′=1 C∇ηG[v′] ||y(ωc, 0) − η[v
′](0)|| +∑∞

k=1
4α(k)
NL

∑NL

v′=1 C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)||+

∑∞
k=0

(α(k))2C2
∇ηG

N2
L

is finite.

Therefore,

||η[v](ωc, k)− η∗(ωc)|| ≤ ||η[v](ωc, k)− y(ωc, k)||+ ||y(ωc, k)− η∗(ωc)||,

≤ 2cη
1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1
B0 +

k−1∑
s=1

2C∇ηGα(s− 1)
1 + ϵ−B0

1− ϵB0
(1− ϵB0)

k−1−s
B0

+
α(k − 1)

NL
(C∇ηG +NLC∇ηG[v]) +

√
Dmax,

≤ 2cη
1 + ϵ−B0

1− ϵB0
+ 2C∇ηG

1 + ϵ−B0

1− ϵB0

k−1∑
s=1

α(s− 1)(1− ϵB0)
k−1−s

B0 +
ᾱ(C∇ηG +NLC∇ηG[v])

NL

+
√
Dmax,

≤ 2cη
1 + ϵ−B0

1− ϵB0
+ 2ᾱC∇ηG

1 + ϵ−B0

1− ϵB0

k−1∑
s=1

(1− ϵB0)
k−1−s

B0 +
ᾱ(C∇ηG +NLC∇ηG[v])

NL
,

+
√
Dmax ≤ D̄max,

where D̄max = 2cη
1+ϵ−B0

1−ϵB0
+ 2ᾱC∇ηG

1+ϵ−B0

1−ϵB0

∑∞
s=1(1 − ϵB0)

k−1−s
B0 +

ᾱ(C∇ηG+NLC∇ηG[v] )

NL
+√

Dmax is finite. Because η∗(ωc) is bounded within a compact set and ||η[v](ωc, k)|| ≤ ||η∗(ωc)||+
D̄max, we know that η[v](ωc, k) is also bounded within a compact set. Then, ||η̄[v](ωc)|| =

||
∑K−1

j=0 α(k)η[v](ωc,k)∑K−1
j=0 α(k)

|| ≤ max ||η[v](ωc, j)|| ≤ ||η∗(ωc)|| + D̄max so that η̄[v](ωc) is also bounded

within a compact set. Following the same idea of η∗, we can find a positive constant τGη̄η̄
such that

∇2
ηηG(η̄

[v](ωc);ωc) ⪰ τGη̄η̄
I for all k > 0.

Then, we can find the positive constant τ∇2
ηηG

= min{τ∇2
ηηG

∗ , τGη̄η̄
}. With similar derivation, we

can find the positive constant τ∇2
ηηG

[v] .

9.4 Proof of Lemma 3

From Claim 1, we know that there is a positive constant cmax such that
∑K

k=0 2α(k)
∑NL

v′=1 C∇ηG[v′]

||y(ωc, k)−η[v
′](ωc, k)|| ≤ cmax for allK > 0. From (9), we know that ||y(ωc, k+1)−η∗(ωc)||2 ≤

||y(ωc, k)−η∗(ωc)||2+ 4α(k)
NL

∑NL

v′=1 C∇ηG[v] ||y(ωc, k)−η[v](ωc, k)||− 2α(k)m
NL

[
G(y(ωc, k);ωc)−
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G(η∗(ωc);ωc)

]
+ (α(k))2

NL
C2

∇ηG
, then we have:

K−1∑
k=0

2α(k)m

NL

[
G(y(ωc, k);ωc)−G(η∗(ωc);ωc)

]
≤ ||y(ωc, 0)− η∗(ωc)||2 − ||y(ωc, k)− η∗(ωc)||2

+

K−1∑
k=0

4α(k)

NL

NL∑
v′=1

C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)||+

K−1∑
k=0

(α(k))2C2
∇ηG

N2
L

,

⇒
∑K−1

k=0 α(k)mG(y(ωc, k);ωc)∑K−1
k=0 α(k)

−mG(η∗(ωc);ωc) ≤
NL

2
∑K−1

k=0 α(k)
||y(ωc, 0)− η∗(ωc)||2

+
1∑K−1

k=0 α(k)

K−1∑
k=0

2α(k)

NL∑
v′=1

C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)||

+
1∑K−1

k=0 α(k)

K−1∑
k=0

(α(k))2C2
∇ηG

2NL
,

≤ NL

2
∑K−1

k=0 α(k)
||y(ωc, 0)− η∗(ωc)||2 +

1∑K−1
k=0 α(k)

(cmax +
C2

∇ηG
π2ᾱ2

12NL
),

⇒ mG(

∑K−1
k=0 α(k)y(ωc, k)∑K−1

k=0 α(k)
;x)−mG(η∗(ωc);ωc) ≤

∑K−1
k=0 α(k)mG(y(ωc, k);ωc)∑K−1

k=0 α(k)

−mG(η∗(ωc);ωc),

≤ NL

2
∑K−1

k=0 α(k)
||y(ωc, 0)− η∗(ωc)||2 +

1∑K−1
k=0 α(k)

(cmax +
C2

∇ηG
π2ᾱ2

12NL
)

≤ 1

logK

[
NL||y(ωc, 0)− η∗(ωc)||2

2ᾱ
+ cmax +

C2
∇ηG

π2ᾱ

12NL

]
,

⇒ ||
∑K−1

k=0 α(k)y(ωc, k)∑K−1
k=0 α(k)

− η∗(ωc)||2 ≤ 2

τ∇2
ηηG

[
G(

∑K−1
k=0 α(k)y(ωc, k)∑K−1

k=0 α(k)
;ωc)

−G(η∗(ωc);ωc)

]
,

≤ 2

mτ∇2
ηηG

logK

[
NL||y(ωc, 0)− η∗(ωc)||2

2ᾱ
+ cmax +

C2
∇ηG

π2ᾱ

12NL

]
.

Then,

||
∑K−1

k=0 α(k)η[v](ωc, k)∑K−1
k=0 α(k)

− η∗(ωc)|| ≤ ||
∑K−1

k=0 α(k)η[v](ωc, k)∑K−1
k=0 α(k)

−
∑K−1

k=0 α(k)y(ωc, k)∑K−1
k=0 α(k)

||

+ ||
∑K−1

k=0 α(k)y(ωc, k)∑K−1
k=0 α(k)

− η∗(ωc)||,

≤
∑K−1

k=0 α(k)||η[v](ωc, k)− y(ωc, k)||∑K−1
k=0 α(k)

+ ||
∑K−1

k=0 α(k)y(ωc, k)∑K−1
k=0 α(k)

− η∗(ωc)||.

We know that cmax

2 ≥
∑K−1

k=0 α(k)
∑NL

v′=1 C∇ηG[v′] ||y(ωc, k)− η[v
′](ωc, k)|| ≥ C∇ηG[v]

∑K−1
k=0

α(k)||y(ωc, k)− η[v](ωc, k)||, then

||
∑K−1

k=0 α(k)η[v](ωc, k)∑K−1
k=0 α(k)

− η∗(ωc)|| ≤
1

logK

cmax

2C∇ηG[v]

+

√√√√ 2

τ∇2
ηηG

logK

[
NL||y(ωc, 0)− η∗(ωc)||2

2ᾱ
+ cmax +

C2
∇ηG

π2ᾱ

12NL

]
,
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=
1

logK

cmax

2C∇ηG[v]

+
1√

logK

√√√√[
NL||y(ωc, 0)− η∗(ωc)||2

mτ∇2
ηηG

ᾱ
+

2cmax

mτ∇2
ηηG

+
C2

∇ηG
π2ᾱ

6mτ∇2
ηηG

NL
,

=
1

logK

cmax

2C∇ηG[v]

+
1√

logK

√√√√NL|| 1
NL

∑NL

v=0 y
(0)
v (x)− η∗(ωc)||2

mτ∇2
ηηG

ᾱ
+

2cmax

mτ∇2
ηηG

+
C2

∇ηG
π2ᾱ

6mτ∇2
ηηG

NL
.

We let C [v]
1 = cmax

2C∇ηG[v]
and C [v]

2 =

√
NL|| 1

NL

∑NL
v=0 y

(0)
v (x)−η∗(ωc)||2

mτ∇2
ηηGᾱ + 2cmax

mτ∇2
ηηG

+
C2

∇ηGπ2ᾱ

6mτ∇2
ηηGNL

.

9.5 The derivation of learner v’s LGA

Using the chain rule, we know that:

∇F (ωc, η
∗(ωc)) = ∇ωcF (ωc, η

∗(ωc)) + [(∇ηF (ωc, η
∗(ωc)))

⊤∇η∗(ωc)]
⊤,

= ∇ωcF (ωc, η
∗(ωc))−M(ωc, η

∗(ωc))∇ηF (ωc, η
∗(ωc)),

where M(ωc, η) is defined in (8).
Lemma 10. The gradient ∇F (ω, η∗(ωc)) = ∇ωc

F (ωc, η
∗(ωc)).

Proof. The global likelihood function is:

F (ωc, η) =

∞∑
t=0

γt
∫
s∈S

∫
a∈A

mPD(St = s,At = a) lnπη;ωc
(a|s)dads,

where PD(St = s,At = a) is the empirical probability of (s, a) occurring at time t in the demon-
strations D:

PD(St = s,At = a) ≜
1

m

m∑
j=1

(1{sjt = s}1{ajt = a}),

From the proof of Lemma 5, we know that πη;ωc
can be formulated as:

πη;ωc
(a|s) =

Za|s,η;ωc

Zs,η;ωc

,

lnZa|s,η;ωc
=

NE∑
i=1

(ω[i]
r )⊤ϕ[i]r (s, a) + λcωc

(s, a) + γ

∫
s′∈S

P (s′|s, a) lnZs′,η;ωc
ds′,

lnZs,η;ωc
= ln

∫
a∈A

Za|s,η;ωc
da.

Thus,

∇ηF (ωc, η) =

∞∑
t=0

γt
∫
s∈S

∫
a∈A

mPD(St = s,At = a)∇η(lnZa|s,η;ωc
− lnZs,η;ωc

)dads,

=

∞∑
t=0

γt
∫
s∈S

∫
a∈A

mPD(St = s,At = a)

{
ϕr,ωc(s, a) + E

πη;ωc

S,A [

∞∑
τ=t+1

γτ−tϕr,ωc(Sτ , Aτ )|

St = s,At = a]− E
πη;ωc

S,A [

∞∑
τ=t

γτ−tϕr,ωc(Sτ , Aτ )|St = s]

}
dads,

where the last inequality follows from Lemma 5. Here,

γ

∫
s′∈S

∫
a′∈A

PD(St+1 = s′, At+1 = a′)E
πη;ωc

S,A

[ ∞∑
τ=t+1

γτ−t−1ϕr,ωc(Sτ , Aτ )|St+1 = s′
]
da′ds′,

= γ

∫
s′∈S

PD(St+1 = s′)E
πη;ωc

S,A

[ ∞∑
τ=t+1

γτ−t−1ϕr,ωc(Sτ , Aτ )|St+1 = s′
]
ds′,

10



= γ

∫
s∈S

∫
a∈A

PD(St = s,At = a)

∫
s′∈S

P (s′|s, a)·

E
πη;ωc

S,A

[ ∞∑
τ=t+1

γτ−t−1ϕr,ωc(Sτ , Aτ )|St+1 = s′
]
ds′dads,

=

∫
s∈S

∫
a∈A

PD(St = s,At = a)E
πη;ωc

S,A

[ ∞∑
τ=t+1

γτ−tϕr,ωc(Sτ , Aτ )|St = s,At = a

]
dads.

Therefore,

∇ηF (ωc, η) =

∞∑
t=0

γt
∫
s∈S

∫
a∈A

mPD(St = s,At = a)ϕr,ωc(s, a)dads

−
∫
s∈S

∫
a∈A

mPD(S0 = s,A0 = a)E
πη;ωc

S,A

[ ∞∑
t=0

γtϕr,ωc(St, At)|S0 = s

]
dads,

= m(µ̂r,ωc
− µr,ωc

(πη;ωc
)).

The above derivation shows that ∇ηF (ωc; η) = −m∇ηG(η;ωc). Therefore, we have that
∇F (ωc, η

∗(ωc)) = ∇ωc
F (ωc, η

∗(ωc))−M(ωc, η
∗(ωc))∇ηF (ωc, η

∗(ωc)) = ∇ωc
F (ωc, η

∗(ωc))+
M(ωc, η

∗(ωc))∇ηmG(η
∗(ωc);ωc) = ∇ωc

F (ωc, η
∗(ωc)).

However, we cannot obtain the gradient ∇F (ωc, η
∗(ωc)) because each learner v does not find

η∗(ωc) but its approximation η̄[v](ωc). Therefore, we propose a surrogate gradient to approximate
∇F (ωc, η

∗(ωc)): ∇̄F (ωc, η̄
[v](ωc)) ≜ ∇ωcF (ωc, η̄

[v](ωc)).

Notice that this surrogate gradient is global, to decompose it, we propose a local gradient approx-
imation from learner v: ∇̄F [v](ωc, η̄

[v](ωc)) ≜ ∇ωcF
[v](ωc, η̄

[v](ωc)). This local approximation
aims to approximate ∇̄F [v](ωc, η

∗(ωc)) = ∇ωc
F [v](ωc, η

∗(ωc)). Notice that ∇F (ωc, η
∗(ωc)) =

∇ωcF (ωc, η
∗(ωc)) =

∑NL

v=1 ∇ωc
F [v](ωc, η

∗(ωc)) =
∑NL

v=1 ∇̄F [v](ωc, η
∗(ωc)).

Similar to the derivation of ∇ηF (ωc, η), we can get the gradient ∇ωc
F [v](ωc, η) =

∑
ζj∈D[v]

∑∞
t=0

γtϕc(s
j
t , a

j
t )−m[v]E

πη;ωc

S,A [
∑∞

t=0 γ
tϕc(St, At)]. We still use this approximation when ωc = 0.

Lemma 11. The approximation error ||∇̄F [v](ωc, η̄(ωc))− ∇̄F [v](ωc, η
∗(ωc))|| is upper bounded

and decreases to zero at the rate of O( 1√
logK

).

Proof. At first, we first prove the following claim showing that bounded gradient can imply Lips-
chitz condition of a function if the domain of the function is convex.

Claim 2. Suppose a function f : E ⊆ Rn → Rm is differentiable on the convex set E, and
||∇f(x)|| ≤ M for any x ∈ E, where M is a finite positive constant. Then f satisfies the Lipschitz
condition, i.e., ||f(b)− f(a)|| ≤M ||b− a|| for any a, b ∈ E.

Proof. Let y(t) = (1 − t)a + tb where t ∈ [0, 1] and h(t) = f ◦ y(t). Let z = f(b) − f(a)
and define v(t) = z⊤h(t). Then v is real-valued and differentiable on (0, 1). By the mean value
theorem, there exists t̄ ∈ (0, 1) such that v(1) − v(0) = v′(t) ⇒ ||f(b) − f(a)||2 = (f(b) −
f(a))⊤(∇yf(y(t)))

⊤(b − a) ≤ ||f(b) − f(a)|| · ||∇yf(y(t))|| · ||b − a|| ⇒ ||f(b) − f(a)|| ≤
M ||b− a||.

Claim 3. For any ωc ∈ Ωc, ∇ωc
F [v](ωc, η) is Lipschitz continuous (w.r.t. η) with positive constant

L∇ωcF
[v] .

Proof. From Claim 2, it suffices to show that ||∇ωcηF
[v](ωc, η)|| is bounded. Following similar

derivation in the proof of Lemma 10, we can get ∇ωc
F [v](ωc, η) = m[v](µ̂c − λµc(πη;ωc

)). Then
following the similar idea of the proof in Lemma 7, we can see that

∇2
ωcηF

[v](ωc, η) = −m[v]

∫
s∈S

ψπη;ωc (s)

∫
a∈A

[
∇ηπη;ωc

(a|s)(λµπη;ωc
c (s, a))⊤ + πη;ωc

(a|s)
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· [0∑NE
i=1 l

[i]
c ×

∑NE
i=1 l

[i]
r
, µ

πη;ωc
c (s, a)]⊤

]
dads

= m[v]

∫
s∈S

ψπη;ωc (s)

∫
a∈A

λπη;ωc
(a|s)[µπη;ωc

r,ωc (s)− µ
πη;ωc
r,ωc (s, a)](µ

πη;ωc
c (s, a))⊤dads

−m[v]

∫
s∈S

ψπη;ωc (s)

∫
a∈A

πη;ωc
(a|s)[0∑NE

i=1 l
[i]
c ×

∑NE
i=1 l

[i]
r
, µ

πη;ωc
c (s, a)]⊤dads.

Because ψπη;ωc (s), πη;ωc
(a|s), µπη;ωc

r,ωc (s), µπη;ωc
r,ωc (s, a), µπη;ωc

c (s), and µ
πη;ωc
c (s, a) are finite

(Lemma 4), and
∫
s∈S ds = S and

∫
a∈A da = A are finite, we know that ||∇ωcηF

[v](ωc, η)|| is
bounded and thus L∇ωcF

[v] exists.

Therefore, the approximation error is

||∇̄F [v](ωc, η̄(ωc))− ∇̄F [v](ωc, η
∗(ωc))|| = ||∇ωc

F [v](ωc, η̄(ωc))−∇ωc
F [v](ωc, η

∗(ωc))||,
≤ L∇ωcF

[v] ||η̄(ωc)− η∗(ωc)||.

From Lemma 3, we know that ||η̄(ωc) − η∗(ωc)|| decreases to 0 at the rate of O( 1√
logK

), thus

||∇̄F [v](ωc, η̄(ωc))− ∇̄F [v](ωc, η
∗(ωc))|| decreases to 0 at the rate of O( 1√

logK
).

9.6 Proof of Lemma 2

Learner v’s LSCA problem at ω[v]
c is argmaxωcΩc

F̃ [v](ωc;ω
[v]
c ) where F̃ [v](ωc;ω

[v]
c ) needs to sat-

isfy the following four conditions (Assumption 3.14 in [7]):
(i) ∇F̃ [v](ωc;ω

[v]
c ) = NL∇̄[v] at ω[v]

c .
(ii) −F̃ [v](ωc;ω

[v]
c ) is strongly convex in ωc.

(iii) F̃ [v](ωc;ω
[v]
c ) is continuously differentiable in ωc.

(iv) ∇F̃ [v](ωc;ω
[v]
c ) is Lipschitz continuous in ω[v]

c .

To satisfy these assumptions, we choose the function F̃ [v](ωc;ω
[v]
c ) = − 1

2 ||ωc − ω
[v]
c ||2 +

(NL∇̄[v])⊤(ωc − ω
[v]
c ).

Then ω̃[v]
c = argmaxωc∈Ωc

− 1
2 ||ωc − ω

[v]
c ||2 +

(
NL∇̄[v]

)⊤(
ωc − ω

[v]
c

)
. Now, we prove that

ω̃
[v]
c = ProjectΩc

(
ω
[v]
c + NL∇̄[v]

)
. Because ωc ∈ Ωc, by the property of the projection operator,

we know that ω̃[v]
c = argminωc∈Ωc

||ωc−ω[v]
c −NL∇̄[v]|| = argminωc∈Ωc

||ωc−ω[v]
c −NL∇̄[v]||2 =

argminωc∈Ωc
||ωc−ω[v]

c ||2+ ||NL∇̄[v]||2−2

(
NL∇̄[v]

)⊤(
ωc−ω[v]

c

)
= argmaxωc∈ωc

− 1
2 ||ωc−

ω
[v]
c ||2 +

(
NL∇̄[v]

)⊤(
ωc − ω

[v]
c

)
.

9.7 Proof of Theorem 1

With the the result of LSCA in subsection 9.6, SONATA (Theorem 4 in [8]) can prove that

(consensus) lim
n→∞

max
v,v′∈V

||ω[v]
c (n)− ω[v′]

c (n)|| = 0,

(convergence) lim
n→∞

(

NL∑
v=1

∇̄F [v](ω[v]
c (n), η̄[v](ω[v]

c (n))))⊤(ωc − ω[v]
c (n)) ≤ 0

Then,

lim sup
n→∞

(∇F (ω[v]
c (n), η∗(ω[v]

c (n))))⊤(ωc − ω[v]
c (n))
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= lim sup
n→∞

(∇F (ω[v]
c (n), η∗(ω[v]

c (n)))−
NL∑
v=1

∇̄F [v](ω[v]
c (n), η̄[v](ω[v]

c (n))))⊤(ωc − ω[v]
c (n))

+ lim sup
n→∞

(

NL∑
v=1

∇̄F [v](ω[v]
c (n), η̄[v](ω[v]

c (n))))⊤(ωc − ω[v]
c (n)),

≤ lim sup
n→∞

(∇F (ω[v]
c (n), η∗(ω[v]

c (n)))−
NL∑
v=1

∇̄F [v](ω[v]
c (n), η̄[v](ω[v]

c (n))))⊤(ωc − ω[v]
c (n)),

≤ lim sup
n→∞

||∇F (ω[v]
c (n), η∗(ω[v]

c (n)))−
NL∑
v=1

∇̄F [v](ω[v]
c (n), η̄[v](ω[v]

c (n)))|| · ||ωc − ω[v]
c (n)||,

≤ lim sup
n→∞

2

NE∑
i=1

l[i]c ||
NL∑
v=1

(∇̄F [v](ω[v]
c (n), η∗(ω[v]

c (n)))− ∇̄F [v](ω[v]
c (n), η̄[v](ω[v]

c (n))))||

≤ lim sup
n→∞

2

NE∑
i=1

l[i]c

NL∑
v=1

||∇̄F [v](ω[v]
c (n), η∗(ω[v]

c (n)))− ∇̄F [v](ω[v]
c (n), η̄[v](ω[v]

c (n)))||

≤ lim sup
n→∞

2

NE∑
i=1

l[i]c

NL∑
v=1

L∇ωcF
[v] ||η∗(ω[v]

c (n))− η̄[v](ω[v]
c (n))||,

where the last inequality follows from Claim 3 and ||η∗(ω[v]
c (n)) − η̄[v](ω

[v]
c (n))|| = O( 1√

logK
)

(Lemma 3). Then, we have

lim sup
n→∞

(∇F (ω[v]
c (n), η∗(ω[v]

c (n))))⊤(ωc − ω[v]
c (n)) ≤ M̄√

logK
,

where M̄ is well-defined because l[i]c and L∇ωc
F [v] are both positive constants.

10 Simulation details

In this section, we provide the simulation details. The Python3 code was run on a laptop with one
Intel Core i7-9750H 2.60GHz CPU and 16 GB of RAM under Ubuntu 18.04 operating system. Due
to the well-known curse of dimensionality, the reinforcement learning (or dynamic programming) of
multiple experts is hard to compute. To alleviate this issue, we model the experts as separate MDPs
for most of the time and only model them as an MG when they are close to each other.

10.1 Synthetic grid world

The inner communication network for the four learners has two stages: in stage 1, learners 1
and 2 can communicate and learners 3 and 4 can communicate; in stage 2, learners 1 and 4 can
communicate and learners 2 and 3 can communicate. Thus the adjacency matrix in stage 1 is0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0 0.5 0.5

 and in stage 2 is

0.5 0 0 0.5
0 0.5 0.5 0
0 0.5 0.5 0
0.5 0 0 0.5

.

The outer communication graph also has two stages, as we need to ensure N̄ [v](n) = N , the adja-
cency matrix in two stages are respectively:0.49999 0.49999 0.00001 0.00001
0.49999 0.49999 0.00001 0.00001
0.00001 0.00001 0.49999 0.49999
0.00001 0.00001 0.49999 0.49999

 and

0.49999 0.00001 0.00001 0.49999
0.00001 0.49999 0.49999 0.00001
0.00001 0.49999 0.49999 0.00001
0.49999 0.00001 0.00001 0.49999

.

The discount factor is 0.9. For each ω[i]
c,j , we also need a threshold ωc,th to judge whether C[i]

j is

identified as a part of the ground truth constraint, i.e., C[i]
j is identified as a part of the ground truth

constraint if ω[i]
c,j ≥ ωc,th and is not if otherwise. The principle of choosing the value of ωc,th is that
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the probability of entering C[i]
j when ω[i]

c,j = ωc,th is less than 1% of the probability when ω[i]
c,j = 0.

In this example, we choose ωc,th = 0.1.

10.2 Drones motion planning with obstacles

The simulator is built in Gazebo based on a package called hector quadrotor [9].

In this experiment, there are only two learners who obtain, respectively, four and five pairs of demon-
strated trajectories. The inner and outer communication graphs are the same and only have one stage.

The adjacency matrix is
[
0.5 0.5
0.5 0.5

]
. The discount factor is 1 and the drones fly at most 500 steps

and we choose ωc,th = 0.05.

11 Supplementary contexts

11.1 Intuition of the bi-level formulation

The intuition behind this bi-level formulation is inspired by hyperparameter learning [10] and an
IRL literature [11]. Paper [11] interprets IRL as an bi-level problem where the outer level is to learn
the reward function and the inner level is to learn the corresponding policy. In our case, we treat the
constraint as a hyperparameter in our learned environment and we need to recover the corresponding
reward function and policy given current constraint. Therefore, in our problem, the outer level is to
learn the constraints and the inner level is to learn the corresponding reward function and policy.

11.2 Derivation of centralized bi-level problem and decomposition to the distributed bi-level
problem

The global log likelihood of the global demonstration set D = {ζj}mj=1 is F (ωc) =
∑m

j=1

∑∞
t=0 γ

t

lnπωc(a
j
t |s

j
t ). To solve this MLE problem, we need to find a parametric policy model of πωc . To

find such a model, we use an optimization problem (2) based on MCE scheme. Notice that this
optimization problem (2) is parameterized by ωc, thus its optimal solution is also parameterized by
ωc. Its optimal solution is the policy model we want in the likelihood function F (ωc). Following
well-established MCE IRL literature [2], we can see that the optimal solution of this optimization
problem is the constrained soft Bellman policy πη∗(ωc);ωc

, where η∗(ωc) is the optimization solution
of the problem minη G(η;ωc). To fully define the MLE problem, we also need the optimal solution
η∗(ωc) of the problem minη G(η;ωc). Therefore, we formulate the MLE problem as a bi-level
optimization problem: maxωc F (ωc, η

∗(ωc)) =
∑m

j=1

∑∞
t=0 γ

t lnπη∗(ωc);ωc
(ajt |s

j
t ) s.t. η∗(ωc) =

argminη G(η;ωc). Now, we finish the derivation of the centralized bi-level problem.

As no learner knows the global demonstration data D and no learner can formulate F and G, the
centralized bi-level problem cannot be directly solved. Therefore, we need to decompose the central-
ized problem into an equivalent distributed problem that the learners can solve even if each learner
only knows its local demonstration. Therefore, we decompose F into multiple F [v] and G into mul-
tiple G[v]. In remark 3, we show that the distributed problem (3)-(4) is equivalent to the centralized
bi-level problem we derive here.

11.3 Explanation of the theoretical results

In our setting, each distributed learner only has a portion of the global demonstration data set and
one goal of our distributed algorithm is that the distributed learners can learn as good as a central-
ized learner who obtains the global data set even if the distributed learners do not share their local
demonstration set. In Lemma 3, it is shown that given a cost feature estimate ωc, the distributed
learners can converge to a consensus and the consensus is the optimal solution of the inner prob-
lem, i.e., their consensus is the best solution the centralized learner can achieve. In Theorem 1, it
is shown that the distributed learners can achieve consensus on the cost weight ωc which belongs
to the stationary point set of the outer problem. Combining Lemma 3 and Theorem 1, we can see
that the distributed learners will converge to the consensus on both the reward function and cost
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function where the learned cost weight belongs to the stationary point set of the outer problem and
the learned reward weight is the optimal solution of the inner problem.
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