
A Appendix

A.1 Self-supervised loss formula

Wav2vec 2.0, when trained in a self-supervised way, uses a loss (L) which is the weighted com-
bination of two losses: one diversity loss (Ld), which pushes the quantization module to contain
representations that are as diverse as possible, and one Contrastive Predictive Coding loss (Lm),
which pushes the model to choose, from the context network output c, the right quantized repre-
sentation (q) of some masked input, among other possible representations. Lm has the following
formula, for some masked time step t:

Lm = − log
exp (sim (ct,qt) /κ)∑

q̃∼Qt
exp (sim (ct, q̃) /κ)

(1)

with sim(a,b) = aTb/∥a∥∥b∥, κ the temperature, which is constant during training, Qt the set of
K + 1 quantized candidate the model has to choose from, including the right one, i.e. qt.

Ld is included to encourage the equal use of the V possible entries of each of the G codebooks of
the quantization module. The goal is to maximize the entropy of the averaged softmax distribution
over the codebook entries for each codebook p̄g , across a set of utterances:

Ld =
1

GV

G∑
g=1

−H (p̄g) =
1

GV

G∑
g=1

V∑
v=1

p̄g,v log p̄g,v (2)

A.2 Supervised loss formula

When trained in a supervised way, wav2vec 2.0 is trained to optimise a Connectionist Temporal
Classification loss parameterized over θ:

argminθ − log
∑

a∈aU,V

dt∏
t=1

pCTC (at | mθ(U)) , (3)

where mθ(U) ∈ Rdτ×dv are the probabilistic predictions of the model at each τ time sample given
the input raw waveform U ∈ Rdτ×du , V ∈ Rdt×dv are the true transcriptions of U , and aU,V is the
set of all possible alignments between U and V .

A.3 Preprocessing of the model’s activations

The activations of the network X ∈ Rdt̂×dx are first normalized to be between [0, 1] for each
listening session. Then, we use nistats [Abraham et al., 2014] compute_regressor function with
the ‘glover’ model to temporally convolve (h ∈ Rdt̂ ) and temporally down-sample ( using g : Rdt̂ →
Rdt ) each artificial neuron j:

x̂(j) = g
(
x(j) ∗ h

)
. (4)

A.4 Penalized linear model - Ridge regression

For each split s, we fit an ℓ2-penalized linear model V ∈ Rdx×dz trained to predict the transformed
BOLD time series from the model activations for each dimension independently. The formula of the
optimization is the following:

argminV
∑

i∈trains

(V ⊤X̂i − yi)
2 + λ∥V ∥2 . (5)

A.5 Probing the linguistic features encoded in wav2vec2 activations

Interpreting the representations of deep learning models is notoriously difficult. To address this
issue, [Pasad et al., 2021] explored the encoding of local acoustic features, phone identity, word
identity and word meaning across layers. Similarly, [Millet et al., 2021] compared representations
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to human behavioural data to assess whether they better captured listeners’ perception of higher-level
phonemic properties or of lower-level subphonemic properties of speech stimuli. Finally, [Vaidya
et al., 2022] recent study explores filter banks, spectrograms, phonemes and words across layers.
Here, we complement these analyses by showing that self-supervised learning allows wav2vec 2.0
to learn represents, along its hierarchy the representations of MEL spectrograms, phonetic categories
and word embeddings (Figure S1).

For this, we perform a ridge regression on the Timit dataset7 to predict five auditory and linguistic
features from the activation functions of each layer and model of the present paper. We study the
following features:

• the MEL spectrogram of the audio, computed using librosa (d=128)

• the phonemes (categorical features). We use the transcripts and alignments provided in
Timit.

• the word embedding and part-of-speech of the words. The time alignments for words are
provided by Timit. We use spaCy to compute the word embedding (medium model, d=300),
and their part-of-speech (categorical feature, d=19).

• the sentence embedding of each sample, provided by Laser.

We use a subset of 1,680 samples from Timit, each sample being an audio recording of a short sen-
tence (<10 seconds) from 24 speakers. The model’s activations were mean-pooled to the sampling
rate of each feature.

The results show that the layers of wav2vec 2.0 partially follow the hierarchy predicted from neuro-
linguistics [Hickok and Poeppel, 2007] (Table S4): the first layers of the transformer best account for
the spectro-temporal information, whereas deeper layers best account for the phonetic, word-level
and sentence level information. While all of these features emerge with training (Figure S1), only
the highest-level features (phone, word and sentence-level) appear to be specific to speech and to the
language with which wav2vec 2.0 was trained (Figure S1).

Interestingly, the word and sentence-level features are encoded deeper in the supervised network
(best layer=18 in Table S4) compared to the unsupervised network (best layer=14), which suggests
that self-supervised learning generates a reservoir representations in its middle layers, reservoir
which may partly overlap with the labels used in supervised learning. Together with our ABX tests,
and layer-wise tuning of each voxel (Figure 3), these elements suggest that the representations of
speech shaped by our experience are learnt and instantiated in the superior temporal gyrus and sul-
cus. These elements, consistent with previous electrophysiological studies [Mesgarani et al., 2014],
thus provide a coherent spectrum of evidence for the location of acquired speech representations in
the brain.

A.6 Noise ceiling analysis

The noise in fMRI recordings is inevitable. To estimate the maximum explainable signal given this
level of noise, we follow previous studies and employ a shared-response model, or "noise ceiling"
[Huth et al., 2016, Caucheteux and King, 2022, Caucheteux et al., 2022]. Precisely, we predict the
brain signals of one subject given the brain activity of the other subjects, in response to the same
audio recording. In practice, we apply the same evaluation as Equation (2.3), for one subject s and
one voxel v, but we use the average brain signals of other subjects’ brains Y

(s)
= 1

|S|
∑

s′ ̸=s Y
(s′)

instead of the activations X . As a result, the "noise ceiling" of one subject (s) and one voxel (v) is
computed as follows:

Rnoiseceil = Corr
(
W · Y (s)

, Y (s,v)
)

, (6)

where W is an ℓ2-penalized linear regression fitted on separate train data, using a cross validation
setting with five test folds.

We compute such noise ceiling on 290 subjects of the Narrative dataset listening to the same stories
(Figure S2). We report the noise ceiling across voxels in Figure S2, and, in Table S1, the brain
scores of the networks studied in the main paper normalised by the noise ceiling. Precisely, for each

7https://catalog.ldc.upenn.edu/LDC93S1
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Figure S1: Linguistic features encoded in each layer of the networks. For each layer of each
network, we train a l2-penalized linear model from scikit-learn [Pedregosa et al., 2011] to predict
several linguistic categories given the embedding. The tested categories are the following: MEL
(the MEL spectrogram of the audio, d=128), phone (the phoneme, categorical, d=39), the word
embedding of the word (computed with spaCy (https://spacy.io) English model, d=300), the
Part-Of-Speech (POS) of the word provided by spaCy (categorical feature, n=19), and the embed-
ding of the sentence, computed using Laser (https://github.com/facebookresearch/LASER)
(d=1,024). We train and test the linear probe on a subset of Timit data (https://catalog.ldc.
upenn.edu/LDC93s1), using a 10-folds cross-validation scheme, and report the probing accuracy
(either R for continuous variables or balanced accuracy for categorical variables) for each possible
target feature. We average the corresponding probing performances across the 10 folds. Error bars
are standard errors of the mean across folds.

voxel, we divide the average brain scores by the noise ceiling for this particular voxel. While low on
average, the unsupervised wav2vec2 model reaches 74% of the noise ceiling in Heschel, and more
than 20% in STS, STS and IFG.

Average Top10 Heschl STG STS IFG Motor

Random wav2vec2 13.9% 29.0% 66.9% 32.0% 21.8% 15.9% 11.9%
Non-Speech 16.4% 33.9% 71.0% 36.8% 26.9% 19.0% 11.7%
Non-Native 17.6% 35.9% 73.0% 39.0% 29.1% 21.0% 12.9%
Native, Supervised 18.3% 36.7% 74.2% 39.6% 29.8% 21.2% 13.6%
Native, Unsupervised 18.8% 37.9% 74.4% 40.3% 31.3% 22.8% 13.8%
Noise ceiling 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table S1: Brain scores with noise ceiling normalisation. Brain scores divided by the noise ceiling,
for the Narrative dataset, on average across all voxels (‘Average’), for the 10% best voxels of the
noise ceiling (‘Top10’, Figure A.6) and the voxels of five regions of interests.

Below, we report the brain scores of our models, normalised by such noise ceiling. Precisely, we
compute the brain scores for each subject and voxels
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Average Top10 Heschl STG STS IFG Motor

Random wav2vec2 0.019 0.069 0.192 0.071 0.044 0.024 0.011
Non-Speech 0.022 0.080 0.205 0.081 0.055 0.028 0.011
Non-Native 0.024 0.085 0.211 0.086 0.059 0.031 0.012
Native, Supervised 0.025 0.086 0.213 0.087 0.060 0.032 0.013
Native, Unsupervised 0.025 0.089 0.214 0.089 0.063 0.034 0.013
Noise ceiling 0.117 0.219 0.287 0.181 0.196 0.149 0.094

Table S2: Brain scores without noise ceiling normalisation Same as Table S1, but without dividing
by the noise ceiling estimates.

Avg Top10NoiseCeil Heschl STG STS IFG Motor

Unsupervised 0.03 +/- 0.001 0.09 +/- 0.002 0.21 +/- 0.007 0.09 +/- 0.003 0.06 +/- 0.002 0.03 +/- 0.001 0.01 +/- 0.001
Supervised 0.02 +/- 0.001 0.09 +/- 0.002 0.21 +/- 0.007 0.09 +/- 0.003 0.06 +/- 0.002 0.03 +/- 0.001 0.01 +/- 0.001
Noise ceiling 0.12 +/- 0.006 0.22 +/- 0.006 0.29 +/- 0.008 0.18 +/- 0.006 0.20 +/- 0.006 0.15 +/- 0.006 0.09 +/- 0.006
Ratio 0.19 +/- 0.006 0.38 +/- 0.010 0.74 +/- 0.025 0.40 +/- 0.013 0.31 +/- 0.011 0.23 +/- 0.010 0.14 +/- 0.014

Table S3: Brain scores and noise ceiling estimates. Ratio indicate the unsupervised model divided
by the noise ceiling. Scores are averaged across subjects and either all the voxels (‘Avg’) or the
voxels of the selected regions of interests.

Figure S2: Noise ceiling. A. Noise ceiling estimates computed on 290 subjects of the Narratives
dataset, averaged across subject. We only display the significant voxels across subjects (p < 10−18).
B. Same as A, but we only display the 10% voxels with the best noise ceiling estimates on average
across subjects.

MEL Phone Wordemb POS Sentemb Average

Random wav2vec2 2.0 8.7 8.0 8.9 8.1 7.1
Acoustic wav2vec2 12.5 15.7 14.0 14.4 14.2 14.2
Mandarin wav2vec2 9.1 11.9 12.2 11.9 13.0 11.6
French wav2vec2 8.0 11.0 12.7 11.8 13.0 11.3
Dutch wav2vec2 18.9 11.4 12.0 12.4 13.0 13.5
English wav2vec2 8.0 15.2 14.0 14.4 14.0 13.1
English wav2vec2 (supervised) 8.0 16.9 18.0 18.0 18.0 15.8
Avg 9.5 13.0 13.0 13.1 13.3 12.4

Table S4: For each model (row) and target (column), the layer that maximizes probing performance
(Figure S1), averaged across the 10 cross-validation folds.
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Figure S3: Brain scores of self-supervised pre-trained models. Brain scores, averaged across
all voxels and subjects, for the MEL spectrogram, a wav2vec2 (base) architecture with random
weights, wav2vec 2.0 (base) pre-trained with self supervised learning on 100K hours from Voxpopuli
(Wang, 2021) (‘wav2vec2-base-100k-voxpopuli’ from huggingface), on 10K hours from Voxpopuli
(‘wav2vec2-base-10k-voxpopuli’), on 53K hours of english (‘wav2vec2-base‘), two models pre-
trained on the same multilingual corpus of 436K hours, with 300M (‘wav2vec2-xls-r-300m‘) and
1B parameters (‘wav2vec2-xls-r-1b‘), respectively, and our model trained on 600 hours of english
speech (in blue). +/- refers to standard errors of the mean across subjects.

Figure S4: Brain scores for each layer of wav2vec 2.0 Same as figure 3B, but for different regions
of the brain. Brain scores are averaged across all voxels in each regions.
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