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Abstract

Training GANs under limited data often leads to discriminator overfitting and
memorization issues, causing divergent training. Existing approaches mitigate the
overfitting by employing data augmentations, model regularization, or attention
mechanisms. However, they ignore the frequency bias of GANs and take poor
consideration towards frequency information, especially high-frequency signals
that contain rich details. To fully utilize the frequency information of limited data,
this paper proposes FreGAN, which raises the model’s frequency awareness and
draws more attention to producing high-frequency signals, facilitating high-quality
generation. In addition to exploiting both real and generated images’ frequency in-
formation, we also involve the frequency signals of real images as a self-supervised
constraint, which alleviates the GAN disequilibrium and encourages the generator
to synthesize adequate rather than arbitrary frequency signals. Extensive results
demonstrate the superiority and effectiveness of our FreGAN in ameliorating gen-
eration quality in the low-data regime (especially when training data is less than
100). Besides, FreGAN can be seamlessly applied to existing regularization and
attention mechanism models to further boost the performance. 2

1 Introduction

Generative adversarial networks (GANs) [10] have shown impressive achievements in synthesising
plausible and photorealistic visual objects, such as image [18] [17] and video [39] generation, image
inpainting [25], image translation [35] and so on. However, a prerequisite of such success is sufficient
training data, which impedes applications of GANs in areas where only dozens of data are available
or where it is challenging to collect massive data due to geographical, spatial, temporal, or privacy
reasons. Thus developing data-efficient GANs that can generate plausible images under limited data,
without compromising the quality, is necessary and meaningful.

Training GANs under limited data often leads to overfitting and instability issues [16] [14]. Specifical-
ly, when the discriminator (D) overfits to the limited training data, it simply remembers the input real
images and classifies others as fake images, thus providing meaningless feedback to the generator (G),
leading to divergent training and poor-quality generation. Ameliorating the synthesize quality under
limited data is still an unexplored problem. Recent approaches for this problem include enlarging the
training set with different data augmentations [52] [36] [51] [16] [14], regularizing the output of D
with an additional constraint [37], and devising new network architectures [24]. However, existing
methods are mainly developed from the perspective of data scale and model capacity, and they ignore
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Figure 1: Images generated by FastGAN [24] and our FreGAN given limited training data. The
details of FastGAN deteriorate while our FreGAN effectively ameliorates the synthesize quality by
raising the model’s frequency awareness, producing plausible images with better fine details.

a critical property of the data itself, i.e., frequency signals. GANs have been demonstrated to have
a spectral bias in fitting frequency signals [29] [34]. They preferentially fit low-frequency signals
and tend to ignore high-frequency signals [45], which encode fine details like vertical and horizontal
edges [47] [9]. Missing them may lead to unrealistic image synthesize with unsatisfactory artifacts
(see Fig. 1). This paper proposes a frequency-aware model, termed as FreGAN, to raise the frequency
awareness of G and D. By encouraging G to generate more reasonable and adequate high-frequency
signals, our FreGAN ameliorates the synthesize quality under limited data, as shown in Fig. 1.

To fully exploit the frequency information of limited training data, we first decompose images into
different frequency components via Haar wavelet transformation [6]. Unlike traditional wavelet
transformation that is employed at the image level, we perform it on the intermediate features of
both D and G. We then employ a high-frequency discriminator (HFD) and frequency skip connection
(FSC) to raise the frequency awareness of G and D, respectively. However, G still has no explicit
clue about what high-frequency signals it should synthesize, and D is overconfident in making
real/fake decisions after seeing real and fake images. Such an unbalanced competition motivates
us to perform high-frequency alignment (HFA) to alleviate the information asymmetry between G
and D. Innovatively, we explicitly exploit the frequency signals of real images induced from D as a
self-supervised constraint to guide G to leverage the frequency knowledge properly. Besides, HFD
and HFA are applied on multi-scale features to thoroughly excavate the frequency signals of limited
data, mitigating frequency bias and loss of high-frequency information.

The primary contributions of this paper are three-fold: 1) we propose FreGAN to raise the mod-
el’s frequency awareness, which successfully mines and exploits frequency information of limited
data, and as a byproduct, FreGAN alleviates the unhealthy competition between G and D; 2) we
demonstrate the compatibility of our model by combining our method with other techniques like
regularization [37] and attention mechanism [22]; 3) we perform extensive experiments on various
datasets with limited data, and our FreGAN achieves state-of-the-art performance on these dataset-
s, indicating the effectiveness and superiority of our method for ameliorating synthesize quality,
especially when training data is extremely limited.

2 Related Work

Generative Adversarial Networks. Generative adversarial networks (GANs) [44] [15] [11], which
target at generating plausible and realistic images, have made massive progress since the pioneering
work [10]. The capability of GANs enables various visual applications like image [18] [19] and
video generation [39] [38], image inpainting [48] [25], image manupulation [9] [35] and super-
resolution [42], etc. However, GANs are notoriously difficult to train as several issues like mode
collapse and instability happen easily. Numerous techniques have been proposed to stabilize training
and improve the synthesize quality by designing new optimization objectives or network architec-
tures [13]. WGAN [2] and f -GAN [27] minimize the Wasserstein distance and the f -divergence
of real and generated distribution instead of minimizing JS divergence in [10]. BigGAN [7] and
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StyleGAN series [15] [18] [19] [16] [17] have made breakthrough progress in producing realistic
images. However, the performance of these models deteriorates when given limited data.

Training GANs under limited data. Improving the synthesize quality under limited data remains
an underexplored problem, which has drawn extensive attention recently. Insufficient training data
leads to discriminator overfitting, thus degrading the quality of generated images. One straightforward
way to address such data scarcity is to expand the training set with various augmentations. In
addition to employing conventional augmentation techniques [36] [52] (e.g., flip, crop), ADA [19]
and DiffAug [51] propose adaptive and differentiable augmentation to enlarge the training data,
respectively. APA [14] deceives D based on the degree of overfitting with an adaptive pseudo
augmentation. InsGen [46] involves instance discrimination as an auxiliary task to encourage D to
distinguish every individual image, which improves the discriminative power of the discriminator.
Lecam [37] regularizes the output of the discriminator throughout the training process. FastGAN [24]
employs a skip-layer channel-wise excitation module and a self-supervised discriminator to stabilize
and accelerate the training. The most recently MoCA [22] improves few-shot image generation
quality with a prototype memory with an attention mechanism. Benefit from the significant progress
of large-scale pre-trained visual recognition models, Vision-aided GAN [20] uses available off-
the-shelf models to help the GAN training and ProjectedGAN [31] improve GANs by projecting
generated and real images into pre-trained feature spaces. Another category of methods transfer
and reuse knowledge from models that are pre-trained on large-scale data, i.e., few-shot GAN
adaptation [41] [23] [40] [28]. In this paper, we ameliorate the synthesize quality under limited data
from the frequency domain perspective. By raising the frequency awareness of GANs and providing
more fine details to G, we facilitate photorealistic image generation. Our work is complementary
to previous model regularization and attention mechanism approaches, and our method promotes
equilibrium between G and D.

Wavelet Transformation in GANs. Schwarz et al. [32] prove that GANs exhibit a frequency bias
and resolving frequency artifacts is necessary for photorealistic image generation. Consequently,
GANs tend to ignore high-frequency signals as they are hard to generate, compromising the generation
quality. Wavelet transformation [6], which decomposes images into frequency components with
different bands, has been wildly used in various applications of GANs, such as style transfer [4] [47],
image inpainting [48], image editing [9], etc. HiFA [9] alleviates the generator’s pressure of producing
high-frequency signals by directly feeding high-frequency components to the generator. WaveFill [48]
disentangles different frequency signals and explicitly fills the missing regions in each frequency
band, achieving superior image inpainting. Zhang et al. [49] propose wavelet knowledge distillation
towards efficient image-to-image translation without a performance drop. SWAGAN [8] incorporates
wavelet with the hierarchical training of StyleGAN2 [19] and performs wavelets at the image level.
Our FreGAN is more flexible by directly decomposing intermediate features of the generator and
the discriminator into the wavelet domain, and no additional down/up sampling are required to
convert images to higher/lower resolution as in SWAGAN, which makes our method more efficient.
Unlike existing methods that are performed on ample data, this paper addresses the more challenging
few-shot generation problem. In addition to raising the frequency awareness of the model, we also
mitigate the unhealthy competition by lessening the frequency gap between G and D.

3 Methodology

The overall framework of our FreGAN is illustrated in Fig. 2. To formulate our method, we explicitly
utilize wavelet transformation to decompose features into different frequency components. We
then employ high-frequency discriminator (HFD) and frequency skip connection (FSC) to raise the
frequency awareness of G and D, respectively. Moreover, we perform high-frequency alignment
(HFA) to further guide G to synthesize adequate frequency signals.

3.1 Wavelet Transformation

To decompose images into different frequency components, we adopt a simple but effective wavelet
transformation, i.e., Haar wavelet. Haar wavelet consists of two mirror operations: wavelet pooling
and wavelet unpooling. The former converts images into the hlwavelet domain, and the latter inversely
reconstructs frequency components into the spatial domain. There are four kernels in wavelet pooling
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Figure 2: The overall framework of our proposed FreGAN. Composed of three key ingredients,
i.e., frequency skip connection (FSC), high-frequency discriminator (HFD), and high-frequency
alignment (HFA), our FreGAN raises the model’s frequency awareness, facilitating high-quality
image synthesize under limited data.

Figure 3: Illustration of frequency components obtained from Haar wavelet transformation.
The low (L) pass filter captures images’ overall textures and outlines, and the high (H) pass filter
concentrates on details such as the background and edges.

operation: LLT , LHT , HLT , HHT , where LT = 1√
2
[1, 1], HT = 1√

2
[−1, 1], L and H denotes the

low and high pass filters, respectively. The low (L) pass filter captures the outline and surface of
images, while the high (H) pass filter focuses on detailed information like the edges and delicate
textures. Fig. 3 illustrates the obtained frequency components of given images via Haar wavelet.
We can observe that low-frequency component LL contains the overall surface of images, while
components that are decomposed by high pass filters, i.e., LH,HL,HH , contain more fine details.
Further, by summing up the three high-frequency components, we approximately obtain all details
information of images, e.g., the eyes of the cat and the teeth of Obama.

3.2 High-Frequency Discriminator

To raise the frequency awareness of D, we devise high-frequency discriminator (HFD). HFD is
responsible for distinguishing the real images from the generated images from the perspective of
the frequency domain. Formally, for the i-th layer in the discriminator, we adopt wavelet pooling
on the intermediate features and obtain LLi

D, LHi
D, HLi

D, HHi
D, then we combine the three high-

frequency components by tensor addition, i.e., HF i
D = LHi

D + HLi
D + HHi

D, which contains
sufficient details of features. By applying traditional convolution and downsampling operations
following the original discriminator, we define the adversarial loss of our HFD as:

LHF
D = −EHF real∼Ireal [min(0,−1+DH(HF real))]−EHF fake∼G(z)[min(0,−1−DH(HF fake)] (1)

LHF
G = EHFfake [DH(HFfake)] (2)
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where HFreal and HFfake are the high-frequency information of real and fake images, respectively.
DH is the high-frequency discriminator. Since the high-frequency information may be eschewed by
D as the network goes deeper, we perform multi-scale HFD on multi-layers of the discriminator. The
multi-scale operation ensures fully mine and exploit the frequency information of limited data, which
further improves D’s frequency awareness. Notably, being guided by the HFD with Eq. 2, G is also
optimized to produce rich high-frequency details.

3.3 Frequency Skip Connection

The generator is capable of producing plausible frequency signals after employing HFD (see Tab. 5).
However, as GANs fit frequency signals from low to high and the high-frequency signals may be
ignored as the network goes deeper. To prevent the loss of high-frequency information and further en-
courage the generator to produce rich details, we propose frequency skip connection (FSC). Concrete-
ly, we utilize wavelet unpooling operation of the frequency components LLi

G, LH
i
G, HLi

G, HHi
G

obtained from wavelet transformation on the features of G’s i-th layer, which reconstructs the high-
frequency representation to the original features. Then we explicitly feed the reconstructed frequency
representations to the next layer of G. Formally,

F
′

i+1 = Fi+1 + Unpooling(LLi
G, LH

i
G, HLi

G, HHi
G) (3)

where Fi denotes the features of the i-th layer and Unpooling is the wavelet unpooling operation.
F

′

i+1 is the obtained features after FSC, which will be fed into the subsequent layer for further
operation. Such skip connection prevents loss of high-frequency information and maintains high-
frequency details.

3.4 High-Frequency Alignment

Adding HFD and FSC explicitly raises the frequency awareness of G, but G can only synthesize
arbitrary frequency signals. How G can utilize the frequency signals is still ambiguous, and D still
dominates the competition since it learns discriminative knowledge from both real and generated
images. To balance the unhealthy competition between G and D, we propose high-frequency align-
ment (HFA), which involves high-frequency signals of real images induced from D as a regularizer to
guide G, promoting G to synthesize more reasonable and realistic fine details. Specifically, we extract
the frequency representations of intermediate features of G at different layers. For the i-th layer of G,
we obtain frequency components LLi

G, LH
i
G, HLi

G, HHi
G. We ignore LLi

G and combine the three
high-frequency components, i.e., HF i

G = LHi
G +HLi

G +HHi
F . Then we use the high-frequency

components of the discriminator HF i
D as a self-supervision constraint. In addition to fool D, G is

expected to minimize the distance of high-frequency information between the generated and real
images. The alignment loss is defined as:

Lalign = ‖HFD −HFG‖1 (4)

where ‖ ∗ ‖1 denotes the L1-norm. Such alignment encourages G to synthesis frequency signals that
approach real frequency signals, mitigating the unhealthy competition and facilitating generation
quality. To take full advantage of frequency signals of real images from D, we perform HFA on multi-
scale features like HFD as shown in Fig. 2. The ablative experiment results in Sec. 4.2 demonstrate
the rationality and effectiveness of employing HFA and HFD on multi-scale features.

3.5 Optimization

Following [24], we adopt the hinge version of adversarial loss to train our model.

LD = −Ex∼Ireal [min(0,−1 +D(x))]− Ex̂∼G(z)[min(0,−1−D(x̂)] (5)

LG = −Ez∼N [D(G(z))] (6)
We also use the reconstruction loss [24] to encourage the discriminator to extract more representative
features.

Lrecons = Ef∼Dencode (x),x∼Ireal [‖G(f)− T (x)‖] (7)
where f is the intermediate features of D, G and T denote the processing on the features f and the
input images x. In sum, our discriminator is optimized by LD, Lrecons , and LHF

D . Our generator is
optimized by LG, LHF

G and Lalign , the coefficient of each loss is set to 1.
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Figure 4: Qualitative comparison results of our FreGAN and baseline FastGAN. The images
from left to right are generated images, low-frequency, and high-frequency components, respectively.
Our FreGAN improves the overall quality of generated images and raises the model’s frequency
awareness, encouraging the generator to produce precise high-frequency signals with fine details.

4 Experiments

Datasets. We test the effectiveness of our method on low-shot datasets from various domains with
different resolutions. On 256 × 256 resolution, we use Animal Face Dogs and Cat [33], as well
as 100-shot-Panda, Obama, and Grumpy_cat [51]. On 512 × 512 resolution, we use Anime-Face,
Art Paintings, Moongate, Flat-colored, and Fauvism-still-life [24]. On 1024 × 1024 resolution, we
use Pokemon, Skulls, Shells, MetFace [16] and BrecaHAD [1]. These datasets contain a limited
number of samples (mostly less than 1,000) and cover art paintings, realistic photos, human faces, etc.
For datasets that are not strictly equal to the corresponding resolution, we resize them to the closest
resolution in implementation. Besides, we use AnimalFace HQ (AFHQ) datasets [5] to evaluate the
performance of our model when training with more data (∼5k).

Evaluation metrics and baseline. We adopt two common metrics to evaluate the synthesize quality:
Fréchet Inception Distance (FID) [12] and Kernel Inception Distance (KID) [3]. The lower FID and
KID is, the better the generation quality is. FID quantifies the distance between the distribution of the
generated and the real images. KID, which is designed unbiased, has been proven more descriptive
for small datasets [16], note that all KID scores reported in our paper need to ×10−3 following [16].
Following [24], we calculate FID and KID by measuring the distance between all available training
images and 5k generated images. We also provide the LPIPS [50], IS [30], Precision, Recall [21],
Density, Coverage [26] results in the appendix.

We compare our model with: 1) the state-of-the-art generative model StyleGAN2 [19], and SWA-
GAN [8], which incorporates wavelet into StyleGAN2; 2) data augmentation-based approaches that
is designed for training GANs with limited data, i.e., ADA [16], DiffAug [51], APA [14]; 3) the
state-of-the-art few-shot generative model FastGAN [24]. We reimplement all baselines with their
released official code under consistent settings for a fair comparison. Implementation details of
baseline models are given in the appendix.

Implementation details. We choose the current state-of-the-art few-shot generative model Fast-
GAN [24] as the backbone and implement our proposed techniques upon it. all other settings remain
the same as [24]. We decompose the intermediate 8 × 8, 16 × 16, 32 × 32 features of G and D
into frequency components for our frequency skip connection, high-frequency discriminator, and
high-frequency alignment. More implement details are given in the appendix.

4.1 Main Results

Quantitative comparison on datasets with limited data amounts. The quantitative comparison
results of our FreGAN and baseline methods on different resolutions are given in Tab. 1, Tab. 2 and
Tab. 3. We save the best training snapshots of each method and generate 5k images to compute FID
and KID. The whole training set is adopted as the referenced distribution. We can observe from the
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Table 1: The FID (lower is better) and KID (lower is better) scores of our method compared to
state-of-the-art methods on 256× 256 datasets with limited data amounts.

Animal Face 100-shot
Dog (389 imgs) Cat (160 imgs) Panda Obama Grumpy_cat

Method FID KID FID KID FID KID FID KID FID KID
StyleGAN2 [19] 113.86 91.31 79.04 34.43 18.05 7.40 69.01 52.63 35.00 11.01
SWAGAN [8] 82.47 80.46 59.71 19.35 27.55 11.92 71.05 55.82 38.44 17.03

ADA [16] 55.48 18.42 37.95 6.43 14.17 6.53 43.17 13.23 43.80 45.01
APA [14] 81.16 26.42 42.60 7.97 19.21 10.80 42.97 15.71 28.10 5.53

DiffAug [51] 61.34 24.51 41.84 12.27 11.52 3.57 48.85 23.31 26.89 9.42
FastGAN [24] 52.46 18.22 33.85 4.99 9.70 1.60 35.80 5.50 25.75 3.41

FreGAN (Ours) 47.85 13.49 31.05 2.44 8.97 0.91 33.39 3.76 24.93 3.89

Table 2: The FID (lower is better) and KID (lower is better) scores of our method compared to
state-of-the-art methods on 512× 512 datasets with limited data amounts.

AnimeFace ArtPainting Moongate Flat Fauvism
120 imgs 1000 imgs 136 imgs 36 imgs 124 imgs

Method FID KID FID KID FID KID FID KID FID KID
StyleGAN2 [19] 183.44 242.83 100.35 113.75 288.25 93.14 285.61 214.47 299.15 220.14
SWAGAN [8] 189.71 216.39 56.95 22.50 302.72 99.47 293.94 232.53 291.66 226.21

ADA [16] 59.67 16.02 46.38 12.26 149.06 43.21 248.46 62.89 201.99 86.64
APA [14] 58.38 15.73 47.23 10.60 193.67 50.52 233.52 166.53 197.47 66.13

DiffAug [51] 135.85 148.51 49.25 18.42 136.12 48.04 340.14 247.41 223.58 117.10
FastGAN [24] 55.87 11.17 45.06 10.26 114.79 23.57 216.27 36.88 178.42 58.01

FreGAN (Ours) 50.19 4.58 43.13 9.71 107.13 15.58 178.10 18.35 171.95 49.81
Table 3: The FID (lower is better) and KID (lower is better) scores of our method compared to
state-of-the-art methods on 1024× 1024 datasets with limited data amounts.

Shells Skulls Pokemon BrecaHAD MetFace
64 imgs 97 imgs 833 imgs 162 imgs 1336 imgs

Method FID KID FID KID FID KID FID KID FID KID
StyleGAN2 [19] 133.31 33.36 234.54 209.22 161.28 161.98 174.07 176.32 66.97 55.53
SWAGAN [8] 185.96 85.25 203.49 178.96 80.94 68.02 162.53 119.64 31.56 13.96

ADA [16] 133.22 29.12 97.05 12.33 66.41 - 76.67 21.38 24.74 10.23
APA [14] 136.52 58.77 99.46 12.74 51.05 59.29 75.89 25.08 26.03 5.58

DiffAug [51] 151.94 54.73 124.23 38.12 62.73 50.68 93.71 31.62 27.45 11.55
FastGAN [24] 141.71 37.00 101.94 12.10 44.96 17.31 59.80 7.24 26.80 7.08

FreGAN (Ours) 125.77 20.58 86.12 5.47 38.88 10.42 54.88 3.41 25.42 5.93

results that, although evaluated on various datasets that have different resolutions and data amounts,
our proposed FreGAN achieves superior performance on all these datasets. Our FreGAN consistently
improves both FID and KID metrics on 14 of the 15 datasets, demonstrating the effectiveness and
generalizability of our proposed techniques. Notably, for those datasets with extremely limited data
(less than 100), i.e., Flat (Tab. 2), Shells and Skulls (Tab. 3), our method improves the performance
more significantly, e.g., the FID from 216.27 to 178.10 on Flat and from 101.94 to 86.12 on Skulls,
and the corresponding KID is improved doubled, further reflecting our model’s potential for training
GANs with extremely limited data. More quantitative results are presented in the appendix.

Qualitative Comparison. The qualitative results of FastGAN and our FreGAN on various datasets
are illustrated in Fig. 4. For each dataset in Fig. 4, from left to right are generated images, the
visualization of the low and high-frequency components of the generated images. The images
generated by FastGAN contain unsatisfactory artifacts and some of them are incongruous, e.g., the
generated images of cat and dog in the bottom right of Fig.4, the cat has artifacts around the head,
and the dog’s ears are distorted. Our FreGAN significantly facilitates image quality in coordination,
rationality, and fine details. As can been seen from Fig. 4, the human face Obama generated by our
FreGAN is more photorealistic, the details of the anime face, such as eye color and hair texture, are
more realistic, and the synthesized animal faces of cats and dogs are also more plausible. Besides,
the frequency components of the images generated by our FreGAN contain wealthier details. For
example, the generated image of AnimalFace-Cat has a richer background, and the generated image
of Skulls has more clear contours of the eye and nose. Such observation reflects that the proposed
FreGAN: 1) ameliorates the quality of generated images under limited data; 2) raises frequency
awareness of synthesizing high-frequency signals with richer fine details of images; and 3) takes full
advantage of limited data’s frequency information. More qualitative results are given in the appendix.
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Table 4: The FID (lower is better) and KID (lower is better) scores of our method compared to the
state-of-the-art FastGAN on AFHQ [5] datasets with more training data (∼5k).

AFHQ-Cat (5153 imgs) AFHQ-Dog (4739 imgs) AFHQ-Wild (4738 imgs)
Method FID KID FID KID FID KID

FastGAN [24] 10.17 4.91 25.36 14.29 7.30 1.93
+Ours 6.62 1.95 20.75 11.45 6.37 1.31

Table 5: Ablation studies on different components of our FreGAN. We remove each component
to evaluate the efficacy of the three ingredients of our method, i.e., HFD, HFA, and FSC. The “Full”
represents the the full version combining all three techniques used in the main experiments.

100-shot-Obama (256 × 256) Anime Face (512 × 512) Pokemon (1024 × 1024)
Module FID KID FID KID FID KID
Baseline 35.80 5.50 55.87 11.17 44.96 17.31
w/o HFD 35.67 7.78 55.17 8.16 41.75 13.69
w/o HFA 34.28 4.60 54.40 10.70 40.27 12.53
w/o FSC 33.52 4.18 51.15 4.83 39.41 11.13

Full 33.39 3.76 50.19 4.58 38.88 10.42

Effectiveness under datasets with more data. To investigate the effectiveness of our FreGAN more
comprehensively, we evaluate the performance on datasets with more training data, i.e., AnimalFace-
HQ (AFHQ) [5], which includes 3 sub-datasets with close to 5k images, the results are shown in
Tab. 4. Similarly, our method yields compelling improvements on both FID and KID metrics when
training with more data. Combined with the generated images in Fig. 4, the results further validate
our FreGAN’s contribution to the synthesize quality. Our method boosts the performance under
different amounts of data, suggesting the generalization of our model.

4.2 Ablation Studies

Ablation studies on variants of FreGAN. There are three ingredients of our FreGAN, i.e., the high-
frequency discriminator (HFD), high-frequency alignments (HFA), and frequency skip connection
(FSC). We evaluate the efficacy of each component by removing each of them from the full version
of our FreGAN. We choose one from each of the different resolution datasets, i.e., 100-shot-Obama,
Anime face and pokemon for 256, 512 and 1024 resolution, respectively. As shown in Tab. 5,
removing any of the three techniques leads to a performance drop, reflecting the contribution of
each component. Still, all these variants outperform baseline FastGAN on both FID and KID, which
implies that the combination of different components of our method consistently boosts model
performance. Moreover, the performance drops the most when removing the HFD module, which is
reasonable because the HFD raises the frequency awareness of G and D, and the frequency awareness
of D serves as a self-supervision to guide G to synthesize adequate and reasonable frequency signals.
Qualitative comparison results of ablation studies are given in the appendix.

Ablation studies on different scale of features. We employ our proposed HFD and HFA on multi-
scale features of G and D, namely, 8, 16, and 32 scales of features. Here we provide the ablation
studies on different scales in Tab. 6. It can be seen that performing HFD and HFA on multi-scale
features boosts the model performance. Besides, when only performing HFD and HFA on single-scale
features, the obtained results still outperform the FastGAN baseline, suggesting the effectiveness
of HFA and HFD. Notably, despite adding more scales of features may bring further performance
advancement, the required additional convolutional and downsampling layers increases for higher
scales features(e.g., 128, 256), bringing non-negligible computational costs.

Ablation studies on different frequency components. Three high-frequency components are ob-
tained from wavelet transformation on the features, i.e., LH , HL, and HH . Each of them encodes
different details of features as shown in Fig. 3, we sum them to fuse all the detail information for
further operation in our main experiments. Here we conduct experiments on the three components
respectively to verify their contribution and the necessity of fusing them. As shown in Tab. 6, each
high-frequency component contributes to the model performance compared with the baseline, and
fusing them can better promote the generation quality.
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Table 6: Ablation studies on the different scales of HFD and HFA on AnimalFace-Dog dataset.
The numbers after “Feat” indicate the scale of features. “LH” and “HL” denote the high-frequency
components. The “Full” represents the full version of our FreGAN used in the main experiments.

Module Metric Baseline Feat8 Feat8 + 16 LH LH + HL Full
HFD FID 52.46 51.86 50.63 52.15 51.79 47.85
HFD KID 18.22 17.13 16.28 17.94 16.57 13.49
HFA FID 52.46 52.23 51.93 51.60 49.71 47.85
HFA KID 18.22 17.15 16.87 16.92 15.87 13.49

Table 7: The FID (lower is better) and KID (lower is better) scores of our method combined with
model regularization and attention mechanism techniques on 256× 256 datasets.

Animal Face 100-shot
Dog (389 imgs) Cat (160 imgs) Panda Obama Grumpy_cat

Method FID KID FID KID FID KID FID KID FID KID
Lecam [37] 54.88 - 34.18 - 10.16 - 33.16 - 24.93 -

+ Ours 48.29 14.16 31.77 2.22 8.87 1.06 32.69 4.99 24.39 2.36
MoCA [22] 54.04 19.25 38.04 8.40 11.24 4.00 42.26 17.03 25.59 4.20

+ Ours 50.96 16.06 35.47 4.92 9.05 1.13 34.13 5.53 24.78 3.11

4.3 Analysis on Compatibility and GAN Equilibrium

Compatibility of Our Model. Lecam [37] and MoCA [22] exploit regularization and attention
mechanism for training GANs under limited data, respectively. We implement our proposed tech-
niques on them to test the compatibility of our method. We keep the original setting unchanged and
the set the regularization weight to 0.1. The FID results are given in Tab. 7, from which we can see
that FreGAN can further boost the performance of MoCA and Lecam, demonstrating that our method
is complementary to the model regularization and attention mechanism methods.

GAN Equilibrium is improved. Our HFA module aligns the frequency components of real and
generated images, guiding G to synthesize precise instead of arbitrary high-frequency signals. Mean-
while, as a byproduct, the HFA mitigates the domain gap between G and D, alleviating the unhealthy
competition. As shown in Fig. 5 (a), our discriminator converges to a better point, and our generator
can better fool the discriminator, while the discriminator of FastGAN surpass the generator, thus
providing less informative guidelines and degrading the synthesize quality. Besides, we plot the FID
and KID curves throughout the training process in Fig. 5 (b), from which we can observe that our
FreGAN are consistently better. Moreover, we plot the multi-scale HFA loss curves in Fig. 5 (c),
where each line denotes the loss of each scale. These curves indicate that the frequency signals are
well aligned, lessening the domain gaps and promoting the GAN equilibrium.

5 Discussion

Conclusions. In this paper, we propose a frequency-aware method for training GANs under limited
data, i.e., FreGAN. The proposed FreGAN ameliorates the synthesize quality by raising the model’s
frequency awareness, encouraging the model to pay more attention to frequency signals, especially
high-frequency signals, which encode fine details of images. We conduct extensive experiments on
various datasets with different amounts of data and different resolutions to demonstrate the efficacy
of our proposed method. Qualitative results suggest that our model successfully makes the generator
to generate precise high-frequency signals, facilitating high-quality image generation. Quantitative
results indicate that our method 1) substantially boosts the performance, especially when data is

Figure 5: Equilibrium is improved with our proposed techniques. (a) Our generator can better
deceive the discriminator. (b) Our FreGAN yields better performance throughout the training process.
(c) The aligned HFA loss mitigates the asymmetrical information and facilitates the GAN equilibrium.
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extremely limited (less than 100), and 2) is complementary to existing regularization and attention
models. Moreover, the proposed model alleviates the disequilibrium of GANs by lessening the
frequency information gap. In the future, we plan to implement our techniques on more backbones,
e.g., StyleGAN2 [19] and apply our method to more applications.

Limitations. Despite achieving significant improvements on various low-data datasets, our FreGAN
still struggles in generating photorealistic images when given datasets with limited data but various
contents, e.g., only dozens of images, and their contents vary widely. When the low-data datasets are
imbalanced [43] or even long-tailed, the proposed method may fail to generalize, which is limited
by the intrinsic reasons of the data distribution. Developing more effective ways to train generative
models with insufficient training data still requires more efforts.
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