Supplementary Material: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts

Hangbo Bao¹* Wenhui Wang², Li Dong², Qiang Liu², Owais Khan Mohammed², Kriti Aggarwal², Subhojit Som², Songhao Piao¹, Furu Wei² ¹Harbin Institute of Technology, ²Microsoft Corporation https://aka.ms/msragi

A Supplementary Experiments

A.1 Ablation Study of Multiway Transformer

Table 1 presents the ablation study of shared self-attention module used in Multiway Transformer for encoding image patches and text tokens. We compare shared self-attention with separate self-attention, which encodes image patches and text tokens using different attention parameters on the first L-F layers. The shared self-attention used in Multiway Transformer achieves better performance. The shared self-attention module helps VLMO learn the alignment of different modalities, and fuse images and text at bottom layers for classification tasks.

A.2 Evaluation on Retrieval Task with Rerank

Following ALBEF [1] and BLIP [2], we conduct experiments on retrieval tasks with rerank. We perform finetuning with image-text contrastive and image-text matching losses. During inference, VLMO is first used as a dual encoder to obtain top-k candidates, then the model is used as a fusion encoder to rerank the candidates. As shown in Table 2, VLMO-Large achieves competitive performance compared with BLIP which uses more data.

B Supplementary Hyperparameters

B.1 Hyperparameters for Pre-Training

The vision-language pre-training of base-size model takes about two days using 64 Nvidia Tesla V100 32GB GPU cards, and the large-size model takes about three days using 128 Nvidia Tesla V100 32GB GPU cards.

For the text-only pre-training data, we use English Wikipedia and BookCorpus [5]. AdamW [3] optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.98$ is used to train the models. The maximum sequence length is set to 196. The batch size is 1024, and the peak learning rate is 2e-4. We set the weight decay to 0.01. For the base-size model, we train the model for 500k steps. The large-size model is trained for 200k steps.

B.2 Hyperparameters for Vision-Language Classification Fine-Tuning

Visual Question Answering (VQA) We fine-tune the models for 10 epochs with 128 batch size. The peak learning rate is 3e-5 for the base-size model, and 1.5e-5 for the large-size model. Following SimVLM [4], the input image resolution is 480×480 . For VLMO-Large++, we use 768×768 image resolution. Using 768×768 resolution brings about 0.3 improvement than 480×480 resolution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

^{*}Contribution during internship at Microsoft.

Turner	NLVR2		Flickr30k	
Transformer	dev	test-P	TR	IR
Separate Self-Attention	78.92	78.95	94.63	86.88
Multiway Transformer (Shared Self-Attention)	80.13	80.31	95.17	87.25

Table 1: Ablation study of the shared self-attention module used in Multiway Transformer. We experiment with separate attention on the first L-F layers, which encodes image patches and text tokens using different attention parameters.

Model	# Pretrain Images	Flickr30K (1K test set)					
		TR			IR		
		R@1	R@5	R@10	R@1	R@5	R@10
BLIP [2]	129M	97.4	99.8	99.9	87.6	97.7	99.0
VLMo-Large	4M	97.7	99.9	100.0	87.8	97.7	99.1

Table 2: Fine-tuning results of text-retrieval (TR) and image-retrieval (IR) with rerank on Flickr30K.

Natural Language for Visual Reasoning (NLVR2) For results of Table 1, the models are finetuned for 10 epochs with 128 batch size. The peak learning rate of the base-size and large-size models are set to 5e-5 and 3e-5, respectively. The input image resolution is 384×384 . For ablation experiments, we fine-tune the models for 10 epochs with 128 batch size, and choose learning rates from {5e-5, 1e-4}. The input image resolution is 224×224 . All the ablation results of NLVR2 are averaged over 3 runs.

B.3 Hyperparameters for Vision-Language Retrieval Fine-Tuning

COCO We fine-tune the base-size model for 20 epochs and large-size model for 10 epochs with 2048 batch size. The peak learning rate is 2e-5 for the base-size model and 1e-5 for the large-size model. The input image resolution is 384×384 .

Flickr30K For results of Table 2, the base-size and large-size models are fine-tuned for 40 epochs with a batch size of 2048 and a peak learning rate of 1e-5. We use the fine-tuned model on COCO as the initialization. The input image resolution is 384×384 . For all ablation experiments, we fine-tune the models for 10 epochs with 1024 batch size. The peak learning rate is set to 5e-5, and the input image resolution is 224×224 .

References

- [1] Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq R. Joty, Caiming Xiong, and Steven C. H. Hoi. Align before fuse: Vision and language representation learning with momentum distillation. *CoRR*, abs/2107.07651, 2021. URL https://arxiv.org/abs/2107.07651.
- [2] Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. BLIP: bootstrapping languageimage pre-training for unified vision-language understanding and generation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pages 12888–12900. PMLR, 2022.
- [3] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
- [4] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Simple visual language model pretraining with weak supervision. *CoRR*, abs/2108.10904, 2021. URL https://arxiv.org/abs/2108.10904.

[5] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In *Proceedings of the IEEE international conference on computer vision*, pages 19–27, 2015.