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In the supplementary material, we provide (1) the related work; (2) the complexity and the correctness
of the introduced algorithm; (3) the Union-Find algorithm in a sequential format; (4) additional
experimental details, including the introduction of the datasets, and the experimental settings; (5)
additional experiments, including the evaluation on transferability, the influence of training samples,
experiments on other datasets, experiments on other attributes of the model and the limitation of the
paper.

0.1 Related Works

Learning with Persistent Homology. Based on the theory of algebraic topology [29], persistent
homology [15, 14] extends the classical notion of homology, and can capture the topological structures
(e.g., loops, connected components) of the input data in a robust [7] manner. It has already been
used in various deep learning domains including kernel machines [32, 25, 4], convolutional neural
networks [19, 22, 40, 49], transformers [46], connectivity loss [5, 18], and graph representation
learning [48, 6, 44, 47, 17, 3, 26]. Some following works propose persistence-inspired frameworks
on other tasks such as knowledge graph completion [43].

Neural Algorithm Execution. Many works have studied neural execution in different domains
before [45, 23, 24, 31, 33, 42]. With the rapid development of GNNs in graph representation
learning, learning graph algorithms with GNNs has attracted researchers’ attention [39, 38, 41].
These works exploit GNNs to approximate certain classes of graph algorithms, such as parallel
algorithms (e.g., Breadth-First-Search) and sequential algorithms (e.g., Dijkstra). Although the
computation of extended persistence diagrams can be written in a sequential-like form, it needs extra
steps and considerations. In our framework, we propose different modules to approximate these steps
and achieve satisfying practical performance.

Accelerating Extended Persistent Homology. In general, computing extended persistent homology
relies on the well-known matrix reduction algorithm [8]. Much effort has been made to accelerate
the computation, but it still takes matrix multiplication time [37, 12, 10]. For the specific case where
the input is a function on a graph G = (V,E), it turns out that one can compute it in O(|E| log |V |)
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Algorithm 1 Sequential algorithm

1: Input: graph G = (V,E), filter function f .
2: Initialise-Nodes(V, f )
3: Q = Sort-Queue(V )
4: while Q is not empty do

5: u = Q.pop-min()
6: for v ∈ G.neighbors(u) do
7: Relax-Edge(u, v, f )
8: end for
9: end while

Algorithm 2 Computation of EPD

1: Input: filter function f , input graph G =
(V,E)

2: V,E = sorted(V,E, f)
3: PD0 = Union-Find(V,E, f), PD1 = {}
4: for i ∈ V do
5: Ci = {Cij |(i, j) ∈ E, f(j) > f(i)},

Ei = E
6: for Cij ∈ Ci do

7: f(Cij ) = f(i), Ei = Ei − {(i, j)} +
{(Cij , j)}

8: end for
9: PDi

1 = Union-Find-step(V + Ci −
{i}, Ei, f, Ci)

10: PD1+ = PDi
1

11: end for
12: Output: PD0, PD1

Algorithm 3 Union-Find-step (Sequential)

1: Input: V , E, f , Ci

2: PDi
1 = {}

3: for v ∈ V do
4: v.value = f(v), v.root = v
5: end for
6: Q = Sort(V ), Q = Q − {v|f(v) < f(i)},

G = {Q,EQ}, where EQ = E ∪Q2.
7: while Q is not empty do
8: u = Q.pop-min()
9: for v ∈ G.neighbors(u) do

10:
11: pu, pv = Find-Root(u),Find-Root(v)
12: if pu ̸= pv then
13: s = argmin(pu.value, pv.value)

14: l = argmax(pu.value, pv.value)
15: l.root = s
16: if pu ∈ Ci and pv ∈ Ci then
17: PDi

1 + {(u.value, l.value)}
18: end if
19: end if
20: end for
21: end while
22: Function: Find-Root(u)
23: pu = u
24: while pu ̸= pu.root do
25: pu.root = (pu.root).root, pu = pu.root
26: end while
27: Return: pu

time [2, 16]. Nevertheless, this algorithm remains theoretical, and in practice, often a quadratic
O(|V ||E|) time algorithm is used for its simplicity [44]. Recently, some works have been proposed
to accelerate the computation in a data-driven manner [36, 27, 50, 11]. However, these works try
to estimate the persistence image [1], a coarsened topological feature rather than the persistence
diagram itself, leading to much worse performance in both approximation error and downstream
tasks. Compared with previous works, we propose a novel framework that directly predicts extended
persistence diagrams on graphs. As shown in the experiment, the proposed model has achieved a
satisfying approximation error while remaining a high efficiency as well.

0.2 Complexity and Correctness of Algorithm 2

In this section, we show the complexity and the correctness of Algorithm 2.

0.2.1 Complexity

The computational complexity of the Union-Find algorithm is O(|E|α(|E|)) [9], where α(·) is the
inverse Ackermann function. Therefore, we need O(|V ||E|α(|E|)) time to compute an 1D EPD
using Algorithm 2. Note this sequential algorithm is not necessarily the most efficient one. In practice,
one may use the quadratic algorithm (O(|V ||E|)) as in [44]. We also note that although not formally
published, the best known algorithm for EPD computation is quasilinear, O(|E| log |V |), using the
data structure of mergeable trees [2, 16]. But this algorithm remains theoretical so far.

0.2.2 Correctness

Formally, we restate the theorem below (The theorem is named Theorem 3.1 in the main paper).
For a clear statement, we present the standard EPD computation algorithm in Algorithm 4. The
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detailed description of Algorithm 4 is beyond the scope of the paper. We only introduce the needed
information, and refer the readers to [8, 14] for details.
Theorem 0.1. Algorithm 2 outputs the same 1D EPDs as Algorithm 4.

As stated in Section 2 and Section 3 in the paper, for an edge (1-simplex) e ∈ E, it is either paired
with a vertex or an edge. In the former case, the edge, defined as a negative edge, kills a connected
component, and gives rise to a 0D persistence point. In the latter case, the edge, defined as a positive
edge (in the ascending filtration), creates a loop during the ascending filtration. The loop will
ultimately be killed by another edge during the descending filtration (defined as a positive edge in the
descending filtration). Hence the positive edge in the ascending filtration is paired with a positive
edge in the descending filtration, and gives rise to a 1D extended persistence point. For simplicity, we
will call the positive edges in the ascending filtration as ascending positive edges, and the positive
edges in the descending filtration as descending positive edges.

In other words, to compute the 1D EPDs, we can simply find the pairing partner for all positive edges.
In the following paragraphs, we show that Algorithm 2 produces the same extended persistence pair
as the standard EPD computation algorithm. We first present a definition of the “thinnest pair":

Thinnest pair. Given a filter function f : X → R, the pair of edges (e1, e2) with f(e1) < f(e2) is
defined as the thinnest pair if the following condition is satisfied: (1) there is a cycle C having e1
as the lowest edge, and e2 as the highest edge; (2) for any other cycle with e1 as the lowest edge,
if its highest edge e2 satisfies that f(e3) ̸= f(e2), then f(e3) > f(e2). Symmetrically, among all
cycles having e2 as the highest edge, e1 is the lowest edge in a cycle such that this lowest value is the
highest possible.
Lemma 0.2. For every ascending positive edge, Algorithm 2 finds its “thinnest pair".

Proof. Algorithm 2 decomposes the 1D extended persistence pair finding for all edges into pair-
finding among all nodes. In particular, for a given node u, it uses Algorithm 3 to find the pair for its
upper edges. There are two cases:

Case 1. If the upper edge is an ascending negative edge, then it will kill a connected component, and
will not influence the 1D extended persistence pairing.

Case 2. If the upper edge is an ascending positive edge, it will be paired with the loop once the
loop is created in the union-find process. The edge, called e, is the lowest edge in the loop, called C.
Recall that C is also the first loop that appears in the union-find process with e as the lowest edge.
Therefore C is guaranteed to contain the highest value which is the lowest possible. According to the
definition, this will lead to the “thinnest pair"2.

Algorithm 4 The standard EPD computation algorithm

1: Input: filter funtion f , input graph G
2: EPD = {}
3: M = build reduction matrix(f,G), where

M is a 2m ∗ 2m binary matrix.
4: for j = 1 to 2m do
5: while ∃k < j with lowM (k) = lowM (j)

do

6: add column k to column j
7: end while
8: add (f(lowM (j)), f(j)) to EPD
9: end for

10: Output: EPD

Lemma 0.3. In the descending filtration of Algorithm 4, an edge e is paired if a loop C has already
appeared, with e as its lowest edge.

Proof. Every column/row of the binary matrix M shown in Algorithm 4 corresponds to a simplex
(node/edge) in the input graph G. For simplicity, we replace the index in M with the simplex
it represents in the rest of the paper. For an edge e, lowM (e) denotes its lowest row e1, with
M [e, e1] = 1. After the matrix reduction process, e and e1 will form an extended persistence pair.

2We note that once a loop appears in the union-find process, it will consist of two different upper edges.
Considering that the two upper edges share the same filter value in the ascending filtration, the output persistence
point will not change no matter which edge is paired with the loop.

3



Figure 1: A toy example for Lemma 0.4.

It has been shown in [8, 44] that for a loop, its highest edge and lowest edge form its extended
persistence pair. In other words, e and e1 are the lowest and highest edges of the loop they form.
Assume that a loop C has already aroused with e as its lowest edge, then there are two cases for the
highest edge e1 in C:

Case 1. If there does not exist an edge e2, that appears before e1 in the descending filtration, with
lowM (e2) = e = lowM (e1), then e will be paired with e1 in Algorithm 4.

Case 2. If there exists an edge e2, that appears before e1 in the descending filtration, with lowM (e2) =
e = lowM (e1), then e will be paired with e2 or even other edges that appears earlier than e2. Among
all possibilities, e is paired before C appears in Algorithm 4.

In other words, e will be paired with e1 or before e1 in Algorithm 4.

Lemma 0.4. Algorithm 4 finds the “thinnest pair" for all positive edges.

Proof. During the descending filtration, when an edge e = uiuj appears, there are two cases:

Case 1. e is a negative edge, and will kill a connected component. This will not influence the 1D
extended persistence pair.

Case 2. e is a positive edge, and will be paired with an ascending positive edge e1 = uaub. Assume
that e1 does not construct the “thinnest pair" with e, then there exists an edge e2 = ucud, that forms
the “thinnest pair" with e. We can observe a loop C = ua → ucud → ub, in which all edges born
earlier than e in the descending filtration, and e1 is the latest edge in the ascending filtration. A toy
example is shown in Figure 1, where e = u1u3, e1 = u4u5, e2 = u3u4, and C is the red loop. Then
according to Lemma 0.3, e1 will be paired no later than C appears. In other words, it has already
been paired before e appears. Therefore, the assumption is wrong, and Algorithm 4 will find the
“thinnest pair" for all positive edges.

According to Lemma 0.2 and Lemma 0.4, Algorithm 2 will produce the same 1D extended persistence
pair as Algorithm 4. Therefore, they output the same 1D EPD.

0.3 Union-Find Algorithm

In this section, we rewrite the well-known Union-Find algorithm [9] in a sequential format. The
algorithm is listed in Algorithm 5. Therefore we can use the proposed framework to estimate PD0.
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Table 1: Statistics of the node classification datasets
Dataset Classes Nodes Edges Features Avg degree

Cora 7 2708 5429 1433 2.00
Citeseer 6 3327 4732 3703 1.42
PubMed 3 19717 44338 500 2.25
CS 15 18333 100227 6805 5.47
Physics 5 34493 282455 8415 8.19
Computers 10 13381 259159 767 19.37
Photo 8 7487 126530 745 16.90

Algorithm 5 Union-Find (Sequential)

1: Input: G = (V , E), f
2: PD0 = {}
3: for v ∈ V do
4: v.value = f(v), v.root = v
5: end for
6: Q = Sort(V )
7: while Q is not empty do
8: u = Q.pop-min()
9: for v ∈ G.neighbors(u) do

10: pu, pv = Find-Root(u),Find-Root(v)
11: if pu ̸= pv then
12: s/l = argmin/argmax(pu.value, pv.value)

13: l.root = s
14: PD0 + {(l.value, u.value)}
15: end if
16: end for
17: end while
18: Function: Find−Root(u)
19: pu = u
20: while pu ̸= pu.root do
21: pu.root = (pu.root).root, pu = pu.root
22: end while
23: Return: pu

0.4 Experimental details

0.4.1 Datasets.

In this paper, we exploit real-world datasets including:

1. Citation networks: Cora, Citeseer, and PubMed [34] are standard citation networks where
nodes denote scientific documents and edges denote citation links.

2. Amazon shopping records: In Photo and Computers [35], nodes represent goods, edges
represent that two goods are frequently brought together, and the node features are bag-of-
words vectors.

3. Coauthor datasets: In CS and Physics [35], nodes denote authors and edges denote that the
two authors co-author a paper.

The detailed statistics are available in Table 1.

0.4.2 Experimental Details

In this section, we mainly present the experimental settings on neural estimation, as for the setting in
downstream graph representation learning tasks, we are consistent with [48, 44].

Following the settings in [48, 44], we extract 2-hop neighborhoods of all the nodes in Cora, Citeseer,
PubMed and 1-hop neighborhoods of all the nodes in Photo, Computers, Physics, and CS. In the
training process, we only adopt the W2 distance between the predicted diagram and the ground truth
diagram as the loss function, while the PIE between the predicted persistence image and the ground
truth persistence image only serves as an evaluation metric.

We adopt Adam as the optimizer with the learning rate set to 0.002 and weight decay set to 0.01. We
build a 4-layer GNN framework with dropout set to 0. In the training process, we set the batch size to
10, and the training epoch to 20. In this paper, we also exploit a 2-layer MLP to transform the node
embedding obtained by the GNN to the persistence points on edges. In the framework, PRELU is
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Table 2: Transferability in terms of different graph structures (W2 distance.)

Pre-train Cora Citeseer PubMed Photo Computers

Pre-train 0.392 0.279 0.444 0.379 0.404
Fine-tune 0.348 0.259 0.360 0.380 0.381
Standard 0.354 0.267 0.344 0.379 0.377

adopted as the activation function, the dimension of hidden layers is set to 32, and the dimension of
the output persistence image is 25. All the experiments are implemented with two Intel Xeon Gold
5128 processors,192GB RAM, and 10 NVIDIA 2080TI graphics cards.

Notice that in the normal computation of Wasserstein distance between PDs, the persistence points can
be paired to the diagonal or the persistence points in the other diagram. However, in the experiments,
we observe that with this loss function as the supervision, the model may converge to local minima,
e.g., all the predicted persistence points are paired to diagonal. Therefore, the predicted points all
converge to the diagonal and contain no topological information. To avoid such situations, we force
the predicted points to pair with the persistence points in the ground truth diagram rather than the
diagonal in the training stage. In the reference stage, we report the normal W2 distance between
persistence diagrams, that is, to let the predicted points pair with the diagonal.

0.4.3 About the assets we used

Our model is experimented on benchmarks from [28, 21, 13, 34, 35] provided under MIT license.

0.5 Additional Experiments

0.5.1 Experiments on transferability

In this section, we design experiments to evaluate the transferability of PDGNN in terms of different
graph structures. Our aim is to evaluate whether the pre-trained model can estimate EPDs on totally
unseen graphs. Therefore, we evaluate the models pre-trained on Photo on other datasets, and report
the W2 distance between the predicted diagrams and ground truth EPDs. Notice that we only use
Ollivier-Ricci curvature [30] as the filter function. The results are shown in Table 2.

In Table 2, “Pre-train" is to directly predict the EPDs with the pre-trained model, and “Fine-tune" is
to fine-tune an epoch on the new datasets, and then predict the EPDs. As shown in Table 2, directly
predicting the EPDs with the pre-trained model perform comparably with the standard settings among
datasets. We also observe that with only a one-epoch fine-tuning, the pre-trained model can achieve
almost an equal performance compared with the standard setting. It justifies the fine transferability of
PDGNN. Therefore, in a totally new environment, instead of training the uninitialized models for
many epochs, we can simply fine-tune or even directly use the pre-trained model to estimate EPDs on
new graph structures.

0.5.2 Evaluation on the influence of training samples

In this section, we evaluate the influence of training samples on PDGNN. We aim to show that the
model can reach an acceptable performance with only a small number of training samples.

Recall that for a given graph, we extract the k-hop neighborhoods of all the nodes and randomly select
80% of these vicinity graphs to train PDGNN. For a thorough evaluation, we train PDGNN with
5/10/20/40% vicinity graphs in this experiment and report the W2 distance of persistence diagrams,
the PIE of persistence images, and the node classification accuracy (NCA) in Table 3. We also
visualize the influence in Figure 2 and Figure 3.

As shown in Figure 2, the training error tends to converge as the training samples gradually increase.
Considering that the W2 distance and PIE cannot directly reflect the learning power as NCA does,
we select a vicinity graph in Cora which is hard for PDGNN to learn and visualize in Figure 3. As
shown in the figure, as the number of training samples increases, we find that PDGNN can gradually
capture the ground truth persistence points in the up y-axis and the up-right diagonal with much less
noise. The number of training samples may help the model learn the hard samples better.
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Figure 2: Influence of training samples.

(a) (b)

(c) (d)

Figure 3: Visualization on the influence of training samples. We select a vicinity graph in Cora with
Ollivier-Ricci curvature as the filter function, and plot the influence of training samples on the W2

distance (loss) of EPDs. (a), (b), and (c) denote the prediction of PDGNN with 5/10/20% training
samples, (d) denotes the prediction of PDGNN with the standard setting.
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Table 3: Influence of training samples on PDGNN

Dataset Cora Citeseer PubMed
Proportion W2 PIE NCA W2 PIE NCA W2 PIE NCA

5% 0.391 2.51e-3 81.3±0.6 0.273 3.12e-3 70.0±0.7 0.330 4.35e-3 78.0±0.4
10% 0.358 1.88e-3 81.6±0.7 0.231 3.01e-3 70.5±0.5 0.300 2.36e-3 78.5±0.4
20% 0.318 6.99e-4 81.8±0.8 0.227 1.63e-3 70.6±0.5 0.278 1.03e-3 78.3±0.3
40% 0.286 9.79e-4 81.6±0.6 0.208 9.98e-4 70.9±0.6 0.255 1.34e-3 78.8±0.5
80% 0.241 4.75e-4 82.0±0.5 0.183 4.43e-4 70.8±0.5 0.256 8.95e-4 78.7±0.6

Table 4: Statistics and approximation error on the graph classification datasets
Dataset Graphs Avg Nodes Avg Edges W2 PIE

MUTAG 188 17.9 39.6 0.300 3.06e-4
ENZYMES 600 32.6 124.3 0.299 3.72e-3
PROTEINS 1113 39.1 145.6 0.194 8.30e-4
COLLAB 5000 74.5 4914.4 0.346 3.25e-2
IMDB-BINARY 1000 19.8 193.1 0.176 4.13e-4
REDDIT-BINARY 2000 429.6 995.5 0.383 1.92e-4
ZINC (subset) 12000 23.2 49.8 0.089 1.52e-5
OGBG-MolHIV 41127 25.5 27.5 0.104 4.96e-5

We also observe that in Table 3, PDGNN reaches a comparable performance on NCA with much
fewer training samples. The observation shows that a little perturbation on the persistence image will
not influence its structural information very much.

Combining the observation in Section 0.5.1 and Section 0.5.2, we can safely conclude that our model
can be easily generalized to other frameworks. PDGNN does not need many training samples to
reach an acceptable performance, and it can be easily transferred to totally unseen graphs.

0.5.3 Experiments on graph classification datasets.

In the experiment part, we only consider predicting EPDs of the k-hop neighborhoods of the
original graphs. Even if these vicinity graphs can be large and dense, there can be structural
differences between these vicinity graphs and other real-world graphs. In this section, we do
further experiments on graph classification datasets, in which we approximate the EPDs of the
real-world graphs rather than the vicinity graphs. We exploit various datasets from the TU Dortmund
University [28], benchmarking-GNN [13], and OGB [21]. The detailed information of these datasets
and the approximation error are all available in Table 4.

Notice that we do not add Ollivier-Ricci curvature as the filter function here, because computing the
filter function on all the graphs will bring too much computational cost. Comparing the results from
Table 4 and the results on vicinity graphs, we observe that the performance on graph classification
datasets is slightly worse than the performance on vicinity graphs. This may be due to the fact that in
graph classification datasets, the training samples can be very small, e.g., there are only 188 graphs in
MUTAG, therefore the training is under-fit. On the contrary, the satisfying approximation quality on
OGBG-MolHIV and ZINC can be due to their large number of training samples.

To evaluate the results more clearly, we also visualize some selected examples in Figure 4. As shown
in the figure, in most situations, PDGNN can well estimate the EPDs on these graphs, and the W2

distance around 0.3 is generally an acceptable result.

0.5.4 Why not directly approximating PIs

We believe directly estimated PIs will lose important structural information that can be crucial for
downstream tasks. PI is only an approximation of the persistence diagram. The L2 distance between
PIs does not accurately reflect the true Wasserstein distance between diagrams. Therefore, using an
L2-distance-based loss to directly learn the PI may lead to the loss of important structural information
carried by a diagram. An example is provided in Figure 5. For a sample vicinity graph from Cora, we
compare the ground truth PI (computed from the ground truth diagram), the PI computed from the
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(a) (b)

(c) (d)

Figure 4: Visualization of graph classification samples. We select samples from IMDB-BINARY,
PROTEINS, ENZYMES, and REDDIT-BINARY, respectively, and report the W2 distance (loss).

(a) (b) (c)

Figure 5: Examples to explain why not directly approximating PIs.

diagram estimated by our method PDGNN, and the PI directly estimated by GIN. Both estimated PIs
have similar L2 distances from the ground truth PI. But we observe that the PI estimated by PDGNN
has a very similar spatial distribution to the ground truth PI. This structural property, however, is not
preserved by the directly estimated PI. Such loss of structural information of directly estimated PIs,
although not captured by the L2 error, partially explains their worse representation power. In Table 2
and Table 3 in the main paper, the directly estimated PIs (PEGN(GIN_PI) and TLC-GNN(GIN_PI))
perform worse in the downstream task.

This choice of estimating diagrams instead of PIs is a part of the overarching theme of our paper.
Note that the main contribution of our paper is to transfer a complicated and uncontrollable learning
process to a controllable process with algorithmic insight. This general principle also applies to our
learning algorithm. We decompose the diagram computation algorithm into sub-algorithms, which
can be approximated well by a GNN. This is the reason PDGNN approximates the diagrams much
better than other baselines in Table 1 in the main paper.
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Table 5: Experiments on large and sparse datasets.

Dataset Cora Citeseer PubMed
Node 2485 2120 19717
Edge 5069 3679 44324

Fast [44] 0.184 0.068 1.816
Gudhi [37] 0.045 0.023 1.696
PDGNN 0.006 0.005 0.007

Table 6: Experiments on the choice of filter functions.

Dataset Cora Citeseer PubMed
Filter clustering centrality clustering centrality clustering centrality

Evaluation on approximation error

W2 0.392 0.332 0.178 0.237 0.267 0.322
PIE 1.53e-3 4.14e-4 7.17e-4 4.65e-4 2.5e-3 3.75e-4

Evaluation on Time (s)

Fast [44] 2.10 2.21 1.16 1.31 38.07 39.05
Gudhi [37] 0.98 1.00 0.59 0.63 16.79 16.24
PDGNN 11.25 11.30 13.61 13.62 66.19 67.29

0.5.5 Experiments on large and sparse datasets.

In the experiments in the main paper, the input is the k-hop vicinity graphs. On citation graphs, the
vicinity graph remains small. On these small graphs, the exact sequential algorithm like Gudhi has
less overhead, and thus is unsurprisingly faster.

Indeed, on large and sparse graphs, our method outperforms strong baselines like Gudhi significantly.
In Table 5, we compare the running time (in seconds) on popular citation networks including Cora,
Citeceer, and PubMed. For each graph, we run experiments on the largest connected subgraph. We
also report the number of nodes/edges of the selected subgraph.

0.5.6 Experiment on the choice of filter functions/other graph metrics.

In Table 6, we set degree centrality and clustering coefficient as the filter function, follow the settings
in Table 1 and report the approximation error on Cora, Citeseer, and PubMed. We also report
computation time following the setting in Table 4. The only difference is that below we report the
time to generate all vicinity graphs (rather than 1000 graphs as in Table 4).

We observe that (1) the filter function only has a minor influence on inference/computation speed,
for both the sequential algorithm and ours; (2) the filter function does influence the approximation
error. The reason is that different filter functions have different ranges; functions with larger ranges
tend to have larger approximation errors, especially on PIE. This is another evidence that the distance
function on PIs is not very robust for learning.

0.5.7 Experiments on the threshold value of average node/edge to decide which method is the
fastest to compute/estimate EPDs.

To find the threshold, we use the well-known Stochastic Block Model (SBM) [20] to generate
synthetic graphs. We set the number of nodes in these synthetic graphs from 200 to 300, with 10 as
the step. In these graphs, we randomly generate 5 different clusters, and set the probability of edges
intra-cluster to 0.4, and the probability of edges inter-cluster to 0.1. In this way, we can obtain 11
graphs with different nodes and edges. We set node degree as the filter function, and add experiments
on the largest connected components of these 11 graphs. The information of the selected connected
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Table 7: Experiments on the threshold value.
Node 80 84 88 92 96 100 104 108 112 116 120
Edge 515 585 660 713 759 820 943 1012 1060 1152 1231
Fast [44] 6.8e-3 8.0e-3 8.9e-3 9.6e-3 1.0e-2 1.1e-2 1.3e-2 1.4e-2 1.4e-2 1.6e-2 1.7e-2
Gudhi [37] 2.5e-3 3.2e-3 3.6e-3 3.9e-3 4.0e-3 4.8e-3 5.5e-3 6.0e-3 6.4e-3 6.6e-3 6.8e-3
PDGNN 4.5e-3 4.5e-3 4.6e-3 4.6e-3 4.6e-3 4.6e-3 4.7e-3 4.7e-3 4.7e-3 4.7e-3 4.8e-3

Table 8: Experiments on the threshold value.
Node 100 100 100 100 100 100 100 100 100 100 100
Edge 489 529 595 652 766 842 968 1011 1082 1231 1307
Fast [44] 7.0e-3 7.4e-3 8.3e-3 9.0e-3 1.1e-2 1.2e-2 1.3e-2 1.4e-2 1.4e-2 1.6e-2 1.7e-2
Gudhi [37] 2.8e-3 2.9e-3 3.0e-3 4.1e-3 4.2e-3 5.1e-3 5.5e-3 5.9e-3 6.2e-3 6.3e-3 6.7e-3
PDGNN 4.1e-3 4.1e-3 4.2e-3 4.2e-3 4.3e-3 4.4e-3 4.7e-3 4.7e-3 4.8e-3 4.8e-3 4.8e-3

graphs and the running time (second) are listed in Table 7. As shown in the Table, the threshold is
around 100 nodes / 820 edges.

We also evaluate the influence of density. We fix the node number of the SBM model to 250, and
set the probability of edges intra-cluster from 0.5 to 0.7, and the probability of edges inter-cluster
from 0.05 to 0.15. The steps for intra-cluster and inter-cluster are 0.02 and 0.01, respectively. In this
way, we can obtain 11 graphs with the same nodes and different edges. We set node degree as the
filter function, and add experiments on the largest connected components of these 11 graphs. The
information of the selected connected graphs and the running time (second) are also listed in Table 8.
As shown in the Table, the threshold is around 100 nodes / 766 edges.

0.5.8 Limitation of the paper.

First, in certain cases like Figure 4 (d), the model only captures a tendency of the EPD. This can
be because that the distribution of the EPD of the selected graph is seldom in the training samples.
Therefore, it is hard for the model to estimate these EPDs correctly.

Second, topological features are just one side of the data. In many cases, only using topological
features such as EPDs to represent the information of graphs is not enough. A better way is to
introduce other information such as the semantic information of graphs as complementary.
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