
Appendix

Table of Contents
A Additional related works 16

A.1 IL via reduction to offline learning . 16
A.2 IL via reduction to online learning . 17
A.3 Other important related works . 18

B Recap of notations and additional notations used in the proofs 18

C Deferred materials from Section 2 19

D Deferred materials from Section 3 21
D.1 Deferred materials from Section 3.1 . 21
D.2 Deferred materials from Section 3.2 . 22

E Deferred materials from Section 4 25
E.1 Deferred materials from Section 4.1 . 25
E.2 Deferred materials from Section 4.2 . 29
E.3 Detailed comparisons between LOGGER-M, LOGGER-ME and behavior cloning 34

F Deferred materials from Section 5 35
F.1 Preliminaries for two-player general-sum games 35
F.2 A related variational inequality problem . 36
F.3 POLY6-VI-MDP is PPAD-hard . 37
F.4 Computational hardness of achieving sublinear dynamic regret in LOGGER . . . 41

G Online linear optimization results 42
G.1 Basic facts on convex analysis . 42
G.2 General results on FTRL and Optimistic FTRL 43
G.3 Regularizer induced by example-based perturbations 45

H Auxiliary Lemmas 52

A Additional related works

A.1 IL via reduction to offline learning

An algorithm is said to reduce IL to offline learning, if it interacts with the MDP and the expert
to create a series of offline learning tasks, and outputs a policy whose suboptimality depends
on the quality of solving the offline learning tasks. One representative example is the Behavior
Cloning algorithm, where the learner learns a policy by performing offline supervised learning on a
dataset drawn from the expert’s state-action occupancy distribution. By [54, Theorem 2.1] (see also
earlier work of [65]), Behavior Cloning’s output policy’s suboptimality is bounded by H2 times the
classification loss with respect to the expert’s state-action occupancy distribution. Another example
is the Forward Training algorithm of [54], where a non-stationary policy is trained incrementally. For
every step of the MDP, it trains a policy by performing offline supervised learning on a dataset drawn
from the state occupancy distribution at this step induced by the nonstationary policy trained for all
previous steps. The output policy’s suboptimality of Forward Training is bounded in terms of the
averaged 0-1 loss of intermediate offline classification problems at all steps. The same paper [54] also
proposed the SMILe algorithm, where the learned stationary policy is defined as a mixture of policies
trained in the past, as well as the expert policy whose weight diminishes in the number of learning

16

rounds. At each round, the learner trains a new policy component under the state distribution induced
by the learned policy and uses it to update the learned policy. In the worst case, the output policy’s
suboptimality guarantee is bounded in terms of the weighted average of 0-1 losses of intermediate
offline classification problems. As made explicit by [54], the SEARN [23] algorithm can be applied
to imitation learning and its suboptimality guarantee can be bounded in terms of the averaged 0-1
loss of intermediate offline classification problems. Later, [37] extends SEARN to continuous-action
regime under the setting of exogenous input, following the similar reduction as in [23].

IL via reduction to offline surrogate loss minimization. A few works study IL via offline learning
that performs minimization over surrogate losses of 0-1 loss. [71], [6, Theorem 15.3] show that if
the average KL divergence between a policy’s action distribution and the expert’s action distribution
is bounded, the policy’s suboptimality can in turn be bounded. In addition, under a realizable setting,
maximum likelihood estimation (log loss minimization) ensures that the above KL divergence goes
to zero as the training sample size grows to infinity. [71] also shows policy suboptimality bounds
of generative adversarial imitation learning [30] that depends on the approximation power of the
policy class, and an estimation error term that depends on the sample size and the expressivity of the
discriminator class.

A.2 IL via reduction to online learning

A major line of research [54, 56, 55, 63, 15, 18, 17] reduces interactive IL to an online learning
problem, where a sequence of online losses are carefully constructed so that the cumulative online
loss of a sequence of policies corresponds to the policy sequence’s cumulative imitation losses. In the
discrete action setting, where policies can be viewed as classifiers, early works such as DAGGER [54]
do not directly provide an explicit algorithm for online cost-sensitive classification loss regret
minimization, and instead perform regret minimization over convex surrogates of the classification
losses. The convex surrogate minimization approach is well-known to be statistically inconsistent
even in supervised learning, a special case of imitation learning [7]. Subsequent works [55] reduces
online cost-sensitive classification in imitation learning to online least squares regression.

In contrast to these works, we study the original regret minimization problem (induced by CSC
losses) in online IL without relaxations, in the nonrealizable setting. Although Sun et al. [63,
Theorem 5.2] implicitly designs COIL algorithms for general policy classes by performing online
linear optimization over the convex hull of benchmark policies, we identify a subtle technical issue in
their approach; we discuss it in detail in Section D.2.

Online IL as predictable online learning: In the above reduction from interactive IL to online
learning, a key observation from prior works [e.g. 15, 16, 38] is that, online IL is a predictable online
learning problem [19, 51]. This observation has enabled the design of more sample efficient [16,
38, 18, 17] and convergent [15] imitation learning algorithms. However, these works either assume
access to an external predictive model [18, 17] or assume strong convexity of the losses [16, 38,
15], neither of which is satisfied in the COIL setting. Our MFTPL-EG algorithm achieves O(1)
static regret without the strong convexity assumption on the losses, and is largely inspired by the
predictor-corrector framework of [17], the Mirror-Prox algorithm and extragradient methods in
smooth optimization [42, 33].

IL with dynamic regret guarantees: Prior works in imitation learning [38, 16] have designed
algorithms that achieve sublinear dynamic regret, under the assumption that the imitation losses are
strongly convex in the policy parameters. While strong convexity of the losses naturally occurs in
settings such as continuous control (e.g. square losses), in our COIL setting with mixed policies, the
learner’s loss functions do not have strong convexity.

Cheng et al. [16] show that, under an abstract continuous online learning setup, dynamic regret
minimization is PPAD-hard, by a reduction from Brouwer’s fixed point problem. Our computational
hardness result Theorem 12 can be viewed as a strengthening of theirs, in that we show a concrete
dynamic regret minimization problem induced by imitation learning in MDPs is PPAD-hard. Our
reduction is also significantly different from [16]’s, in that it reduces from the 2-player mixed Nash
equilibrium problem: specifically, the reduction constructs a 3-layer MDP based on the payoff
matrices of the two players.

In the general online learning setting, [10, 31] design efficient gradient-based algorithms with
sublinear dynamic regret guarantees, under the assumption that the sequence of online loss functions

17

have bounded variations. While these results appear to be promising for designing efficient sublinear
dynamic regret algorithms in COIL settings, our computational hardness result strongly suggests that
additional structural assumptions on the COIL problem are necessary for such guarantees.

A.3 Other important related works

Fundamental sample complexity limits of IL: Recent works of [50, 49] study minimax sample
complexities of realizable imitation learning in the tabular or linear policy class settings, and shows
that in general, allowing the learning agent to interact with the environment does not improve the
minimax sample complexity. In contrast, in settings where the (MDP, expert policy) pair has a low
recoverability constant, interactivity helps reduce the minimax sample complexity. They also show
that knowing the transition probability of the MDP helps reduce the minimax sample complexity.
Different from their work, our work focuses on the general function approximation setting without
realizability assumptions.

Oracle-efficient online and imitation learning: A line of works [25, 5, 66, 24, 52, 67] design
oracle-efficient online learning algorithms for online classification and online contextual bandit
learning. Most of these works either assume that the context distributions are iid, or the contexts are
observed ahead of time (i.e. the transductive setting), which are inapplicable in the COIL setting.
The only exceptions we are aware of are [66, 24], which utilize a small separator set assumption
of the benchmark policy class. However, as we have seen, a direct application of [66, 24] to the
online IL setting results in a linear regret (Theorem 4), which motivates our design of MFTPL and
MFTPL-EG algorithms. [62] designs oracle-efficient imitation learning algorithms from experts’
state observations alone (without seeing experts’ actions). Different from ours, their work makes a
(strong) realizability assumption: the learner is given access to a policy class and a value function
class, that contain the expert’s policy and value function, respectively. Also, their algorithm requires
regularized CSC oracle, for running FTRL.

Connections between FTRL and FTPL: In online linear optimization, [2] first observe that an in-
expectation version of FTPL is equivalent to FTRL, where the regularizer depends on the distribution
of the noise perturbation. This viewpoint yields a productive line of work that designs new bandit
and online learning algorithms [4, 3]. Our work utilizes this connection to design oracle-efficient
online imitation learning algorithms with static regret guarantees.

B Recap of notations and additional notations used in the proofs

We provide a brief recap of the notations introduced outside Section 2.

In Section 3, we introduce mixed policy class ΠB :=
{
πu(·|s) :=

∑
h∈B u[h] · h(·|s) : u ∈ ∆(B)

}
,

and cost vector θ(v) :=
(
Es∼dπv

[
ζE(s, h(s))

])
h∈B

, which is induced by the distribution occupancy

of πv ∈ ΠB, expert feedback ζE , and B. Also, we define cost vector induced by CSC dataset D and
B as g :=

(
E(s,~c)∼D

[
~c(h(s))

])
h∈B

.

In Section 4, we introduce algorithm MFTPL and separator set X . Given a deterministic stationary
benchmark policy class B, its separator X satisfies ∀h, h′ ∈ B, ∃x ∈ X , s.t. h(x) 6= h′(x). Define
sample based perturbation loss variables `x ∼ N (0, IA) for each x ∈ X . Denote ` = (`x)x∈X ∼
N (0, IXA), and the induced perturbation vector q(`) := (

∑
x∈X `x(h(x)))h∈B, where `x(a) denotes

the a-th term of `x. When it is clear from context, we abbreviate q(`) as q. Define perturbation
samples set Z =

{
(x, Kη · `x)

}
x∈X

, where K is the sample budget per round and η is the learning

rate. Additionally, we use Zj =
{

(x, Kη · `x,j)
}
x∈X

, j = 1, . . . , T to index T perturbation sets

induced by T draws of `j =
(
`x,j
)
x∈X ∼ N (0, IXA). Similarly, we abbreviate q(`j) as qj .

We denote by Pr(E) the probability of event E happening. For function f , we say

1. f(n) = O(poly(n)) if ∃C > 0 s.t. f(n) = O(nC);
2. f(n1, . . . , nk) = O(poly(n1, . . . , nk)) if f(n1, . . . , nk) = O(poly(n1 × . . .× nk));
3. f(n1, . . . , nk) = O(polylog(n1, . . . , nk)) if f(n1, . . . , nk) = O(poly(lnn1, . . . , lnnk)).

18

We summarize frequently-used definitions in the main paper and the appendix in Table 2.

Table 2: A review of notations in this paper.

Name Description Name Description

M Markov decision process (x,~c) CSC example
H Episode length DEπ (x,~c) distribution induced by π,M and πE
t Time step inM O CSC oracle
S State space ΠB Mixed policy class
S State space size u Mixed policy probability weight
s State πu Mixed policy induced by u
Step(s) Time step of state s θ(u) Linear loss vector induced by πu
A Action space K Sample budget per round
A Action space size k Sample iteration index
a Action Dn Set of CSC examples at iteration n
ρ Initial distribution ED Empirical average over set D
P Transition dynamics gn Estimator for θ(un) by Dn

c Cost function fn(π) Estimator for Fn(π) by Dn

π Policy X Separator set for B
Eπ Expectation wrt π X Separator set size
Pπ Probability wrt π T Sparsification parameter
dtπ State occupancy distribution j Sparsification iteration number
dπ State occupancy distribution Zj Perturbation example set
τ Trajectory N Gaussian distribution
J(π) Expected cumulative cost IA Identity matrix of dimension A
Qπ Action value function IXA Identity matrix of dimension X ·A
Vπ State value function `x Perturbation vector drawn from N (0, IA)
Aπ Advantage function ` {`x}x∈X ∼ N (0, IXA)
µ Recoverability for πE inM q(`) Perturbation vector in RB induced by `
πE Expert policy η Learning rate
AE Expert advantage function R Closed and strongly convex function
ζE Expert feedback function dom(R) Effective domain of R
L(π) Imitation loss of π R∗ Fenchel conjugate of R
N Number of learning rounds DR∗ Bregman divergence of R∗
n Learning round number ΦN Expected CFTPL objective function
i Learning round index ∇ΦN Gradient of ΦN
Fn(π) Online loss function RN Φ∗N (Fenchel conjugate of ΦN)
B Benchmark policy class u∗n Expectation of output from MFTPL
B Benchmark policy class size un Output from MFTPL
h Policy in B ĝn Optimistic estimation for θ(un)
SRegN (B) Online static regret [N] Set {1, 2, · · · , N}
DRegN (B) Online dynamic regret I(·) Indicator function
LRegN Linear optimization regret ∆(W) All probability distributions over W
Bias(B,B0, N) Approximation error Onehot(w,W) Delta mass (one-hot vector) on w ∈W
δ Failure probability u[w] w-th term of u ∈ R|W |
Pr(E) Probability of event E Θ Rd or RB vector

C Deferred materials from Section 2

Proposition 13 (Restatement of Proposition 2). For any N ∈ N+ and online learner that out-
puts {πn}Nn=1 ∈ BN0 , define Bias(B,B0, N) := max

{υn}Nn=1∈BN0
min
π∈B

Es∼d̄NEa∼π(·|s)
[
I(a 6= πE(s))

]
,

where d̄N := 1
N

∑N
n=1 dυn . Then, choosing π̂ uniformly at random from {πn}Nn=1 has guarantee:

E
[
J(π̂)− J(πE)

]
≤ H·min

{
µ · Bias(B,B0, N) +

E[SRegN (B)]

N
, µ · Bias(B,B0, 1) +

E[DRegN (B)]

N

}
.

19

Proof of Proposition 13. By the performance difference lemma (Lemma 55), the definitions of L
and Fn, and the assumption that AE(s, a) ≤ ζE(s, a), we have

1

N

N∑
n=1

J(πn)−J(πE) = H· 1

N

N∑
n=1

Es∼dπnEa∼πn(·|s)

[
AE(s, a)

]
≤ H

N

N∑
n=1

L(πn) =
H

N

N∑
n=1

Fn(πn).

Following the definition of SRegN (B) and DRegN (B) in Equation (1),

1

N

N∑
n=1

Fn(πn) =
1

N
min
π∈B

N∑
n=1

Fn(π) +
SRegN (B)

N
=

1

N

N∑
n=1

min
π∈B

Fn(π) +
DRegN (B)

N
. (3)

Since Bias(B,B0, N) = max
{υn}Nn=1∈BN0

min
π∈B

Es∼d̄NEa∼π(·|s)
[
I(a 6= πE(s))

]
, {πn}Nn=1 ∈ BN0 , and

our assumption that ζE(s, a) ≤ µI(a 6= πE(s)), the static regret benchmark is bounded by:

1

N
min
π∈B

N∑
n=1

Fn(π) = min
π∈B

1

N

N∑
n=1

Es∼dπnEa∼π(·|s)
[
ζE(s, a)

]
= min

π∈B
Es∼d̄NEa∼π(·|s)

[
ζE(s, a)

]
≤ min

π∈B
Es∼d̄NEa∼π(·|s)

[
µ · I(a 6= πE(s))

]
≤ µ · max

{υn}Nn=1∈BN0
min
π∈B

Es∼d̄NEa∼π(·|s)

[
I(a 6= πE(s))

]
= µ · Bias(B,B0, N).

Similarly, ∀n,
min
π∈B

Fn(π) = min
π∈B

Es∼dπnEa∼π(·|s)
[
ζE(s, a)

]
≤ min

π∈B
Es∼dπnEa∼π(·|s)

[
µ · I(a 6= πE(s))

]
≤ µ · max

υ∈B0

min
π∈B

Es∼dυEa∼π(·|s)

[
I(a 6= πE(s))

]
= µ · Bias(B,B0, 1).

By bringing our observations back to Equation (3), we obtain

1

N

N∑
n=1

J(πn)− J(πE) ≤ 1

N

N∑
n=1

Fn(πn) ≤ µH · Bias(B,B0, N) +
H

N
SRegN (B),

1

N

N∑
n=1

J(πn)− J(πE) ≤ H

N

N∑
n=1

Fn(πn) ≤ µH · Bias(B,B0, 1) +
H

N
DRegN (B).

Notice that J(πE), Bias(B,B0, N), and Bias(B,B0, 1) are constants, we apply the fact that given
fixed sequence {πn}Nn=1 , E

[
J(π̂)|{πn}Nn=1

]
= 1

N

∑N
n=1 J(πn) and the law of total expectation,

E
[
J(π̂)− J(πE)

]
=E{πn}Nn=1

[
E
[
J(π̂)|{πn}Nn=1

]]
− J(πE)

=E{πn}Nn=1

 1

N

N∑
n=1

J(πn)

− J(πE)

≤H ·min

{
µ · Bias(B,B0, N) +

E[SRegN (B)]

N
, µ · Bias(B,B0, 1) +

E[DRegN (B)]

N

}
,

which concludes the proof.

20

D Deferred materials from Section 3

D.1 Deferred materials from Section 3.1

Theorem 14 (Restatement of Theorem 4). Suppose the expert’s feedback is either of the form
ζE(s, a) = µ · I(a 6= πE(s)) or ζE(s, a) = AE(s, a). Then, for any H ≥ 3, there exists an MDPM
of episode length H , a deterministic expert policy πE , a benchmark policy class B, such that for any
learner that sequentially and possibly at random generates a sequence of policies {πn}Nn=1 ∈ BN ,
its static regret satisfies SRegN (B) = Ω(N).

Figure 1: The MDP construction used in the proof of Theorem 14.

Proof. Define MDPM with:

• State space S = {S0, SL, SR} and action space A = {L,R}.
• Initial state distribution ρ(S0) = 1

• Transition dynamics: P1(SL|S0, L) = 1, P1(SR|S0, R) = 1, i.e. playing L at S0 transitions
to SL deterministically, while playing R at S0 transitions to SR. Also, ∀t ∈ [H − 1], ∀a ∈ A,
Pt(SL|SL, a) = 1, Pt(SR|SR, a) = 1, i.e. SL and SR have transition dynamics that are
self-absorbing before termination. See Figure 1 for an illustration.
• Cost function c(S0, L) = c(S0, R) = c(SL, R) = c(SR, L) = 0, c(SL, L) = c(SR, R) = 1.

Meanwhile, let:

• Benchmark policy class B = {hL, hR}, where ∀s, hL(s) = L and hR(s) = R.
• Deterministic expert πE such that πE(S0) = L, πE(SL) = R and πE(SR) = L.

Notice that ∀s ∈ S, c(s, πE(s)) = 0, and therefore VπE (s) = 0 for all s. Also, by observ-
ing AE(s, a) = QπE (s, a) − VπE (s) = c(s, a), it can be seen that AE(S0, L) = AE(S0, R) =
AE(SL, R) = AE(SR, L) = 0, AE(SL, L) = AE(SR, R) = 1.

By the transition dynamics, rolling out hL inM incurs trajectory τhL = (S0, L, SL, L, · · · , SL, L)
with probability 1, where AE(S0, L) = I(L 6= πE(S0)) = 0 and AE(SL, L) = I(L 6= πE(SL)) =
1. Similarly, the trajectory induced by hR is τhR = (S0, R, SR, R, · · · , SR, R), where AE(S0, R) =
0, I(R 6= πE(S0)) = 1 and AE(SR, R) = I(R 6= πE(SR)) = 1.

For the direct expert annotation feedback ζE(s, a) = µ · I(a 6= πE(s)).

To begin with, it can be seen from the advantage function values that (M, πE) is 1-recoverable (i.e.
∀s ∈ S, a ∈ A,

∣∣AE(s, a)
∣∣ ≤ 1). Therefore, the feedback is of the form ζE(s, a) = I(a 6= πE(s)).

Recall that Fn(π) = Es∼dπnEa∼π(·|s)
[
ζE(s, a)

]
, we follow the trajectories of hL, hR and obtain:

• when πn = hL, Fn(hL) = H−1
H , Fn(hR) = 1

H .
• when πn = hR, Fn(hR) = 1, Fn(hL) = 0.

With this, we conclude that, ∀{πn}Nn=1 ∈ {hL, hR}N ,
∑N
n=1 Fn(πn) ≥ N(H−1)

H .

21

On the other hand, ∀{πn}Nn=1 ∈ {hL, hR}N , define PL :=
∑N
n=1 Es∼dπn I(L = πE(s)), and

PR :=
∑N
n=1 Es∼dπn I(R = πE(s)). For the benchmark term, we have

min
π∈B

N∑
n=1

Fn(π) = min

 N∑
n=1

Fn(πL),

N∑
n=1

Fn(πR)

 = min (PL, PR) ≤ N

2
,

where the inequality uses the observation that PL + PR = N and therefore min(PL, PR) ≤ N
2 .

Together we obtain SRegN (B) =
∑N
n=1 Fn(πn) − minπ∈B

∑N
n=1 Fn(π) ≥ N(H−1)

H − N
2 =

N(H−2)
2H , which is linear in N when H ≥ 3.

For the feedback of the form ζE(s, a) = AE(s, a).

By bringing in ζE(s, a) = AE(s, a), we obtain Fn(π) = Es∼dπnEa∼π(·|s)
[
AE(s, a)

]
, following

the trajectories of hL, hR, it can be seen that:

• when πn = hL, Fn(hL) = H−1
H ,Fn(hR) = 0.

• when πn = hR, Fn(hR) = H−1
H , Fn(hL) = 0.

This implies ∀{πn}Nn=1 ∈ {hL, hR}N ,
∑N
n=1 Fn(πn) = N(H−1)

H .

On the other hand, ∀{πn}Nn=1 ∈ {hL, hR}N , define CL :=
∑N
n=1 I(πn = hL), and CR :=∑N

n=1 I(πn = hR), where CL + CR = N . For the benchmark term, we have

min
π∈B

N∑
n=1

Fn(π) = min

 N∑
n=1

Fn(πL),

N∑
n=1

Fn(πR)

 = min

(
CL

H − 1

H
,CR

H − 1

H

)
≤ N

2
·H − 1

H
,

where the inequality uses the observation that CL + CR = N and therefore min(CL, CR) ≤ N
2 .

In conclusion, any online proper learning algorithm satisfies SRegN (B) =
∑N
n=1 Fn(πn) −

minπ∈B
∑N
n=1 Fn(π) ≥ N(H−1)

H − N(H−1)
2H = N(H−1)

2H , i.e., it suffers regret SRegN (B) = Ω(N)
which is linear in N when H ≥ 2.

D.2 Deferred materials from Section 3.2

An alternative mixed policy class and its issues. Prior work [63, Theorem 5.3] propose to use an
alternative definition of mixed policy class

Π̃B =
{
σu : u ∈ ∆(B)

}
,

where policy σu is executed in an an episode of an MDP by: draw h ∼ u at the beginning of the
episode, and execute policy h throughout the episode. Importantly, σu is not a stationary policy; as a
result, {at}Ht=1 are dependent conditioned on {st}Ht=1; {at}Ht=1 are only conditionally independent
given {st}Ht=1 and h.

By the definition of σu, J(σu) is a weighted combination of J(h) over h ∈ B, which can be
written as J(σu) =

∑
h∈B u[h] · J(h). [63, Theorem 5.3] propose to perform online optimization

over the following losses, F̃n(σu) := Es∼dσn
[∑

h∈B u[h] ·AE(s, h(s))
]
, where σn denotes σun ;

specifically, they output a sequence of {un}Nn=1 ⊂ ∆(B),

N∑
n=1

F̃n(σn)− min
u∈∆(B)

N∑
n=1

F̃n(σu) ≤ µ
√
N log(B).

where sup
s,a
|AE(s, a)| ≤ µ.

We show by our MDP example in Figure 1 above, in general, J(σn)− J(πE) 6= H · F̃n(σn), which
implies that, an online optimization guarantee for {F̃n(σu)}Nn=1 cannot be converted to a policy

22

suboptimality guarantee. In contrast, in our LOGGER framework, with the setting of ζE = AE , we
always have that J(πn)− J(πE) = H · Fn(πn), which guarantees the conversion.4

Consider the MDP in the proof of Theorem 14 and un = (0.5, 0.5). Here, policy σn is executed
by picking h ∈ {hL, hR} uniformly at random and executing h through the whole episode. Since
J(hL) = J(hR) = H − 1 and J(πE) = 0, we obtain J(σn) − J(πE) =

∑
h∈{hL,hR} un[h] ·(

J(h)− J(πE)
)

= H − 1. On the other side, it can be shown that dσn distributes on {S0, SL, SR}
with probability weight (1

H ,
H−1
2H , H−1

2H), where∑
h∈{hL,hR}

un[h] ·AE(S0, h(s)) = 0,

and ∑
h∈{hL,hR}

un[h] ·AE(SL, h(s)) =
∑

h∈{hL,hR}

un[h] ·AE(SR, h(s)) =
1

2
.

Thus it can be verified that F̃n(σn) = Es∼dσn
[∑

h∈{hL,hR} un[h] ·AE(s, h(s))
]

= 2 · H−1
2H ·

1
2 =

H−1
2H . By this we conclude J(σn)− J(πE) 6= H · F̃ (σn).

Proof of Proposition 6. We begin by stating a more precise version of Proposition 6.
Proposition 15 (Restatement of Proposition 6). For any δ ∈ (0, 1], if Algorithm 2 uses online linear
optimization algorithm OLOA that outputs {un}Nn=1 ⊂ ∆(B)N s.t. with probability at least 1− δ/3,

LRegN =

N∑
n=1

〈gn, un〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉 ≤ Reg(N).

Then, with probability at least 1− δ, its output policies {πn}Nn=1 satisfy

SRegN (B) ≤ Reg(N)+2µ

√
2N ln(6

δ)

K
+2µ

√
2N

ln(B) + ln(6
δ)

K
= Reg(N)+O

(
µ

√
N ln(B/δ)

K

)
.

Proof. Recall that in online IL, the loss at round n is Fn(π) = Es∼dπnEa∼π(·|s)
[
ζE(s, a)

]
; For

πu ∈ ΠB,
Fn(πu) =

∑
h∈B

u[h] · Es∼dπvEa∼h(·|s)
[
ζE(s, a)

]
=
〈
θ(un), u

〉
,

where θ(v) :=
(
Es∼dπnEa∼h(·|s)

[
ζE(s, a)

])
h∈B

.

In LOGGER, gn =
(
E(s,~c)∼DnEa∼h(·|s)

[
~c(a)

])
h∈B

is our unbiased estimator for θ(un). By

defining fn(π) := E(s,~c)∼DnEa∼π(·|s)
[
~c(a)

]
, it can be seen that fn(πu) =

∑
h∈B u[h] ·

E(s,~c)∼DnEa∼h(·|s)
[
~c(a)

]
= 〈gn, u〉.

Since the static regret is defined as SRegN (B) =
∑N
n=1 Fn(πn)−minh∈B

∑N
n=1 Fn(h), where

min
h∈B

N∑
n=1

Fn(h) = min
u∈∆(B)

N∑
n=1

〈
θ(un), u

〉
= min
u∈∆(B)

N∑
n=1

Fn(πu) = min
π∈ΠB

N∑
n=1

Fn(π).

We write the static regret as

SRegN (B) =

N∑
n=1

Fn(πn)− min
π∈ΠB

N∑
n=1

Fn(π)

=

N∑
n=1

(Fn(πn)− fn(πn))︸ ︷︷ ︸
(1)

+

N∑
n=1

fn(πn)− min
π∈ΠB

N∑
n=1

fn(π)︸ ︷︷ ︸
(2)

+ min
π∈ΠB

N∑
n=1

fn(π)− min
π∈ΠB

N∑
n=1

Fn(π)︸ ︷︷ ︸
(3)

.

4Note that the performance difference lemma (Lemma 55) requires the two policies in comparison to be
stationary.

23

We will bound each term respectively. First, for (2), we recognize that it equals to LRegN =∑N
n=1〈gn, un〉−minu∈∆(B)

∑N
n=1〈gn, u〉, which is at most Reg(N) with probability at least 1−δ/3

by the assumptions on OLOA.

We now bound the remaining two terms. Before going into details, we index each cost-sensitive
examples as (sn,k,~cn,k) for the k-th sample that drawn from the k-th rollout trajectory at the n-
th round, where k ∈ [K], n ∈ [N] and ~cn,k =

(
ζE(sn,k, a)

)
a∈A. With this notation, we can

write cost-sensitive examples generated at round n as Dn =
(
(sn,k,~cn,k)

)K
k=1

and write fn(π) =

E(s,~c)∼DnEa∼π(·|s)
[
~c(a)

]
= 1

K

∑K
k=1 Ea∼π(·|sn,k)

[
ζE(sn,k, a)

]
.

Also, denote En,k [Y] as the conditional expectation of random variable Y on all history before the
k-th rollout of the n-th round. More precisely, denote by Un,k =

{
sn′,k′ : (n′, k′) � (n, k)

}
, where

� denotes precedence in dictionary order, i.e., (n1, k1) � (n2, k2) if and only if n1 < n2, or n1 = n2

and k1 ≤ k2; and En,k [·] := E
[
· | Un,k−1

]
. As a convention, denote by Un,0 := Un−1,K . By the

assumption of ∀s ∈ S,∀a ∈ A, AE(s, a) ≤ ζE(s, a) ≤ µ · I(a 6= πE(s)) and
∣∣AE(s, a)

∣∣ ≤ µ
(recall Section 2), we have that |ζE(s, a)| ≤ µ for all s, a.

Term (1):
∑N
n=1(Fn(πn)−fn(πn)). We define Yn,k := Fn(πn)−Ea∼πn(·|sn,k)

[
ζE(sn,k, a)

]
where

sn,k ∼ dπn . It can be seen from the representation of fn(π) = 1
K

∑K
k=1 Ea∼π(·|sn,k)

[
ζE(sn,k, a)

]
that

Fn(πn)− fn(πn) =
1

K

K∑
k=1

(
Fn(πn)− Ea∼πn(·|sn,k)

[
ζE(sn,k, a)

])
=

1

K

K∑
k=1

Yn,k.

Since πn only depends on history until n− 1 round, and sn,k are iid drawn from dπn , we have

En,k
[
Yn,k

]
=E

[
Fn(πn)− Ea∼πn(·|sn,k)

[
ζE(sn,k, a)

]
| Un,k−1

]
=E

[
Fn(πn)− Es∼dπnEa∼πn(·|sn,k)

[
ζE(s, a)

]
| Un−1,K

]
=E

[
Fn(πn)− Fn(πn) | Un−1,K

]
= 0.

By applying ‖ζE(sn,k, ·)‖∞ ≤ µ, we have

|Yn,k| = |Fn(πn)− Ea∼πn(·|sn,k)

[
ζE(sn,k, a)

]
|

= |Es∼dπnEa∼πn(·|s)
[
ζE(s, a)

]
−
〈
ζE(sn,k, ·), πn(· | sn,k)

〉
|

≤ |Es∼dπn
〈
ζE(s, ·), πn(· | s)

〉
|+ ‖ζE(sn,k, ·)‖∞

≤ 2‖ζE(sn,k, ·)‖∞ ≤ 2µ.

This implies the sequence of random variables {Y1,1, Y1,2, · · · , Y1,K , Y2,1, · · · , YN,K} form a mar-
tingale difference sequence. Applying Azuma-Hoeffding’s inequality, we get with probability at least
1− δ/3, ∣∣∣∣∣∣

N∑
n=1

(Fn(πn)− fn(πn))

∣∣∣∣∣∣ =
1

K

∣∣∣∣∣∣
N∑
n=1

K∑
k=1

Yn,k

∣∣∣∣∣∣ ≤ 2µ

√
2N ln(6

δ)

K
.

Term (3): minπ∈ΠB

∑N
n=1 fn(π) − minπ∈ΠB

∑N
n=1 Fn(π). Similar to term (1), for any h ∈ B,

we define Ŷn,k(h) := Fn(h)− cn,k(h(sn,k), sn,k) where sn,k ∼ dπn . Also, we have that fn(π) =
1
K

∑K
k=1 Ea∼π(·|sn,k)

[
ζE(sn,k, a)

]
, which implies Fn(h)− fn(h) = 1

K

∑K
k=1 Ŷn,k(h). Following

the same analysis shown in term (1), it can be shown that En,k
[
Ŷn,k(h)

]
= 0 and |Ŷn,k(h)| ≤ 2µ.

By applying Azuma-Hoeffding’s inequality, we get for any given h ∈ B, with probability at least
1− δ

3B (recall that B = |B|),∣∣∣∣∣∣
N∑
n=1

(Fn(h)− fn(h))

∣∣∣∣∣∣ =
1

K

∣∣∣∣∣∣
N∑
n=1

K∑
k=1

Ŷn,k(h)

∣∣∣∣∣∣ ≤ 2µ

√
2N

ln(B) + ln(6
δ)

K
.

24

By applying union bound over all h ∈ B, we get with probability at least 1 − δ
3 ,
∑N
n=1(Fn(h) −

fn(h)) ≤ 2µ

√
2N

ln(B)+ln(6
δ)

K , ∀h ∈ B. Also, by the fact that fn(π) = 〈gn, u〉, it can be shown that

min
π∈ΠB

N∑
n=1

fn(π) = min
u∈∆(B)

N∑
n=1

〈gn, u〉 = min
h∈B

N∑
n=1

fn(h).

Since minπ∈ΠB

∑N
n=1 Fn(π) = minh∈B

∑N
n=1 Fn(h), by denoting h∗ ∈ argminh∈B

∑N
n=1 Fn(h),

we conclude with probability at least 1− δ/3 ,

min
π∈ΠB

N∑
n=1

fn(π)− min
π∈ΠB

N∑
n=1

Fn(π) = min
h∈B

N∑
n=1

fn(h)−min
h∈B

N∑
n=1

Fn(h)

= min
h∈B

N∑
n=1

fn(h)−
N∑
n=1

fn(h∗) +

N∑
n=1

(fn(h∗)− Fn(h∗))

≤0 + 2µ

√
2N

ln(B) + ln(6
δ)

K
.

Finally, by combining our high probability bounds on terms (1),(2), and (3), applying union bound,
we conclude that with probability at least 1− δ,

SRegN (B) ≤Reg(N) + 2µ

√
2N ln(6

δ)

K
+ 2µ

√
2N

ln(B) + ln(6
δ)

K
= Reg(N) +O

(
µ

√
N ln(B/δ)

K

)
.

E Deferred materials from Section 4

E.1 Deferred materials from Section 4.1

A more precise version of Lemma 7. Denote by ` = (`x)x∈X and q(`) = (
∑
x∈X `x(h(x)))h∈B.

Define ΦN : RB → R as:

ΦN (Θ) = E`∼N (0,IXA)

[
max
u∈∆(B)

〈
Θ + q(`), u

〉]
. (4)

Also, define RN : RB → R ∪ {+∞} as ΦN ’s Fenchel conjugate:

RN (u) = Φ∗N (u) = sup
Θ̃∈RB

〈
Θ̃, u

〉
− ΦN (Θ̃). (5)

We will need the following two lemmas that establish properties of ΦN and R useful in the proof of
Lemma 7; for their proofs, please refer to Section G.3.

Lemma 16. ΦN (Θ) is differentiable and∇ΦN (Θ) = E`∼N (0,IXA)

[
argmax
u∈∆(B)

〈
Θ + q(`), u

〉]
.

Lemma 17. RN (u) is
√

π
8

1
AX -strongly convex with respect to ‖ · ‖1.

Lemma 18. argmin
u∈∆(B)

(
〈Θ, u〉+RN (u)

)
= ∇ΦN (−Θ).

We are now ready to present a more precise version of Lemma 7.

Lemma 19 (A more precise version of Lemma 7). Suppose Mixed CFTPL receives datasets {Di}n−1
i=1 ,

separator set X , learning rate η, sparsification parameter T . Then, ∀δ ∈ (0, 1], with probability at
least 1− δ, Mixed CFTPL makes T calls to the cost-sensitive oracle O, and outputs un ∈ ∆(B) s.t.

‖πun(·|s)− πu∗n(·|s)‖1 ≤

√
2A
(
ln(S) + ln(2

δ)
)

T
, ∀s ∈ S, (6)

25

with

u∗n := argmin
u∈∆(B)

〈η n−1∑
i=1

gi, u

〉
+RN (u)

 = ∇ΦN

−η n−1∑
i=1

gi

 , (7)

for ΦN and R defined in Equations (4) and (5).

Proof. In the proof, we refer to results from online linear optimization, which can be checked
in Section G. By Lemma 18 and Lemma 16, for RN defined in Equation (5) and ΦN defined in
Equation (4),

u∗n = argmin
u∈∆(B)

〈η n−1∑
i=1

gi, u

〉
+RN (u)

=∇ΦN

−η n−1∑
i=1

gi

 = E`∼N (0,IXA)

argmax
u∈∆(B)

〈
−η

n−1∑
i=1

gi + q(`), u

〉 .
(8)

We now turn to proving Equation (6). Recall the definition of un = 1
T

∑T
j=1 un,j in Algorithm 3,

where un,j = Onehot(O((∪n−1
i=1 Di) ∪ ∪Zj),B) and Zj is induced by Gaussian random variables

`x,j ∼ N (0, IA) for each x ∈ X . Denote by `j = (`x,j)x∈X .

Our proof consists of two steps: first, showing that E`j∼N (0,IXA)

[
un,j

]
= u∗n; second, applying the

concentration inequality for Multinoulli random variables on ‖πun(·|s)− πu∗n(·|s)‖1 for all s ∈ S.

To begin with, we first prove E`j∼N (0,IXA)

[
un,j

]
= u∗n. Since each Di contains K cost-

sensitive examples, and X has size X , we have (∪n−1
i=1 Di) ∪ Zj contains in total (n − 1)K + X

examples. Since gi[h] = E(s,~c)∼Di
[
~c(h(s))

]
and Zj =

{
(x, Kη `x,j) : x ∈ X

}
, by denoting

qj [h] :=
∑
x∈X `x,j(h(x)), it can be seen that

E(x,~c)∼(∪n−1
i=1 Di)∪Zj

[
~c(h(x))

]
=

1

(n− 1)K +X

n−1∑
i=1

∑
(x,~c)∈Di

~c(h(x)) +
∑

(x,~c)∈Zj

~c(h(x))

=

K

(n− 1)K +X

n−1∑
i=1

E(x,~c)∼Di
[
~c(h(x))

]+
1

(n− 1)K +X

∑
x∈X

K

η
`x,j(h(x))

=

K

η((n− 1)K +X)

η n−1∑
i=1

gi[h] + qj [h]

 .

By the definition of oracle O Definition 3 and un,j = Onehot(O((∪n−1
i=1 Di) ∪ Zj),B),

un,j = Onehot
(
O((∪n−1

i=1 Di) ∪ Zj),B
)

= Onehot

(
argmin
h∈B

E(x,~c)∼(∪n−1
i=1 Di)∪Zj

[
~c(h(x))

]
,B

)

= Onehot

argmin
h∈B

K

η((n− 1)K +X)
(η

n−1∑
i=1

gi[h] + qj [h]),B

= Onehot

argmin
h∈B

(η

n−1∑
i=1

gi[h] + qj [h]),B

= Onehot

argmax
h∈B

(−η
n−1∑
i=1

gi[h]− qj [h]),B

 .

26

By this we obtain

E`j∼N (0,IXA)

[
un,j

]
= E`j∼N (0,IXA)

Onehot

argmax
h∈B

(−η
n−1∑
i=1

gi[h]− qj [h]),B

 .

On the other hand, we have by Equation (8) that u∗n =

E`∼N (0,IXA)

[
argmax
u∈∆(B)

〈
−η
∑n−1
i=1 gi + q(`), u

〉]
. By lemma 44 in Section G, under the

distribution of ` ∼ N (0, IXA), argmin
u∈∆(B)

〈
−η
∑n−1
i=1 gi + q(`), u

〉
is unique with probability 1,

which is a one-hot vector. With this observation, we can write

u∗n =E`∼N (0,IXA)

argmax
u∈∆(B)

〈
−η

n−1∑
i=1

gi + q(`), u

〉
=E`∼N (0,IXA)

argmax
u∈∆(B)

〈
−η

n−1∑
i=1

gi − q(`), u

〉
=E`∼N (0,IXA)

Onehot(argmax
h∈B

(−η
n−1∑
i=1

gi[h] + q[h]),B)

 ,
where the first equality uses the following observation: Since ` is iid from N (0, IXA), ` and −` are
equal in distribution. By observing −q(`) = −

(∑
x∈X `x(h(x)))

)
h∈B

= q(−`), we have that q(`)

and −q(`) are equal in distribution. This concludes E`j
[
un,j

]
= u∗n.

Next, we bound ‖πun(·|s) − πu∗n(·|s)‖1. To this end, we show that for any s ∈ S, πun,j (·|s) is a
Multinoulli random variable with expectation πu∗n(·|s), πu(·|s) = 1

T

∑T
j=1 πun,j (·|s), and applying

concentration inequality.

Since un,j = Onehot(O((∪n−1
i=1 Di) ∪ Zj),B), which is a one-hot vector, by denoting hn,j =

O((∪n−1
i=1 Di) ∪ Zj), it can be seen that πun,j (·|s) =

∑
h∈B un,j [h]h(·|s) = hn,j(·|s) is also a

one-hot vector. Also, ∀s ∈ S,

E`j∼N (0,IXA)

[
πun,j (·|s)

]
= E`j∼N (0,IXA)

∑
h∈B

un,j [h]h(·|s)

 =
∑
h∈B

u∗n[h]h(·|s) = πu∗n(·|s).

Thus, πun,j (·|s) can also be seen as Multinoulli random variable on ∆(A) with expectation πu∗n(·|s),
and un, the empirical average of un,j satisfies

πun(·|s) =
∑
h∈B

un[h]h(·|s) =
∑
h∈B

1

T

T∑
i=1

un,j [h]h(·|s) =
1

T

T∑
i=1

πun,j (·|s).

Thus, we apply concentration inequality for Multinoulli random variables [48] (originally [70,
Theorem 2.1]) on πun(·|s) and obtain given any s ∈ S, with probability at least 1− δ/S,

‖πun(·|s)− πu∗n(·|s)‖1 <

√
2A
(
ln(S) + ln(2

δ)
)

T
.

By applying union bound over all states in S, we conclude that, with probability at least 1− δ,

‖πun(·|s)− πu∗n(·|s)‖1 ≤

√
2A
(
ln(S) + ln(2

δ)
)

T
,∀s ∈ S.

27

Lemma 20 (Restatement of Lemma 8). For any δ ∈ (0, 1], MFTPL, if being called for N rounds,
with input learning rate η = 1

µ
√
NA

(ln(B)
X)

1
4 and sparsification parameter T = N ln(2NS/δ)√

X3 ln(B)
, outputs

a sequence of {un}Nn=1, such that with probability 1− δ:

LRegN =

N∑
n=1

〈gn, un〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉 ≤ O
(
µ
√
NA(X3 ln(B))

1
4

)
.

Proof. Denote u∗n = ∇ΦN (−η
∑n−1
i=1 gi) the same as Equation (7), where gn =(

E(s,~c)∼Dn
[
~c(h(s))

])
h∈B

, we rewrite the regret as

LRegN =

N∑
n=1

〈gn, un〉 −
N∑
n=1

〈gn, u∗n〉︸ ︷︷ ︸
(1)

+

N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉︸ ︷︷ ︸
(2)

.

Term (1):
∑N
n=1〈gn, un〉 −

∑N
n=1〈gn, u∗n〉. For the first term, instead of bounding it naively by

‖un − u∗n‖1, we expand its definition and use Lemma 19 to give a tighter bound. Denote π∗n = πu∗n ,
by Lemma 19, we guarantee that for any round n, with probability at least 1− δ/N ,

〈gn, un − u∗n〉 =E(x,~c)∼DnEa∼πn(·|s)
[
~c(a)

]
− E(x,~c)∼DnEa∼π∗n(·|s)

[
~c(a)

]
=E(x,~c)∼Dn

[〈
~c, πn(·|x)− π∗n(·|x)

〉]
≤E(x,~c)∼Dn

[
‖πn(·|x)− π∗n(·|x)‖1‖~c‖∞

]
≤µ

√
2A

ln(NS) + ln(2
δ)

T
,

where the last line is form applying ‖~c‖∞ = ‖ζE(x, ·)‖∞ ≤ µ, and with probability at least 1− δ/N ,

for all s ∈ S, ‖πun(·|s)− πu∗n(·|s)‖1 ≤
√

2A
ln(NS)+ln(2

δ)

T . Then, by applying union bound for N
rounds, and sum over n ∈ [N] we obtain that with probability at least 1− δ,

N∑
n=1

〈gn, un〉 −
N∑
n=1

〈gn, u∗n〉 ≤ µN

√
2A
(
ln(NS) + ln(2

δ)
)

T
.

Term (2):
∑N
n=1〈gn, u∗n〉 − minu∈∆(B)

∑N
n=1〈gn, u〉. By the definition of u∗n =

∇ΦN (−η
∑n−1
i=1 gi), u∗n follows exactly the same update rule of Algorithm 6 with ΦN defined

in Equation (4), on online loss gn and optimistic estimation ĝn set to be 0 for all n. By Theorem 53,
the regret of {u∗n}

N
n=1 is bounded by

N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉 ≤
1

η

√
2X ln(B) +

N∑
n=1

XAη‖gn‖2∞

≤1

η

√
2X ln(B) + ηµ2NXA,

where we use the fact that gn =
(
E(s,~c)∼Dn

[
~c(h(s))

])
h∈B

has ‖gn‖∞ at most µ as ‖ζE(s, ·)‖∞ ≤ µ
for all s.

Finally, by combining the bounds on the first and second terms together, we obtain ∀δ ∈ (0, 1], with
probability at least 1− δ,

N∑
n=1

〈gn, un〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉 ≤
1

η

√
2X ln(B) + ηµ2NXA+ µN

√
2A

ln(NS) + ln(2
δ)

T
.

28

By setting η = 1
µ
√
NA

(
ln(B)
X

) 1
4

and T = N ln(2NS/δ)√
X3 ln(B)

, we conclude with probability at least 1− δ,

LRegN ≤

(
1 +

√
2

2
+ 1

)
µ
√

2NA
(
X3 ln(B)

) 1
4

= O

(
µ
√
NA

(
X3 ln(B)

) 1
4

)
.

Theorem 21 (Restatement of Theorem 9). For any δ ∈ (0, 1], LOGGER-M, with MFTPL setting its
parameters as in Lemma 8 and K = 1, satisfies that: (1) with probability at least 1− δ, its output
{πn}Nn=1 satisfies: SReg(N) ≤ O

(
µ
√
NA ln(1/δ)(X3 ln(B))

1
4

)
; (2) it queries N annotations

from expert πE; (3) it calls the CSC oracle O for N2 ln(6NS/δ)√
X3 ln(B)

times.

Specifically, LOGGER-M achieves H
N SRegN (B) ≤ ε with probability at least 1 − δ in N =

O

(
µ2H2A ln(1/δ)

√
X3 ln(B)

ε2

)
interaction rounds, with O

(
µ2H2A ln(1/δ)

√
X3 ln(B)

ε2

)
expert anno-

tations and Õ
(
µ4H4A2(ln(1/δ))

2
ln(S/δ)

√
X3 ln(B)

ε4

)
oracle calls.

Proof. Following the results in Lemma 8, MFTPL, if being called for N rounds with the prescribed
input learning rate η and sparsification parameter T = N ln(6NS/δ)√

X3 ln(B)
, generates a sequence of {un}Nn=1,

such that with probability at least 1− δ
3 ,

LRegN ≤ O
(
µ
√
NA(X3 ln(B))

1
4

)
.

By Proposition 6, LOGGER-M output policies {πn}Nn=1 such that with probability at least 1− δ,

SRegN (B) ≤ O
(
µ
√
NA(X3 ln(B))

1
4

)
+O

(
µ

√
N ln(B/δ)

K

)
.

By setting K = 1, we obtain

SRegN (B) ≤ O
(
µ
√
NA(X3 ln(B))

1
4

)
+O

(
µ
√
N(ln(B/δ))

)
= O

(
µ
√
NA ln(1/δ)(X3 ln(B))

1
4

)
,

where O
(
µ
√
N ln(B/δ)

)
is of lower order, by X ≥ logA(B) proven in Lemma 56.

Since at each round, Algorithm 2 queries K = 1 annotation from the expert and calls MFTPL
once, where MFTPL calls oracle O T = N ln(6NS/δ)√

X3 ln(B)
times, then for a total of N rounds, it calls N

annotations and calls oracle O for N
2 ln(6NS/δ)√
X3 ln(B)

times.

For the second part of the theorem, to guarantee H
N SRegN (B) ≤ ε, it suffices to let N =

O

(
µ2H2A ln(1/δ)

√
X3 ln(B)

ε2

)
. The number of annotations and oracle calls follow from plugging this

value of N into their settings in the first part of the theorem.

E.2 Deferred materials from Section 4.2

E.2.1 The MFTPL-EG algorithm and its guarantees

We present MFTPL-EG (Algorithm 4), an alternative to MFTPL (Algorithm 3) for online linear
optimization in COIL. Recall that in the LOGGER framework, for every n, the linear loss gn at round
n is induced by Dn, in that gn[h] = E(s,c)∼Dn

[
~c(h(s))

]
for all h ∈ B.

Specifically, at round n, MFTPL-EG first computes ûn, the output of MFTPL on {gi}n−1
i=1 (line 1);

different from MFTPL, instead of using this as un, it rather uses this as a estimator for un, which
is still to be determined at this point. ûn induces policy π̂n = πûn . After rolling out π̂n inM and
requesting expert annotations (line 2), we obtain a dataset D̂n, whose induced linear loss (denoted by

29

Algorithm 4 Mixed CFTPL with Extra Gradient (abbrev. MFTPL-EG)

Require: MDPM, expert feedback ζE , Linear losses {gi}n−1
i=1 represented by datasets {Di}n−1

i=1

each of size K (s.t. gi[h] = E(s,~c)∼Di
[
~c(h(s))

]
for all h ∈ B), separator set X , learning rate η,

sparsification parameter T .
1: ûn ← MFTPL

(
{Di}n−1

i=1 ,X , η, T
)

, and let π̂n ← πûn .

2: Draw K examples D̂n =
{

(s,~c)
}

iid from Dπ̂n,E , via interaction withM and expert ζE .

3: return un ← MFTPL
(
{Di}n−1

i=1 ∪ D̂n,X , η, T
)

.

ĝn), is an unbiased estimate of θ(ûn), which by the distributional continuity property (Lemma 10),
turns out to be a good estimator of θ(un). Finally, MFTPL-EG calls MFTPL on the linear losses
{gi}n−1

i=1 ∪ {ĝn} (line 3).

To analyze MFTPL-EG, We first restate and prove a distributional continuity property in COIL
problems.

Lemma 22 (Restatement of Lemma 10). For any u, v ∈ ∆(B),

‖θ(u)− θ(v)‖∞ (∗1)
≤ µH max

s∈S
‖πu(·|s)− πv(·|s)‖1 (∗2)

≤ µH‖u− v‖1.

Proof. We show (∗1) and (∗2) respectively.

For (∗1), recall the definition of trajectory as τ = {s1, a1, · · · , sH , aH}, we abuse dπ(·) to denote
the distribution of trajectory induced by policy π. By denoting θu[h] = Es∼dπu

[
ζE(s, h(s))

]
and

θv[h] = Es∼dπv
[
ζE(s, h(s))

]
, we have for any h ∈ B:∣∣θu[h]− θv[h]

∣∣ =
∣∣∣Es∼dπu [ζE(s, h(s))

]
− Es∼dπv

[
ζE(s, h(s))

]∣∣∣
=

∣∣∣∣∣∣Eτ∼dπu (·)

 1

H

∑
s∈τ

ζE(s, h(s))

− Eτ∼dπv (·)

 1

H

∑
s∈τ

ζE(s, h(s))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

τ∈(S×A)H

(dπu(τ)− dπv (τ)) · 1

H

∑
s∈τ

ζE(s, h(s))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

τ∈(S×A)H

µ(dπu(τ)− dπv (τ))

∣∣∣∣∣∣
=µ · ‖dπu(·)− dπv (·)‖1 = 2µ ·DTV

(
dπu(·), dπv (·)

)
.

where the last inequality is by ∀s ∈ S, ∀a ∈ A,
∣∣ζE(s, a)

∣∣ ≤ µ. Here, DTV(u, v) := 1
2‖u − v‖1

denotes the Total Variance (TV) distance between two distributions.

Now, by [36, Theorem 4]:

DTV

(
dπu(·), dπv (·)

)
≤ H · Es∼dπu

[
DTV

(
πu(· | s), πv(· | s)

)]
, (9)

we utilize Equation (9) and conclude that for any h ∈ B,∣∣θu[h]− θv[h]
∣∣ ≤2µ ·DTV

(
dπu(·), dπv (·)

)
≤2µH · Es∼dπu

[
DTV

(
πu(· | s), πv(· | s)

)]
≤2µH max

s∈S
DTV

(
πu(· | s), πv(· | s)

)
=µH max

s∈S
‖πu(·|s)− πv(·|s)‖1.

30

For (∗2), by the definition of πun(·|s) =
∑
h∈B u[h]h(·|s), we have that ∀s ∈ S,

‖πu(·|s)− πv(·|s)‖1 = ‖
∑
h∈B

u[h]h(·|s)−
∑
h∈B

v[h]h(·|s)‖1

=
∑
a∈A

∣∣∣∣∣∣
∑
h∈B

(u[h]− v[h])I(h(s) = a)

∣∣∣∣∣∣
≤
∑
a∈A

∑
h∈B

∣∣u[h]− v[h]
∣∣ I(h(s) = a)

=
∑
h∈B

∑
a∈A

∣∣u[h]− v[h]
∣∣ I(h(s) = a)

=
∑
h∈B

∣∣u[h]− v[h]
∣∣ = ‖u− v‖1.

This lets us conclude

‖θ(u)− θ(v)‖∞ = max
h∈B
|θu[h]− θv[h]| ≤ µH max

s∈S
‖πu(·|s)− πv(·|s)‖1 ≤ µH‖u− v‖1.

Lemma 23. Let N ≥ µHA
√
X3 ln(B). For any δ ∈ (0, 1], if MFTPL-EG is called for N rounds,

with input learning rate η = 1
5µHAX , sparsification parameter T = N2 ln(8NS/δ)

µHAX3 ln(B) and sample budget

K = N ln(8NB/δ)

H2A
√
X3 ln(B)

, outputs a sequence {un}Nn=1, such that with probability at least 1− δ:

LRegN ≤ O
(
µHA

√
X3 ln(B)

)
.

Proof. We will follow a proof outline similar to that of Lemma 20; intuitively, we can view
MFTPL-EG as approximating the execution of Algorithm 6.

At the n-th round in the execution of MFTPL-EG, the algorithm calls MFTPL with dataset {Di}n−1
i=1

to get ûn and gather extra data set D̂n by rolling out π̂n = πûn inM. Then it outputs un by running
MFTPL on {Di}n−1

i=1 ∪ D̂n.

In parallel to the definition that gn =
(
E(s,~c)∼Dn

[
~c(h(s))

])
h∈B

, we denote the loss vector induced

by D̂n as ĝn =
(
E(s,~c)∼D̂n

[
~c(h(s))

])
h∈B

. Following a similar definition as Equation (7), we denote

û∗n := ∇ΦN (−η
∑n−1
i=1 gi) and u∗n := ∇ΦN (−η(

∑n−1
i=1 gi + ĝn)). We first rewrite the online linear

optimization regret in the same way as the proof of Lemma 20 using u∗n,

LRegN =

N∑
n=1

〈gn, un〉 −
N∑
n=1

〈gn, u∗n〉︸ ︷︷ ︸
(1)

+

N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉︸ ︷︷ ︸
(2)

,

and bound terms (1) and (2) respectively.

Term (1):
∑N
n=1〈gn, un〉 −

∑N
n=1〈gn, u∗n〉. Since un is the output from MFTPL with input dataset

{Di}n−1
i=1 ∪ D̂n, separator set X , and learning rate η , while u∗n := ∇ΦN (−η(

∑n−1
i=1 gi + ĝn)) is

induced by {Di}n−1
i=1 and ĝn is induced by D̂n. We apply Lemma 19 and guarantee for any given

round n, with probability at least 1− δ
4N , for all s ∈ S , ‖πun(·|s)−πu∗n(·|s)‖1 ≤

√
2A

ln(NS)+ln(8
δ)

T .
By applying union bound over N rounds, we obtain that event E1 happens with probability at least
1− δ

4 , where E1 is defined as

E1 : ‖πun(·|s)− πu∗n(·|s)‖1 ≤

√
2A

ln(NS) + ln(8
δ)

T
,∀n ∈ [N],∀s ∈ S. (10)

Thus, when E1 happens, ∀n ∈ [N],

31

〈gn, un − u∗n〉 =E(x,~c)∼DnEa∼πn(·|s)
[
~c(a)

]
− E(x,~c)∼DnEa∼π∗n(·|s)

[
~c(a)

]
=E(x,~c)∼Dn

[〈
~c, πn(·|x)− π∗n(·|x)

〉]
≤E(x,~c)∼Dn

[
‖πn(·|x)− π∗n(·|x)‖1‖~c‖∞

]
≤µ

√
2A

ln(NS) + ln(8
δ)

T
,

which implies,
N∑
n=1

〈gn, un〉 −
N∑
n=1

〈gn, u∗n〉 ≤ µN

√
2A

ln(NS) + ln(8
δ)

T
.

Term (2):
∑N
n=1〈gn, u∗n〉 − minu∈∆(B)

∑N
n=1〈gn, u〉. By the definition of u∗n :=

∇ΦN (−η(
∑n−1
i=1 gi + ĝn)), u∗n follows the update rule of Algorithm 6 with ΦN defined in Equa-

tion (4), online loss gn and optimistic estimation ĝn. By Theorem 53, the regret is bounded by

N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉

≤1

η

√
2X ln(B) +

N∑
n=1

(
ηAX‖gn − ĝn‖2∞ −

1

4ηAX
‖u∗n − û∗n‖21

)
,

where we applied the fact that∇ΦN (−η(
∑n−1
i=1 gi + ĝn))−∇ΦN (−η(

∑n−1
i=1 gi)) = u∗n − û∗n.

We now turn to bound ‖gn − ĝn‖2∞. Intuitively, gn and ĝn are approximators of θ(u∗n) and θ(û∗n),
while by the inequality (∗2) of Lemma 22, ‖θ(u∗n)− θ(û∗n)‖∞ ≤ µH‖u∗n − û∗n‖1. By [18, Lemma
H.3], we bound ‖gn − ĝn‖2∞ by

‖gn − ĝn‖2∞ ≤5 · (‖gn − θ(un)‖2∞︸ ︷︷ ︸
(a)

+ ‖θ(un)− θ(u∗n)‖2∞︸ ︷︷ ︸
(b)

+ ‖θ(u∗n)− θ(û∗n)‖2∞︸ ︷︷ ︸
(c)

+ ‖θ(û∗n)− θ(ûn)‖2∞︸ ︷︷ ︸
(b̃)

+ ‖θ(ûn)− ĝn‖2∞︸ ︷︷ ︸
(ã)

).

We group the terms in three groups: (a)(ã), (b)(b̃), and (c), and apply different techniques to
bound them. For the easiest (c) term, we apply Lemma 22 and bound it by ‖θ(u∗n)− θ(û∗n)‖2∞ ≤
µ2H2‖u∗n − û∗n‖21.

For (b) and (b̃), we apply inequality (∗1) in Lemma 22 and get

‖θ(un)− θ(u∗n)‖2∞ ≤µ2H2 max
s∈S
‖πun(·|s)− πu∗n(·|s)‖21,

‖θ(û∗n)− θ(ûn)‖2∞ ≤µ2H2 max
s∈S
‖πûn(·|s)− πû∗n(·|s)‖21.

For term (b), on event E1, which happens with probability 1− δ
4 , we have that maxs∈S ‖πun(·|s)−

πu∗n(·|s)‖21 ≤ 2A
ln(NS)+ln(8

δ)

T for all n ∈ [N]. For term (b̃), the same analysis
goes through for ûn the output from MFTPL with input dataset {Di}n−1

i=1 , and û∗n :=

E`∼N (0,IXA)

[
argmax

u

〈∑n−1
i=1 −gi + 1

η q(`), u
〉]

. Again, applying Lemma 19 and union bound

over n ∈ [N], we guarantee that the following event E2 happens with probability at least 1 − δ
4 ,

where

E2 : max
s∈S
‖πûn(·|s)− πû∗n(·|s)‖21 ≤ 2A

ln(NS) + ln(8
δ)

T
,∀n ∈ [N],∀s ∈ S.

In summary, for (b) and (b̃), we conclude:

32

1. With probability at least 1− δ
4 , ∀n ∈ S, ‖θ(un)− θ(u∗n)‖2∞ ≤ 2µ2H2A

ln(NS)+ln(8
δ)

T .

2. With probability at least 1− δ
4 , ∀n ∈ S, ‖θ(û∗n)− θ(ûn)‖2∞ ≤ 2µ2H2A

ln(NS)+ln(8
δ)

T .

For (a) and (ã), we first introduce notation θn[h] = Es∼dπn
[
ζE(s, h(s))

]
, θ̂n[h] =

Es∼dπ̂n
[
ζE(s, h(s))

]
, where we recall that πn = πun , π̂n = πûn . Also, since gn[h] =

E(s,~c)∼Dn
[
~c(h(s))

]
, ĝn[h] = E(s,~c)∼D̂n

[
~c(h(s))

]
. Notice ∀n ∈ [N] and ∀h ∈ B, Egn[h] = θn[h]

and Eĝn[h] = θ̂n[h]. Since θn[h], θ̂n[h], gn[h], ĝn[h] are all in [−µ, µ]. We have by Hoeffding’s
Inequality, given any n ∈ [N] and h ∈ B,

1. With probability at least 1− δ
4NB , |gn[h]− θn[h]| ≤ 2µ

√
ln(NB)+ln(8

δ)

2K .

2. With probability at least 1− δ
4NB , |ĝn[h]− θ̂n[h]| ≤ 2µ

√
ln(NB)+ln(8

δ)

2K .

With union bound applied over [N] and all h ∈ B, we obtain

1. Event E3 happens with probability at least 1 − δ
4 , where E3 : ‖gn − θ(un)‖2∞ ≤

2µ2 ln(NB)+ln(8
δ)

K , ∀n ∈ [N].

2. Event E4 happens with probability at least 1 − δ
4 , where E4 : ‖θ(ûn) − ĝn‖2∞ ≤

2µ2 ln(NB)+ln(8
δ)

K , ∀n ∈ [N].

Finally, by the union bound, event E = E1 ∩E2 ∩E3 ∩E4 happens with probability at least 1− δ.
By combining the bounds on all terms we have, we obtain that when event E happens,

LRegN ≤µN

√
2A

ln(NS) + ln(8
δ)

T
+

1

η

√
2X ln(B)

+

N∑
n=1

(
ηAX‖gn − ĝn‖2∞ −

1

4ηAX
‖u∗n − û∗n‖21

)

≤µN

√
2A

ln(NS) + ln(8
δ)

T
+

1

η

√
2X ln(B)

+

N∑
n=1

(
ηAX · 5µ2H2‖u∗n − û∗n‖21 −

1

4ηAX
‖u∗n − û∗n‖21

)

+ ηAX

(
20NAµ2H2 ln(NS) + ln(8

δ)

T
+ 20µ2N

ln(NB) + ln(8
δ)

K

)
.

By setting η = 1
5µHAX , T = N2 ln(8NS/δ)

µHAX3 ln(B) and K = N ln(8NB/δ)

H2A
√
X3 ln(B)

, we cancel the terms related to

‖u∗n − û∗n‖21 and conclude with probability at least 1− δ,

LRegN ≤µA
√

2µHX3 ln(B) + (5 + 4 + 4) · µHA
√

2X3 ln(B) = O
(
µHA

√
X3 ln(B)

)
,

where µA
√

2µHX3 ln(B) is of lower order since µ ≤ H , and ηAX · 20NAµ2H2 ln(NS)+ln(8
δ)

T =
4µ2H2A2X3 ln(B)

N ≤ 4µHA
√

2X3 ln(B) is from N ≥ µHA
√
X3 ln(B).

Theorem 24 (Restatement of Theorem 11). Let N ≥ µHA
√
X3 ln(B). For any δ ∈ (0, 1],

LOGGER-ME, with MFTPL-EG setting its parameters as in Lemma 23, satisfies that: (1) with prob-
ability 1− δ, its output {πn}Nn=1 satisfies that: SRegN (B) ≤ O

(
µHA

√
X3 ln(B)

)
; (2) it queries

O

(
N2 ln(NB/δ)

H2A
√
X3 ln(B)

)
annotations from expert πE; (3) it calls the CSC oracleO forO

(
N3 ln(NS/δ)
µHAX3 ln(B)

)
33

times.
Specifically, LOGGER-ME achieves H

N SRegN (B) < ε with probability 1 − δ in 2N =

O

(
µH2A

√
X3 ln(B)

ε

)
interaction rounds, with Õ

(
µ2H2A ln(B/δ)

√
X3 ln(B)

ε2

)
expert annotations

and Õ
(
µ2H5A2 ln(S/δ)

√
X3 ln(B)

ε3

)
oracle calls.

Proof. Following the results in Lemma 23, for any δ ∈ (0, 1], MFTPL-EG, with the prescribed input
learning rate η, sparsification parameter T , and sample budget K, outputs a sequence of {un}Nn=1,
such that with probability at least 1− δ

3 ,

LRegN ≤ O
(
µHA

√
X3 ln(B)

)
.

By Proposition 6,LOGGER-ME with the prescribed sample budgetK = O

(
N ln(NB/δ)

H2A
√
X3 ln(B)

)
outputs

policies {πn}Nn=1 that satisfy with probability at least 1− δ,

SRegN (B) ≤ O
(
µHA

√
X3 ln(B)

)
+O

(
µ

√
N ln(B/δ)

K

)
= O

(
µHA

√
X3 ln(B)

)
,

where O
(
µ
√

N ln(B/δ)
K

)
= O

(
µH
√
A(X3 ln(B))

1
4

)
is of lower order.

Since at each round LOGGER-ME queries K = O

(
N ln(NB/δ)

H2A
√
X3 ln(B)

)
annotations from the expert

and calls MFTPL-EG once, where MFTPL-EG also queries K annotations, together for N rounds

LOGGER-ME calls O
(

N2 ln(NB/δ)

H2A
√
X3 ln(B)

)
annotations from the expert. Also, since MFTPL-EG calls

MFTPL twice, where MFTPL calls oracle T = O
(
N2 ln(NS/δ)
µHAX3 ln(B)

)
times, then N rounds together

LOGGER-ME calls oracle O
(
N3 ln(NS/δ)
µHAX3 ln(B)

)
times.

For the second part of the theorem, to guarantee H
N SRegN (B) ≤ ε, it suffices to let N =

O

(
µH2A

√
X3 ln(B)

ε

)
. The number of annotations and oracle calls follow from plugging this value

of N into their settings in the first part of the theorem.

E.3 Detailed comparisons between LOGGER-M, LOGGER-ME and behavior cloning

We first present a finite-sample analysis of behavior cloning by ERM on the benchmark policy class
in the following proposition.
Proposition 25 (Application of standard agnostic ERM [58]). For B that contains finite (e.g. B)
deterministic policies h : S → A and deterministic expert policy πE , recall Bias(B, {πE}, 1) =
minπ∈B Es∼dπE

[
I(h(s) 6= πE(s))

]
. Consider dataset D = {(sk, πE(sk))}Kk=1, where sk ∼ dπE .

The output π̂ from running ERM on D satisfy with probability 1− δ,

J(π̂)− J(πE) ≤ H2 · Bias(B, {πE}, 1) +H2

√
2(ln(B) + ln(2

δ))

K
.

Proof. By standard analysis of ERM for agnostic learning (e.g. [58]), we have with probability 1− δ,

Es∼dπE
[
I(h(s) 6= πE(s))

]
≤min
π∈B

Es∼dπE
[
I(h(s) 6= πE(s))

]
+

√
2(ln(B) + ln(2

δ))

K

=Bias(B, {πE}, 1) +

√
2(ln(B) + ln(2

δ))

K
.

34

Table 3: A comparison between our algorithms and the behavior cloning. Here Õ(N) denotes
O(N ln(N)).

Algorithm Bias Term # Interaction Rounds I(ε)

MFTPL µH · Bias(B,ΠB, N) O

(
µ2H2A ln(1/δ)

√
X3 ln(B)

ε2

)
MFTPL-EG µH · Bias(B,ΠB, N) O

(
µH2A

√
X3 ln(B)

ε

)
Behavior Cloning H2 · Bias(B, {πE}, 1) 1

Algorithm # Expert Annotations A(ε) # Oracle Calls C(ε)

MFTPL O

(
µ2H2A ln(1/δ)

√
X3 ln(B)

ε2

)
Õ

(
µ4H4A2 ln(S/δ)(ln(1/δ))

2√
X3 ln(B)

ε4

)
MFTPL-EG Õ

(
µ2H2A ln(B/δ)

√
X3 ln(B)

ε2

)
Õ

(
µ2H5A2 ln(S/δ)

√
X3 ln(B)

ε3

)
Behavior Cloning O

(
H4 ln(B/δ)

ε2

)
1

By the performance difference lemma 55, we have

J(πE)− J(π̂) = H · Es∼dπE
[
Aπ̂(s, πE(s))

]
,

where Aπ̂(s, πE(s)) = Qπ̂(s, πE(s)) − Vπ̂(s). By the fact that Aπ̂ is bounded in [−H,H] and
Aπ̂(s, π̂(s)) = 0, we have

J(π̂)− J(πE) =H · Es∼dπE
[
−Aπ̂(s, πE(s))

]
≤H · Es∼dπE

[
H · I(h(s) 6= πE(s))

]
≤H2 · Bias(B, {πE}, 1) +H2

√
2(ln(B) + ln(2

δ))

K
,

which concludes the proof.

We now summarize the policy suboptimality guarantees of LOGGER-M, LOGGER-ME and behavior
cloning in Table 3, based on Theorems 21, 24, and Proposition 25; this extends Table 1 in the main
text. In addition to the main observations made in Section 4, we see that LOGGER-ME has a factor of
O(ln(B)) higher sample complexity A(ε) than LOGGER-M. In addition, in terms of the dependence
on X and ln(B), the sample complexity of behavior cloning A(ε) has a ln(B) dependence, which is
better than LOGGER-M’s

√
X3 ln(B) and LOGGER-ME’s

√
X3(ln(B))3. It would be interesting

to design interactive imitation learning algorithms with sample complexity that only has a O(ln(B))
dependence, by relaxing the small separator set assumption on B.

F Deferred materials from Section 5

In this section, we present the proof of Theorem 12. To this end, we will show that obtaining a
sublinear dynamic regret guarantee in the LOGGER framework is as hard as computing an approximate
mixed Nash equilibrium of a two-player general-sum game. This is achieved by using polynomial
time reduction, where we use Y ≤p X to denote that problem Y is polynomial-time reducible to
problem X . To facilitate our discussions, we start with some problem definitions.

F.1 Preliminaries for two-player general-sum games

A two-player general-sum game [39], also known as bimatrix game, is a non-cooperative game
between two players where they can choose actions (or strategies) from set Ax, Ay that contain
Ax, Ay choices and gain reward from payoff matrices V,W ∈ RAx×Ay , respectively. We say a

35

bimatrix game (V,W) is positivly normalized if V,W ∈ [0, 1]Ax×Ay . Note that we use Vij ,Wij

(i ∈ [Ax], j ∈ [Ay]) to index each element in matrix V and W . In the bimatrix game, if the first
player plays the i-th action and the second player plays the j-th action, they receive payoffs Vi,j and
Wi,j respectively. Define mixed strategies probability distribution on action sets. The two players
are allowed to play x ∈ ∆(Ax) and y ∈ ∆(Ay) that corresponds to the mixed strategies on set Ax
and Ay, and their payoffs are x>V y and x>Wy respectively. A Nash equilibrium of a bimatrix
game (V,W) is a pair (x, y), where x ∈ ∆(Ax), y ∈ ∆(Ay), and no player can gain more payoff by
changing x or y alone. A relaxed notion, ε-approximate 2-player Nash equilibrium is defined below.

Definition 26 (ε-approximate 2-player Nash equilibrium). For ε ≥ 0, an ε-approximate 2-player Nash
equilibrium (x̂, ŷ) for a bimatrix game (V,W) satisfies that for any x ∈ ∆(Ax) and y ∈ ∆(Ay),{

x̂>V ŷ ≥ x>V ŷ − ε,
x̂>Wŷ ≥ x̂>Wy − ε,

where x̂ ∈ ∆(Ax), ŷ ∈ ∆(Ay), and V,W ∈ RAx×Ay .

In other words, at (x̂, ŷ), by changing a players’ mixed strategies unilaterally, the increase of her
payoff is smaller than ε. We consider a search problem of finding an approximate 2-player Nash
equilibrium:

POLY12-BIMATRIX:
Input: A positively normalized bimatrix game (V,W), where V,W ∈ [0, 1]m×m, m ∈ N.
Output: An m−12-approximate 2-player Nash equilibrium of (V,W).

It is well-known that POLY12-BIMATRIX is a total search problem (i.e. any POLY12-BIMATRIX
instance has a solution). Furthermore, it is PPAD-complete [13, 22], which means that for any
problem Y in PPAD, Y ≤p POLY12-BIMATRIX. PPAD-complete is a computational complexity
class believed to be computationally intractable.

F.2 A related variational inequality problem

The Variational Inequality (VI) formulation serves as a tool to address equilibrium problems. In this
subsection, we intoduce a VI problem, which is shown to bridge POLY12-BIMATRIX and achieving
sublinear dynamic regret in the LOGGER framework in the following subsections.

Definition 27 (Variational inequality). Given Ω ⊂ Rd and a vector field F : Ω → Rd, define
VI(Ω,F) , the variational inequality problem induced by (Ω,F) as finding u∗ ∈ Ω, such that

∀u ∈ Ω,
〈
F(u∗), u− u∗

〉
≥ 0.

Definition 28 (ε-approximate solution of variational inequality). u∗ ∈ Ω is said to be an ε-
approximate solution of VI(Ω,F) if

∀u ∈ Ω,
〈
F(u∗), u− u∗

〉
≥ −ε.

Given a discrete state-action episodic MDP M, expert feedback ζE and deterministic policy
class B, where |B| = B, Section 3 defines a vector field θ : ∆(B) → RB , where θ(u) :=(
Es∼dπuEa∼h(·|s)

[
ζE(s, a)

])
h∈B

and πu(·|s) :=
∑
h∈B u[h] · h(·|s). Setting Ω = ∆(B) ⊂ RB

and F = θ, we obtain a variational inequality problem, which, as we see next, is tightly connected
with the dynamic regret minimization problem in the LOGGER framework.

Note that in the LOGGER framework, if an algorithm at some round n outputs a πn := πun ∈ ΠB
that achieves a low instant dynamic regret guarantee: Fn(πn) − minπ∈B Fn(π) ≤ ε, by the fact
that Fn(πu) =

〈
θ(un), u

〉
, we obtain

〈
θ(un), un

〉
− min
u∈∆(B)

〈
θ(un), u

〉
≤ ε, which is equivalent to

∀u ∈ ∆(B),
〈
θ(un), u− un

〉
≥ −ε. This implies un is a ε-approximate solution of VI(∆(B), θ).

This motivates the following search problem of finding an ε-approximate solution of VI(∆(B), θ):

36

POLY6-VI-MDP:
Input: Discrete state-action episodic MDP M = (S,A, H, c, ρ, P), expert feedback
ζE : S ×A → R, deterministic policy class B.
Output: A (S + A + B)−6-approximate solution of VI(∆(B), θ), where S = |S|, A =
|A|, B = |B|.

For the remainder of this section, we first establish a reduction from POLY12-BIMATRIX to
POLY6-VI-MDP. Then, we show that an efficient algorithm that achieves sublinear dynamic regret
in the LOGGER framework yields an efficient procedure for solving POLY6-VI-MDP, and thus, all
PPAD problems are solvable in randomized polynomial time.

Before diving into the reduction, we first prove that any POLY6-VI-MDP instance has a solution.

Lemma 29. POLY6-VI-MDP is a total search problem, i.e., any POLY6-VI-MDP problem instance
has a solution.

Proof. Theorem 3.1 in [26] says that, for any nonempty, convex and compact subset Ω ⊂ Rn and
continuous mapping F : Ω→ Rn, there exists an exact solution to the VI(Ω,F). Then, it suffices to
show that Ω = ∆(B) and F = θ satisfy these requirements.

First of all, by lemma 10, for any u, v ∈ ∆(B), ‖θ(u)− θ(v)‖∞ ≤ µH‖u− v‖1, which implies θ(·)
is a continuous mapping. Secondly, since it is easy to verify that ∆(B) is a convex set, it remains to
show the compactness of ∆(B). By the Heine–Borel theorem, a subset in RB is compact if and only
if it is closed and bounded. Then, it suffices to show ∆(B) is closed and bounded. It can be seen
that, ∆(B) :=

{
u ∈ RB | u � 0,

∑
h∈B u[h] = 1

}
is closed, being the intersection of closed sets,

namely the orthant RB+ and the hyperplane
{
u ∈ RB |

∑
h∈B u[h] = 1

}
. Also, ∆(B) is a subset of

the hypercube [0, 1]B , and is therefore bounded. Combining the above, we conclude the proof.

F.3 POLY6-VI-MDP is PPAD-hard

Theorem 30. POLY6-VI-MDP is PPAD-hard.

Proof. Since POLY12-BIMATRIX is PPAD-complete by [14], we show POLY6-VI-MDP is PPAD-
hard by proving POLY12-BIMATRIX ≤p POLY6-VI-MDP. Our proof is organized as follows: First,
we describe map f that maps an instance of POLY12-BIMATRIX to an instance of POLY6-VI-MDP,
and map g that maps a solution of POLY6-VI-MDP to a solution of POLY12-BIMATRIX. Then, we
prove that f and g run in polynomial time and satisfy:

1. If (V,W) is an input of POLY12-BIMATRIX, then f(V,W) is an input of POLY6-VI-MDP.
2. If u∗ is a solution of POLY6-VI-MDP instance f(V,W), then g(u∗) is also a solution of

POLY12-BIMATRIX instance (V,W).
3. If no u is a solution of POLY6-VI-MDP instance f(V,W), then no (x, y) a solution of

POLY12-BIMATRIX instance (V,W).

Map f. Given any POLY12-BIMATRIX instance (V,W) where V,W ∈ [0, 1]m×m we construct a
POLY6-VI-MDP instance where the MDPM can be viewed as a three-layer tree (whose details will
be given shortly), and every non-leaf node in theM has A = 2m+ 1 children. See Figure 2.

Figure 2: The MDPM constructed in our reduction.

37

Formally, layered MDPM has episode length H = 3 with initial state S1 = {S0}, A states at the
second time step denoted as S2 = {S1, S2, · · ·SA}, and A2 states at the third time step denoted as
S3 = {S1,1, S1,2, · · ·S1,A, S2,1, · · · , SA,A}. We define state space S = S1 ∪S2 ∪S3. Define action
space A = {a1, a2, · · · , aA}, initial distribution ρ(S0) = 1 and deterministic transition dynamics
P1(Si|S0, ai) = 1, P2(Si,j |Si, aj) = 1 for all i, j ∈ [A]. Define cost function c(s, a) := c̄(s),
where5

c̄(s) :=

0, s ∈ S1 ∪ S2

0, s = Si,j ,where i = A or j = A
−Vj,i, s = Si,j ,where i ∈ [m] +m, j ∈ [m]
−Wi,j , s = Si,j ,where i ∈ [m], j ∈ [m] +m
λ, otherwise

where we denote [m] +m := {m+ 1, · · · , 2m} and set λ = 54.

On the policy side, we define benchmark policy class B that contains A − 1 = 2m deterministic
policies hj (j ∈ [A− 1]), such that ∀s ∈ S, hj(s) = aj . Define deterministic expert policy πE as:
πE(s) = aA, ∀s ∈ S. Note that action aA is never a choice for policies in B but always chosen by
the expert. Recall the mixed policy set ΠB is defined as

ΠB :=

πu(·|s) :=
∑
h∈B

u[h] · h(·|s) : u ∈ ∆(B)

 .

For the expert feedback function ζE , we use advantage function AE(s, a) = QπE (s, a)− VπE (s).
The values of AE(s, a) are calculated as follows:

• For s in S3: since for every a, QπE (s, a) = c(s, a) = c̄(s) = 0, we have AE(s, a) = 0.
• For s in S2:

– First, suppose s = Si for i ∈ {1, . . . , A− 1}. Following πE directs the agent to Si,A,
which encounters zero subsequent cost. This implies that VπE (Si) = 0. On the other
hand, taking action aj transitions to Si,j which encounters cost c̄(Si,j) subsequently. This
means that AE(Si, aj) = c̄(Si,j). Recall that ∀i ∈ [A] c̄(Si,A) = 0, by this we have that
AE(Si, aA) = 0 for all S ∈ S2.

– Next, suppose s = SA. Taking any action a and following policy πE afterwards encounters
zero subsequent cost, which implies that QπE (SA, a) = 0. This implies that VπE (SA) = 0
and AE(SA, a) = 0.

• For s in S1: at the initial state S0, taking any action a and following πE afterwards takes
the agents to state Si,A for some i, which has zero cost. This implies that QπE (SA, a) = 0,
VπE (SA) = 0, and AE(SA, a) = 0.

In summary, we have

ζE(s, a) := AE(s, a) =

0, s ∈ S1 ∪ S3 or s = SA or a = aA
−Vj,i, s = Si, a = aj ,where i ∈ [m] +m, j ∈ [m]
−Wi,j , s = Si, a = aj ,where i ∈ [m], j ∈ [m] +m
λ, otherwise

In summary, given any POLY12-BIMATRIX instance (U, V), f returns a POLY6-VI-MDP instance
(M, ζE ,B).

Map g. The map g is defined as: given u∗ = (u∗x, u
∗
y) ∈ ∆(B), return

x̂ =
u∗x
‖u∗x‖1

, ŷ =
u∗y
‖u∗y‖1

.

Polynomial-time computability of the reduction. For map f, given any POLY12-BIMATRIX
instance (V,W) with V,W ∈ [0, 1]m×m, map f(V,W) returns (M, ζE ,B), where M =

5Strictly speaking, the cost should be within [0, 1]; this can be achieved by shifting the cost function by 1
and dividing by λ+ 1. Without affecting the correctness of the proof, we set the cost this way for the simplicity
of presentation.

38

(S,A, H, c, ρ, P) has |S| = (2m + 1)2 + (2m + 1) + 1 = O(m2) states, |A| = 2m + 1 = O(m)
actions, H = 3, |S| · |A| = O(m3) cost function values, (2m + 2)(2m + 1) = O(m2) values for
the deterministic transition probability and one fixed initial distribution. Meanwhile, map f returns
2m deterministic benchmark policies and ζE function with |S| · |A| = O(m3) values. Combining
the above, we conclude that f runs in O(m3) time.

For map g, by its definition, it can be computed in O(m) time. In all, f and g are computable in
polynomial-time with respect to m.

Correctness of the reduction.

1. If (V,W) is a valid input of POLY12-BIMATRIX, then V,W ∈ [0, 1]m×m. Given any V,W ∈
[0, 1]m×m, by the definition of f, it is straightforward to see f constructs an discrete state-action
episodic MDP with expert feedback ζE : S ×A → R and deterministic policy class B. Thus,
f(V,W) is a valid input of POLY6-VI-MDP.

2. By Lemma 31 (given below), if u∗ is a solution of POLY6-VI-MDP instance f(V,W), then
g(u∗) is also a solution of POLY12-BIMATRIX instance (V,W).

3. By Lemma 29, any POLY6-VI-MDP instance has a solution.

In conclusion, POLY12-BIMATRIX ≤p POLY6-VI-MDP, thus POLY6-VI-MDP is PPAD-hard.

Lemma 31. g(u∗) is a solution of POLY12-BIMATRIX instance (V,W) if u∗ is a solution of
POLY6-VI-MDP instance f(V,W).

Proof. Recall that u∗ the solution of a POLY6-VI-MDP instance (M, ζE ,B) satisfies ∀u ∈ ∆(B),〈
θ(u∗), u− u∗

〉
≥ −(S + A + B)−6, where S = |S|, A = |A|, B = |B|. The proof follows by

first calculating vector field θ(u) induced by (M, ζE ,B), and then showing that g(u∗) is a solution
of the original POLY12-BIMATRIX instance (V,W) if u∗ is a solution of POLY6-VI-MDP instance
f(V,W).

To begin with, given V,W ∈ [0, 1]m×m we calculate θ in the POLY6-VI-MDP instance f(V,W).
We have by definition in Section 3, ∀u ∈ ∆(B),

θ(u) =
(
Es∼dπuEa∼hj(·|s)

[
ζE(s, a)

])
hj∈B

=
1

3

(
Es∼d2πu

[
ζE(s, hj(s))

])
hj∈B

,

where in the second equality we recall that d2
πu denotes the state occupancy distribution at the second

step and dπu = 1
3 (d1

πu + d2
πu + d3

πu). The second equality is by the fact that ζE(s, a) is always 0
when s ∈ S1 ∪ S3.

Recall that hj(s) = aj and B = 2m as defined in the proof of Theorem 30, it can be verified that
πu(·|s) =

∑
j∈[2m] u[j] · hj(·|s) = (u[1], u[2], · · · , u[2m], 0)> , where the last entry is 0 since the

last action is never chosen by any hj ∈ B. We can calculate its state occupancy distribution at step 2
as: Prs∼d2πu (s = Si) = u[i] for i ∈ [2m] and Prs∼d2πu (s = SA) = 0. Therefore, ∀j ∈ [2m],

Es∼d2πu
[
ζE(s, aj)

]
=

2m∑
i=1

u[i]ζE(Si, aj).

For any u ∈ ∆(B), we use ux, uy to denote the vector that consists of the first m elements and the
last m elements of u respectively. Given V,W ∈ [0, 1]m×m, define matrix

C :=

(
λ1m×m −V
−W> λ1m×m

)
∈ R2m×2m,

where 1m×m denotes the matrix whose entries are all 1’s. Notice that by the value of ζE calculated
in the proof of Theorem 30, it can be verified that ∀i ∈ [2m],∀j ∈ [2m], ζE(Si, aj) = Ci,j . With
this, θ(u) can be written in matrix form:

θ(u) =
1

3

 2m∑
i=1

u[i]ζE(Si, aj)

j∈[2m]

=
1

3

(
λ1m×m −V
−W> λ1m×m

)
·
(
ux
uy

)
=

1

3
Cu. (11)

39

Therefore, the constructed discrete state-action episodic MDPM, expert feedback ζE and benchmark
policy class B induces the following instance of POLY6-VI-MDP: find u∗ ∈ ∆(B) such that
∀u ∈ ∆(B),〈

θ(u∗), u− u∗
〉

=

〈
1

3
Cu∗, u− u∗

〉
≥ −(S +A+B)−6 = −(4m2 + 10m+ 4)−6, (12)

where we recall that S = (2m+ 1)2 + (2m+ 1) + 1, A = 2m+ 1, and B = 2m.

Next, we show that g(u∗) is a solution of POLY12-BIMATRIX instance (V,W). Recall that in
Section F.1, given V,W ∈ [0, 1]m×m, the mixed strategies on set Ax and sets Ay and |Ax| =
|Ay| = m are represented by x ∈ ∆(Ax) and y ∈ ∆(Ay), respectively. If (x̂, ŷ) ∈ ∆(Ax)×∆(Ay)
is a solution of POLY12-BIMATRIX instance (V,W), then (x̂, ŷ) satisfies for any x ∈ ∆(Ax) and
y ∈ ∆(Ay), {

x̂>V ŷ ≥ x>V ŷ −m−12,

x̂>Wŷ ≥ x̂>Wy −m−12.

Now, consider u∗ = (u∗x, u
∗
y) ∈ ∆(B), a solution for POLY6-VI-MDP instance f(V,W), such that

∀u ∈ ∆(B), 〈
θ(u∗), u− u∗

〉
≥ −(4m2 + 10m+ 4)−6 = −ε,

where we use ε to denote (4m2 + 10m+ 4)−6.

We will show that (x̂, ŷ) = g(u∗) = (
u∗x
‖u∗x‖1

,
u∗y
‖u∗y‖1

) is a solution of POLY12-BIMATRIX instance
(V,W). To see this, we first prove that ∀x ∈ ∆(Ax),

x̂>V ŷ ≥ x>V ŷ −m−12. (13)

To this end, ∀x ∈ ∆(Ax), by setting u = (‖u∗x‖1 · x, u∗y) ∈ ∆(B) and plugging this choice of u into
Equation (12), we have

−ε ≤
〈

1

3
Cu∗, u− u∗

〉
=
‖u∗x‖1

3

(
(x− x̂)>,0>

)(λ1m×m −V
−W> λ1m×m

)
·
(
u∗x
u∗y

)
=
‖u∗x‖1

3

(
λ(x− x̂)>1m×mu

∗
x − (x− x̂)>V u∗y

)
=
λ‖u∗x‖1

3
0>u∗x −

‖u∗x‖1
3

(x− x̂)>V u∗y

=−
‖u∗x‖1‖u∗y‖1

3
(x− x̂)>V ŷ,

where we use 0 to denote the all 0 vector in Rm. Combining ‖u∗x‖1 · ‖u∗y‖1 ≥ 2
9 as shown later by

Lemma 32, we obtain

x>V ŷ − x̂>V ŷ ≤ 3

‖u∗x‖1‖u∗y‖1
ε ≤ 27

2
ε =

27

2(4m2 + 10m+ 4)6
≤ m−12.

This establishes Equation (13). Using a symmetrical argument, for any y ∈ ∆(Ay), by taking
u = (u∗x, ‖u∗y‖1 · y), we can also show that ∀y ∈ ∆(Ay),

x̂>Wŷ ≥ x̂>Wy −m−12. (14)

Combining Equations (13) and (14), we conclude that (x̂, ŷ) is a solution of POLY12-BIMATRIX
instance (V,W).

Lemma 32. ∀V,W ∈ [0, 1]m×m, if u∗ = (u∗x, u
∗
y) is a solution of POLY6-VI-MDP instance

f(V,W), then

‖u∗x‖1 · ‖u∗y‖1 ≥
2

9
.

40

Proof. The lemma is proved by showing ∀ V,W ∈ [0, 1]m×m, ∀u = (ux, uy) ∈ ∆(B) such that
‖ux‖1 /∈ (1

3 ,
2
3), for any v = (vx, vy) ∈ ∆(B) that satisfies ‖vx‖1 = ‖vy‖1 = 1

2 ,〈
θ(u), v − u

〉
≤ −1

3
< −(4m2 + 10m+ 4)−6,

where we recall the definition of θ(·) from Equation (11). This implies u∗ = (u∗x, u
∗
y) the solution of

POLY6-VI-MDP instance f(V,W) satisfies ‖u∗x‖1, ‖u∗x‖1 ∈ [1
3 ,

2
3], ∀ V,W ∈ [0, 1]m×m. Finally, it

can be easily verified that ∀ a, b ∈ [1
3 ,

2
3], ab ≥ 2

9 .

By the alternative expression of θ(·) shown in Equation (11), we can write
〈
θ(u), u

〉
and

〈
θ(u), v

〉
with u = (ux, uy) and v = (vx, vy) as:〈

θ(u), u
〉

=
1

3
(−u>x V uy − u>xWuy + λ(‖ux‖21 + ‖uy‖21)),〈

θ(u), v
〉

=
1

3
(−v>x V uy − u>xWvy + λ(‖ux‖1‖vx‖1 + ‖uy‖1‖vy‖1)).

By algebra, ∀ x ∈ ∆(Ax), ∀ y ∈ ∆(Ay) for |Ax| = |Ay| = m, ∀ V,W ∈ [0, 1]m×m, 0 ≤
x>V y, x>Wy ≤ 1, then〈

θ(u), v − u
〉

=
1

3

(
u>x V uy + u>xWuy − v>x V uy − u>xWvy

)
+

1

3

(
λ‖ux‖1(‖vx‖1 − ‖ux‖1) + λ‖uy‖1(‖vy‖1 − ‖uy‖1)

)
≤2

3
+ 18

(
‖ux‖1(‖vx‖1 − ‖ux‖1) + ‖uy‖1(‖vy‖1 − ‖uy‖1)

)
,

where we recall that λ = 54. Therefore, consider ‖ux‖ /∈ (1
3 ,

2
3) and any v such that ‖vx‖ = ‖vy‖ =

1
2 , we have:

‖ux‖1(‖vx‖1 − ‖ux‖1) + ‖uy‖1(‖vy‖1 − ‖uy‖1)

=‖ux‖1(
1

2
− ‖ux‖1) + ‖uy‖1(

1

2
− ‖uy‖1)

=− 2(‖ux‖1 −
1

2
)2 < − 1

18
.

Plugging this back, we conclude that ∀u = (ux, uy) ∈ ∆(B) such that ‖ux‖ /∈ (1
3 ,

2
3), for any

v = (vx, vy) ∈ ∆(B) such that ‖vx‖ = ‖vy‖ = 1
2 ,〈

θ(u), v − u
〉
≤ 2

3
− 1 = −1

3
.

F.4 Computational hardness of achieving sublinear dynamic regret in LOGGER

Theorem 33 (Restatement of Theorem 12). Fix γ > 0, if there exist a COIL algorithm such that for
anyM and expert πE , it interacts withM, CSC oracle O, expert feedback ζE(s, a) = AE(s, a),
and outputs a sequence of {πun}

N
n=1 ∈ ΠB such that with probability at least 1

2 ,

DRegN (B) ≤ O(poly(S,A,B) ·N1−γ),

in poly(N,S,A,B) time, then all problems in PPAD are solvable in randomized polynomial time.

Proof. We start the proof by showing if there exists a COIL algorithm Alg1 that achieves
p(S,A,B)N1−γ dynamic regret with probability 1

2 in time q(N,S,A,B), where p and q are poly-
nomial functions, then, Alg1 yields an algorithm Alg1′ (Algorithm 5) that solves POLY6-VI-MDP
with expected polynomial time poly(S,A,B).

Correctness. As Alg1′ return only if un is an (S+A+B)−6-approximate solution of VI(∆(B), θ),
it solves the POLY6-VI-MDP problem.

41

Algorithm 5 Alg1′

1: while true do
2: Run Alg1 on M, B, ζE , O for N = (p(S,A,B) · (S + A + B)6)

1
γ rounds, obtaining a

sequence of policies {πn}Nn=1 parameterized by {un}Nn=1.
3: If any of un is a (S +A+B)−6-approximate solution of VI(∆(B), θ), return un.
4: end while

Time complexity. We now bound the time complexity of Alg1′. Note that Alg1′ sets Alg1 with
N = (p(S,A,B) · (S + A + B)6)

1
γ = poly(S + A + B), and Alg1 has a running time of

poly(N,S,A,B) = poly(S,A,B), together, each iteration of Alg1′ takes poly(S,A,B) time.

We now show that Alg1′ runs for an expected number of iterations at most a constant. Specifically,
the guarantees of Alg1 implies that for each iteration, with probability at least 1

2 ,

DRegN (B)({πun}
N
n=1) =

N∑
n=1

Fn(πun)−min
π∈B

Fn(π)

=

N∑
n=1

〈
θ(un), un

〉
− min
u∈∆(B)

〈
θ(un), u

〉
=

N∑
n=1

max
u∈∆(B)

〈
θ(un), un − u

〉
≤f(S,A,B) ·N1−γ ,

where the first equality is from the definition of dynamic regret in Section 2, and the second is
by Fn(πu) =

〈
θ(un), u

〉
. In this event, since N = (p(S,A,B) · (S + A + B)6)

1
γ , we have that

∃n ∈ [N] s.t.

max
u∈∆(B)

〈
θ(un), un − u

〉
≤ p(S,A,B) ·N−γ = (S +A+B)−6,

which means un is a solution of POLY6-VI-MDP instance (M, ζE ,B). Hence, the expected number
of iterations of running Alg1 before a valid solution being returned is smaller or equal to

∑∞
t=0

(
1
2

)t
=

2. Thus, the expected running time of Alg1′ is O(poly(S +A+B)).

By Theorem 30, all problems in PPAD are polynomial-time reducible to POLY6-VI-MDP. If there
exist a COIL algorithm Alg1 that achieves sublinear dynamic regret in LOGGER, then Alg1′ can be
constructed to solve POLY6-VI-MDP in randomized polynomial time, which means all problems in
PPAD are solvable in randomized polynomial time.

G Online linear optimization results

In this section, we first provide a recap on online linear optimization, the well-known Optimistic
Follow the Regularized Leader (FTRL) algorithm (Algorithm 6) [51], and its regret guarantees
(Theorem 42). Section G.3 instantiates this general result with the regularizer RN (Equation (5))
defined in Section E.1.

G.1 Basic facts on convex analysis

Before we delve into the optimistic FTRL algorithm, we state some useful definitions and facts from
convex analysis.
Definition 34. For a differentiable convex function f : Rd → R, define Df (v, w) = f(v)− f(w)−〈
v − w,∇f(w)

〉
to be the Bregman divergence induced by f .

Definition 35. Given a convex function f : Rd → R ∪ {+∞}, where Ω ⊆ Rd, define f∗ : Rd →
R ∪ {+∞} as f∗(θ) := supw∈Rd

(
〈θ, w〉 − f(w)

)
to be its Fechel conjugate.

Definition 36. A convex function f : Rd → R∪ {+∞} is proper if it is not identically equal to +∞.

42

Definition 37. A function f : Rd → R∪{+∞} is α-strongly convex w.r.t. a norm ‖ · ‖ if for all v, w
in the relative interior of the effective domain of f and λ ∈ (0, 1) we have

f(λv + (1− λ)w) ≤ λf(v) + (1− λ)f(w)− 1

2
αλ(1− λ)‖v − w‖2.

Definition 38. A function f : Rd → R is β-strongly smooth w.r.t. a norm ‖ · ‖ if f is everywhere
differentiable and if for all v, w ∈ Rd we have

f(v + w) ≤ f(v) + 〈∇f(v), w〉+
1

2
β‖w‖2.

Definition 39. For a convex function f : Rd → R ∪ {+∞}, define its effective domain dom(f) :={
w ∈ Rd : f(w) < +∞

}
.

Note that the effective domain of a strongly smooth function f satisfies dom(f) = Rd.

Fact 40. Let f : Rd → R ∪ {+∞} be a proper, closed and convex function, then:

1. f∗ is closed and convex ([53, Theorem 12.2]);
2. f∗∗ = f ([53, Corollary 12.2.1]);
3. θ ∈ ∂f(w)⇔ f(w)+f∗(θ) = 〈θ, w〉 ⇔ w ∈ ∂f∗(θ), where ∂g(w) denotes g’s subdifferential

set at w ([73, Theorem 2.4.2]);
4. f is α-strongly convex with respect to a norm ‖ · ‖ if and only if f? is 1

α -strongly smooth with
respect to the dual norm ‖ · ‖? ([35, Theorem 3]).

Proposition 41. Let f : Rd → R ∪ {+∞} be proper, closed and α-strongly convex with respect to
‖ · ‖, then f∗ is differentiable, and∇f∗(θ) = argmaxw∈dom(f)

(
〈θ, w〉 − f(w)

)
.

Proof sketch. Given a function f that is proper, closed and strongly convex, define f1 : dom(f)→ R,
where f1(w) := f(w) on dom(f). It can be seen that f1 : Ω→ R is closed and strongly convex. It
can be checked that f∗(θ) = supw∈Rd

(
〈θ, w〉 − f(w)

)
= supw∈dom(f)

(
〈θ, w〉 − f(w)

)
= f∗1 (θ)

where f∗1 is defined using the notations in [57]. The proposition follows from [57, Lemma 15].

G.2 General results on FTRL and Optimistic FTRL

Online linear optimization refers to the following N -round protocol: the learner is given a convex
decision set Ω ⊂ Rd. At every round n ∈ [N], the learner chooses some decision un ∈ Ω, and then
receives a linear loss 〈gn, ·〉, where gn ∈ Rd. The goal of the learner is to minimize its regret on this
sequence of linear losses:

LRegN :=

N∑
n=1

〈gn, un〉 −min
u∈Ω

N∑
n=1

〈gn, u〉 .

Optimistic FTRL (Algorithm 6), works for online linear optimization with a general decision set Ω.
It takes into input a strongly convex regularizer R with effective domain Ω and a learning rate η > 0.
It maintains the cumulative linear loss Θn =

∑n
i=1 gi over time (line 6); at round n, it first uses a

predicted instantaneous loss ĝn to construct a guess on the cumulative loss Θ̂n (line 3), then chooses
the decision un that minimizes the regularized guessed cumulative linear loss η〈Θ̂n, u〉 + R(u)

(line 4), which by Proposition 41, has an equivalent form of ∇R∗(−ηΘ̂n). We have the following
guarantee on the regret of Optimistic FTRL; it is largely inspired by and slightly generalizes the
results of [59, 2, 51].

Theorem 42. Let R : Rd → R ∪ {+∞} be a closed and α-strongly convex function with respect to
‖ · ‖, such that Ω = dom(R). The linear regret of Optimistic FTRL with R and learning rate η > 0,

43

Algorithm 6 Optimistic FTRL
Require: Convex decision set Ω ⊆ Rd, regularizer R that is closed and α-strongly convex with

bounded dom(R) = Ω, learning rate η > 0.
1: Initialize Θ0 = 0.
2: for n = 1, 2, . . . , N do
3: The learner makes prediction ĝn, Θ̂n = Θn−1 + ĝn .
4: The learner plays un = argminu∈Ω

(
η〈Θ̂n, u〉+R(u)

)
= ∇R∗(−ηΘ̂n) .

5: The learner receives real loss gn.
6: Update Θn = Θn−1 + gn .
7: end for

satisfies the following:

LRegN ≤
supw∈ΩR(w)− infw∈ΩR(w)

η
+

1

η

N∑
n=1

DR∗

(
−ηΘn,−ηΘ̂n

)
︸ ︷︷ ︸

divergence penalty

−DR∗

(
−ηΘn−1,−ηΘ̂n

)
︸ ︷︷ ︸

prediction gain

(15)

≤
supw∈ΩR(w)− infw∈ΩR(w)

η
+

N∑
n=1

η‖ĝn − gn‖2∗
2α

− α

2η
‖∇R∗(−ηΘn−1)−∇R∗(−ηΘ̂n)‖2.

(16)

Specifically, if ĝn = 0 for all n,

LRegN ≤
supw∈ΩR(w)− infw∈ΩR(w)

η
+

N∑
n=1

η‖gn‖2∗
2α

.

Proof. By the definition of Bregman divergence, we have
DR∗(−ηΘn,−ηΘ̂n) = R∗(−ηΘn)−R∗(−ηΘ̂n)−

〈
−ηΘn + ηΘ̂n,∇R∗(−ηΘ̂n)

〉
,

DR∗(−ηΘn−1,−ηΘ̂n) = R∗(−ηΘn−1)−R∗(−ηΘ̂n)−
〈
−ηΘn−1 + ηΘ̂n,∇R∗(−ηΘ̂n)

〉
.

By rearranging the terms, the two equations can be rewritten as
〈
ηΘn − ηΘ̂n,∇R∗(−ηΘ̂n)

〉
= −R∗(−ηΘn) +R∗(−ηΘ̂n) +DR∗(−ηΘn,−ηΘ̂n),

−
〈
ηΘn−1 − ηΘ̂n,∇R∗(−ηΘ̂n)

〉
= R∗(−ηΘn−1)−R∗(−ηΘ̂n)−DR∗(−ηΘn−1,−ηΘ̂n).

By adding the two equations and recall that Θn = Θn−1 + gn and un = ∇R∗(−Θ̂n), we can write

η 〈gn, un〉 =
〈
ηΘn − ηΘn−1,∇R∗(−ηΘ̂n)

〉
=R∗(−ηΘn−1)−R∗(−ηΘn) +DR∗(−ηΘn,−ηΘ̂n)−DR∗(−ηΘn−1,−ηΘ̂n).

Summing over n = 1, . . . , N , we have

η

N∑
n=1

〈gn, un〉 = R∗(0)−R∗(−ηΘN) +

N∑
n=1

(
DR∗(−ηΘn,−ηΘ̂n)−DR∗(−ηΘn−1,−ηΘ̂n)

)
.

44

Therefore, we can bound ηLRegN as:

ηLRegN =

N∑
n=1

η 〈gn, un〉 −min
u∈Ω

N∑
n=1

〈ηgn, u〉

= −min
u∈Ω
〈ηΘN , u〉+R∗(0)−R∗(−ηΘN) +

N∑
n=1

(
DR∗(−ηΘn,−ηΘ̂n)−DR∗(−ηΘn−1,−ηΘ̂n)

)
= max

u∈Ω
〈−ηΘN , u〉 −R∗(−ηΘN) +R∗(0) +

N∑
n=1

(
DR∗(−ηΘn,−ηΘ̂n)−DR∗(−ηΘn−1,−ηΘ̂n)

)
≤ sup
u∈Ω

R(u)− inf
u∈Ω

R(u) +

N∑
n=1

(DR∗(−ηΘn,−ηΘ̂n)−DR∗(−ηΘn−1,−ηΘ̂n)),

where the last inequality is by applying the definition of Fenchel conjugate and item 2 of Fact40:

1. maxu∈Ω 〈−ηΘN , u〉 − R∗(−ηΘN) ≤ supu∈Ω

(
supΘ̃∈Rd

〈
−Θ̃, u

〉
−R∗(Θ̃)

)
=

supu∈ΩR
∗∗(u) = supu∈ΩR(u).

2. R∗(0) = supu∈Rd 〈0, u〉 −R(u) = supu∈Ω 〈0, u〉 −R(u) = − infu∈ΩR(u).

This concludes the proof of Equation (15). We next prove Equation (16).

Upper bounding the divergence penalty terms DR∗(−ηΘn,−ηΘ̂n). Since R is closed and α-
strongly convex, by item 4 of Fact 40, R∗ is 1

α -strongly smooth and ∀Θ,Θ′ ∈ Rd, DR∗(Θ,Θ
′) ≤

1
2α‖Θ−Θ′‖2, which implies ∀n ∈ [N],

DR∗(−ηΘn,−ηΘ̂n) ≤ 1

2α
‖ηΘn − ηΘ̂n‖2∗ =

η2

2α
‖gn − ĝn‖2∗,

where the last equality is from the definition of Θn = gn + Θn−1 and Θ̂n = ĝn + Θn−1.

Lower bounding the prediction gain terms DR∗(−ηΘn−1,−ηΘ̂n). Since R is closed and α-
strongly convex, by Lemma 54, we have

DR∗(−ηΘn−1,−ηΘ̂n)) ≥ α

2
‖∇R∗(−ηΘn−1)−∇R∗(−ηΘ̂n)‖2.

Finally, combining Equation (15) with the bounds on divergence penalty and prediction gain terms,
Equation (16) is proved.

Remark 43. An alternative proof of this theorem can be done using the Stronger Follow the Leader
Lemma [18, 41].

G.3 Regularizer induced by example-based perturbations

In this section, we instantiate the Optimistic FTRL algorithm and regret guarantee in the previous
section with a specific R that appears in our MFTPL, MFTPL-EG algorithms. Recall that in
these algorithms, we use samples in the separator set X and assign cost vector `x ∼ N (0, IA)
independently on each of them. As a result, we define R in Equation (5) as the Fenchel conjugate

of ΦN (Θ) = E`∼N (0,IXA)

[
max
u∈∆(B)

〈
Θ + q(`), u

〉]
; recall that q(`) = (

∑
x∈X `x(h(x))h∈B and

` = (`x)x∈X .

First, we prove several useful properties of ΦN .
Lemma 44 (Restatement of Lemma 16). ΦN (Θ) is differentiable for any Θ ∈ RB and ∇ΦN (Θ) =

E`∼N (0,IXA)

[
argmax
u∈∆(B)

〈
Θ + q(`), u

〉]
.

Proof. To prove the lemma, by [9, Propositions 2.2, 2.3], it suffices to prove that for any Θ,
argmaxu∈∆(B) 〈Θ + q, u〉 is unique with probability 1, over the draw of ` ∼ N (0, IXA).

45

By the definition of argmax, it can be seen that the solution of argmax
u∈∆(B)

〈Θ + q, u〉 is not unique if and

only if there exist h, h′ ∈ B and h 6= h′, such that Θ[h] + q[h] = Θ[h′] + q[h′] = max
h

(Θ[h] + q[h]).

Define eventE =
{

argmaxu∈∆(B) 〈Θ + q, u〉 is not unique
}

and eventEhh′ : Θ[h]+q[h] = Θ[h′]+

q[h′], for all h, h′ ∈ B and h 6= h′. For E to happen, it is necessary that one of Eh,h′ happens.
Formally, E ⊆ ∪

h6=h′
Ehh′ . By applying the union bound, we obtain

Pr(E) ≤ Pr(∪
h6=h′

Ehh′) ≤
∑
h 6=h′

Pr(Ehh′).

We will now show that for any h, h′ ∈ B and h 6= h′, Pr(Ehh′) = 0. By its definition , Ehh′ happens
if and only if Θ[h] + q[h] = Θ[h′] + q[h′]. We can rearrange the terms and get

q[h]− q[h′] = η ·
(
Θ[h]−Θ[h′]

)
.

The following proof shows given any constant C ∈ R, q[h]− q[h′] = C happens with probability 0.
Here we first recall the definition of separator set X : ∃x ∈ X s.t. h(x) 6= h′(x) for any h 6= h′ and
define Xh,h′ :=

{
x ∈ X |h(x) 6= h′(x)

}
. It can be seen that Xh,h′ is nonempty for h 6= h′ by the

definition of X . Now we can rewrite q[h]− q[h′] with the help of Xh,h′ ,

q[h]− q[h′] =
∑
x∈X

`x(h(x))− `x(h′(x)) =
∑

x∈Xh,h′

`x(h(x))− `x(h′(x)).

Since ` = (`x)x∈X ∼ N (0, IXA), q[h] − q[h′] can be viewed as a sum of 2|Xh,h′ | independent
Gaussian variables following distribution N (0, 1). By this observation, we have that q[h]− q[h′] ∼
N (0, 4|Xh,h′ |2), which implies ∀C ∈ R, Pr(q[h] − q[h′] = C) = 0. This in turn shows that
Pr(E) ≤

∑
h6=h′ Pr(Ehh′) = 0, which concludes the proof of the lemma.

Lemma 45. ΦN is closed and convex on RB .

Proof. To begin with, we show ΦN is convex. Recall that ΦN (Θ) =

E`∼N (0,IXA)

[
max
u∈∆(B)

〈
Θ + q(`), u

〉]
where q(`) = (

∑
x∈X `x(h(x)))h∈B . To check the

convexity of ΦN , given any Θ,Θ′ ∈ RB and any γ ∈ [0, 1], we have

ΦN (γΘ + (1− γ)Θ′) =E`∼N (0,IXA) max
u∈∆(B)

〈
γΘ + (1− γ)Θ′ + q(`), u

〉
=E`∼N (0,IXA) max

u∈∆(B)

〈
γ(Θ + q(`)) + (1− γ)(Θ′ + q(`)), u

〉
≤E`∼N (0,IXA)(max

u∈∆(B)

〈
γ(Θ + q(`)), u

〉
+ max
u∈∆(B)

〈
(1− γ)(Θ′ + q(`)), u

〉
=γE`∼N (0,IXA) max

u∈∆(B)

〈
Θ + q(`), u

〉
+ (1− γ)E`∼N (0,IXA) max

u∈∆(B)

〈
Θ′ + q(`).u

〉
=γΦN (Θ) + (1− γ)ΦN (Θ′).

The inequality is by the fact that ∀u ∈ ∆(B), ∀a, b ∈ RB , 〈a+ b, u〉 ≤ max
u∈∆(B)

〈a, u〉+ max
u∈∆(B)

〈b, u〉.

Secondly, to show ΦN is closed, by [12, Section A.3.3], since RB is closed, it suffice to show ΦN
continuous on RB . Since ΦN is differentiable on RB by Lemma 16, we have that ΦN is continuous,
which concludes that ΦN is closed.

The following two properties of ΦN are largely inspired by [66].

Lemma 46. ΦN (0) ≤
√

2X ln(B).

46

Proof. By the definition of ΦN , we have ΦN (0) = E`∼N (0,IXA)

[
max
u∈∆(B)

〈
q(`), u

〉]
, where q(`) =

(
∑
x∈X `x(h(x)))h∈B . For the remainder of the proof, we use E as an abbreviation for E`∼N (0,IXA).

Recall that q[h] =
∑
x∈X `x(h(x)), we can write ΦN (0) = E

[
max
h∈B

q[h]

]
. For any b > 0,

exp

(
b · E

[
max
h∈B

q[h]

])
≤ E

[
exp(b ·max

h∈B
q[h])

]
= E

[
max
h∈B

exp
(
b · q[h]

)]
≤
∑
h∈B

E
[
exp

(
b · q[h]

)]
,

where the first inequality is from the convexity of exponential function, while the last inequality is
form max

h∈B
exp(bq[h]) ≤

∑
h∈B exp(bq[h]).

By the property of the sum of independent Gaussian variables, since ` ∼ N (0, IXA), we have that
for any h ∈ B, q[h] = (

∑
x∈X `x(h(x)))h∈B follows Gaussian distributionN (0, X). Then, ∀h ∈ B,

by a standard fact on the moment generating function of Gaussian random variables, we have that
∀h ∈ B,

E exp(b · q[h]) = exp

(
b2X

2

)
,

which implies

exp

(
b · Emax

h∈B
q[h]

)
≤ B exp

(
b2X

2

)
.

Hence, by taking the natural logarithm and dividing by b > 0 on both sides, we get

E
[
max
h∈B

q[h]

]
≤ ln(B)

b
+
bX

2
. (17)

Since Equation (17) holds for any b > 0, by choosing b =
√

2 ln(B)
X , we obtain E

[
max
h∈B

q[h]

]
≤√

2X ln(B), which concludes ΦN (0) ≤
√

2X ln(B).

Lemma 47. ΦN is β-strongly smooth with respect to ‖ · ‖∞ with β =
√

8
πAX .

Proof. To prove that ΦN is β-strongly smooth with respect to ‖ · ‖∞, by Definition 4.18 in [43], it
suffices to show that ∀Θ,Θ′ ∈ RB ,

‖∇ΦN (Θ)−∇ΦN (Θ′)‖1 ≤ β‖Θ−Θ′‖∞.

By Lemma 16, ∇ΦN (Θ) = E`∼N (0,IXA)

[
argmax
u∈∆(B)

〈
Θ + q(`), u

〉]
, where q(`) =

(
∑
x∈X `x(h(x)))h∈B . Given `, we introduce shorthands

uq = argmax
u∈∆(B)

〈
u,Θ + q(`)

〉
, u′q = argmax

u∈∆(B)

〈
u,Θ′ + q(`)

〉
.

We also introduce the short hand hq and h′q to represent the policy in class B selected by uq and u′q.
More explicitly,

hq = argmax
h∈B

Θ[h] + q[h], h′q = argmax
h∈B

Θ′[h] + q[h].

By Lemma 16, uq, u′q, hq, h
′
q are well-defined with probability 1 over the randomness of `. With

this notation, we have ‖uq − u′q‖1 = 0 when hq = h′q , and ‖uq − u′q‖1 = 2 when hq 6= h′q, which
means ‖uq − u′q‖1 = 2I(hq 6= h′q). From now on, we use P (`) to denote the probability density

47

function of `. By this, we have

‖∇ΦN (Θ)−∇ΦN (Θ′)‖1 =‖E`∼N (0,IXA)uq − E`∼N (0,IXA)u
′
q‖1

=
∑
h∈B

∣∣∣∣∫
`

(I(h = hq)− I(h = h′q))P (`) d`

∣∣∣∣
≤
∑
h∈B

∫
`

∣∣∣(I(h = hq)− I(h = h′q))
∣∣∣P (`) d`

=

∫
`

∑
h∈B

∣∣∣(I(h = hq)− I(h = h′q))
∣∣∣P (`) d`

=

∫
`

2I(hq 6= h′q)P (`) d`

=2Pr(hq 6= h′q),

where Pr(hq 6= h′q) denotes the probability of hq 6= h′q under the distribution of `. By the definition
of separator set X , h 6= h′ if and only if ∃x ∈ X s.t. h(x) 6= h′(x). Then, by bringing in hq, h′q and
apply the union bound, we have

Pr(hq 6= h′q) ≤
∑
x∈X

Pr(hq(x) 6= h′q(x)) =
∑
x∈X

∑
a∈A

Pr(a = hq(x) 6= h′q(x)).

Then, given any x and a, we denote `−xa as all other Gaussian variables in set {`x(a)}x∈X,a∈A
except `x(a) and Pr(a = hq(x) 6= h′q(x)) as the probability of a = hq(x) 6= h′q(x) under the
distribution of `−xa. Then, ∀x ∈ X, a ∈ A,

Pr(a = hq(x) 6= h′q(x)) =

∫
`−xa

Pr(a = hq(x) 6= h′q(x)|`−xa)P (`−xa)d(`−xa).

Conditioned on `−xa, we denote ˜̀= {˜̀x(a)}x∈X,a∈A as the corresponding perturbation vector that
share the same value with ` on all other entries and set ˜̀

x(a) = 0. Define

Θxa = Θ +

∑
x∈X

˜̀
x(h(x))

h∈B

, Θ′xa = Θ′ +

∑
x∈X

˜̀
x(h(x))

h∈B

.

By algebra, Θxa −Θ′xa = Θ−Θ′. By the definition of uq and u′q, with the new notation, we can
rewrite

uq = argmax
u∈∆(B)

〈
u,Θxa + (I(h(x) = a)`x(a))h∈B

〉
, u′(q) = argmax

u∈∆(B)

〈
u,Θ′xa + (I(h(x) = a)`x(a))h∈B

〉
.

By using (Θ[h])h∈B := Θ, we can write

hq = argmax
h∈B

Θxa[h] + I(h(x) = a)`x(a), h′q = argmax
h∈B

Θ′xa[h] + I(h(x) = a)`x(a).

Then, by dividing the set B into disjoint subsets Bxa = {h|h(x) = a, h ∈ B} and B \ Bxa. If
Bxa = ∅ or B \ Bxa = ∅ , we have that Pr(a = hq(x) 6= h′q(x)) = 0. Otherwise, we can view
hq as the h that corresponds to max{ max

h∈Bxa
Θxa[h] + `x(a), max

h∈B\Bxa
Θxa[h]}, and h′q as the h that

corresponds to max{ max
h∈Bxa

Θ′xa[h] + `x(a), max
h∈B\Bxa

Θ′xa[h]}. With this insight, it can be seen that
δ := max

h∈B\Bxa
Θxa[h]− max

h∈Bxa
Θxa[h] > `x(a)→ a 6= hq(x),

δ′ := max
h∈B\Bxa

Θ′xa[h]− max
h∈Bxa

Θ′xa[h] < `x(a)→ a = h′q(x).

Therefore, both δ ≤ `x(a) and `x(a) ≤ δ′ are necessary for a = hq(x) 6= h′q(x) to happen, which
implies

Pr(a = hq(x) 6= h′q(x)|`−xa) ≤ Pr(δ ≤ `x(a) ≤ δ′).

48

If δ′ < δ, then Pr(a = hq(x) 6= h′q(x)|`−xa) = 0. Otherwise (δ ≤ δ′), conditioned on `−xa, by
`x(a) ∼ N (0, 1), we have

Pr(a = hq(x) 6= h′q(x)|`−xa, δ′ ≥ δ) ≤
∫ δ′

δ

1√
2π

exp(−`x(a)2

2
) d(`x(a)) ≤ 1√

2π
(δ′ − δ),

in which case,

δ′ − δ ≤

∣∣∣∣∣ max
h∈B\Bxa

Θxa[h]− max
h∈B\Bxa

Θ′xa[h]

∣∣∣∣∣+

∣∣∣∣ max
h∈Bxa

Θxa[h]− max
h∈Bxa

Θ′xa[h]

∣∣∣∣
≤
∣∣∣∣max
h∈B

Θxa[h]−max
h∈B

Θ′xa[h]

∣∣∣∣+

∣∣∣∣max
h∈B

Θxa[h]−max
h∈B

Θ′xa[h]

∣∣∣∣
≤2

∣∣∣∣max
h∈B

(Θxa[h]−Θ′xa[h])

∣∣∣∣
≤2 max

h∈B

∣∣Θxa[h]−Θ′xa[h]
∣∣

=2‖Θxa −Θ′xa‖∞ = 2‖Θ−Θ′‖∞.

By this we conclude ∀x ∈ X , ∀a ∈ A, Pr(a = hq(x) 6= h′q(x)|`−xa) ≤
√

2
π‖Θ−Θ′‖∞, and

‖∇ΦN (Θ)−∇ΦN (Θ′)‖1 ≤ 2
∑
x∈X

∑
a∈A

Pr(a = hq(x) 6= h′q(x)) ≤
√

8

π
AX‖Θ−Θ′‖∞.

Secondly, we prove useful properties of RN : RB → R ∪ {+∞}, where RN = Φ∗N .

Lemma 48 (Restatement of Lemma 17). RN (u) = Φ∗N (u) is closed and
√

π
8

1
AX -strongly convex

with respect to ‖ · ‖1.

Proof. Since ΦN is closed and convex by Lemma 45, by item 1 of Fact 40, RN (u) = Φ∗N (u) is

closed and convex. Also, by Lemma 47, ΦN is
√

8
πAX-strongly smooth with respect to ‖ · ‖∞.

Then, we apply item 4 of Fact 40 and conclude RN (u) is
√

π
8

1
AX -strongly convex with respect to

‖ · ‖1.

Lemma 49. ∀u ∈ ∆(B), RN (u) ≤ 0.

Proof. Recall that RN (u) = supΘ∈RB 〈Θ, u〉 − ΦN (Θ), where ΦN (Θ) =

E`∼N (0,IXA)

[
max
v∈∆(B)

〈
Θ + q(`), v

〉]
, it suffices to show ∀u ∈ ∆(B), ∀Θ ∈ RB ,

〈Θ, u〉 − ΦN (Θ) ≤ 0. For the remainder of the proof, we use E as an abbreviation for
E`∼N (0,IXA). Then, ∀u ∈ ∆(B), ∀Θ ∈ RB ,

ΦN (Θ) = E

[
max
v∈∆(B)

〈
Θ + q(`), v

〉]
≥ max
v∈∆(B)

E
[〈

Θ + q(`), v
〉]

= max
v∈∆(B)

〈Θ, v〉 ≥ 〈Θ, u〉 ,

where the first inequality is from Jensen’s inequality, while the second equality is by the fact that

E
[
q(`)

]
= E

(
∑
x∈X

`x(h(x)))h∈B

 =
∑
x∈X

E
[
`x(h(x))h∈B

]
= 0.

Lemma 50. dom(RN) = ∆(B).

Proof. We show the lemma in two steps. First, by Lemma 49, ∀u ∈ ∆(B), RN (u) ≤ 0, which is
finite. Secondly we show ∀u ∈ RB \∆(B), RN (u) = +∞.

49

For the second step, ∀u ∈ RB \∆(B), by using E as an abbreviation for E`∼N (0,IXA), we have

RN (u) = sup
Θ∈RB

〈Θ, u〉 − ΦN (Θ)

= sup
Θ∈RB

〈Θ, u〉 − E

[
max
v∈∆(B)

〈
Θ + q(`), v

〉]

≥ sup
Θ∈RB

(
〈Θ, u〉 − max

v∈∆(B)
〈Θ, v〉

)
− E

[
max

v′∈∆(B)

〈
q(`), v′

〉]
,

where the first inequality is by the convexity of max and inner product functions.

By Lemma 46, ΦN (0) = E

[
max

v′∈∆(B)

〈
q(`), v′

〉]
≤
√

2X ln(B), which is a constant. Now, it

suffices to show that ∀u ∈ RB \∆(B), supΘ∈RB

(
〈Θ, u〉 − max

v∈∆(B)
〈Θ, v〉

)
= +∞.

We divide RB \∆(B) into two disjoint sets:{
U− :={u ∈ RB | u[i] < 0 for some i ∈ {1, 2, · · · , B}},
U+ :={u ∈ RB | ‖u‖1 > 1, u � 0},

where it can be verified that R \∆(B) = U− ∪ U+.

For any u ∈ U−, where u[i] < 0 for some i ∈ {1, 2, · · · , B}, we have that ∀C ∈ R, by setting
θ(u, i, C) = |C|+1

u[i] Onehot(i,B) ∈ RB ,

max
v∈∆(B)

〈
θ(u, i, C), u− v

〉
=

〈
|C|+ 1

u[i]
Onehot(i,B), u

〉
− max
v∈∆(B)

〈
|C|+ 1

u[i]
Onehot(i,B), v

〉
≥|C|+ 1

u[i]
· u[i] = |C|+ 1 > C,

where the first inequality is by
〈
|C|+1
u[i] Onehot(i,B), v

〉
≤ 0, ∀u[i] < 0, ∀v ∈ ∆(B). This implies

∀u ∈ U−, supΘ∈RB

(
max
v∈∆(B)

〈Θ, u− v〉

)
= +∞. Thus, ∀u ∈ U−, RN (u) = +∞.

Similarly, for any u ∈ U+, we have that ∀C ∈ R, by setting θ(u,C) = |C|+1
‖u‖1−1 · u ∈ RB ,

max
v∈∆(B)

〈
θ(u,C), u− v

〉
= max
v∈∆(B)

〈
|C|+ 1

‖u‖1 − 1
· u, u− v

〉
=

〈
|C|+ 1

‖u‖1 − 1
· u, u− u

‖u‖1

〉
=
|C|+ 1

‖u‖1 − 1
· ‖u‖1 · (‖u‖1 − 1) > C,

which is by basic algebra. This implies ∀u ∈ U+, RN (u) = +∞.

In conclusion, we have that ∀u ∈ RB \∆(B) = U− ∪ U+, RN (u) = +∞, which concludes the the
proof.

Lemma 51 (Restatement of Lemma 18). For any Θ ∈ Rd,

argmin
u∈∆(B)

(
〈Θ, u〉+RN (u)

)
= ∇ΦN (−Θ).

Proof. As shown by Lemma 48 and Lemma 50, RN is closed and strongly convex with dom(RN) =
∆(B). By applying Proposition 41 on RN , we have

∇R∗N (−Θ) = argmax
u∈RB

〈−Θ, u〉 −RN (u) = argmin
u∈∆(B)

〈Θ, u〉+RN (u),

50

where the second equality is by dom(RN) = ∆(B) shown in Lemma 50.

As shown by Lemma 45, ΦN is closed and convex. By item 2 of Fact 40, R∗N = Φ∗∗N = ΦN , which
concludes the proof.

Lemma 52. supu∈∆(B)RN (u)− infu∈∆(B)RN (u) ≤
√

2X ln(B).

Proof. First, by Lemma 49, since ∀u ∈ ∆(B), RN (u) ≤ 0. we have that supu∈∆(B)RN (u) ≤ 0.
Next, we show − infu∈∆(B)RN (u) ≤

√
2X ln(B). Since − infu∈∆(B)RN (u) = supu∈Ω 〈0, u〉 −

RN (u) = ΦN (0), it suffices to show ΦN (0) ≤
√

2X ln(B), which we already shown in Lemma 46.

Together, we conclude supu∈∆(B)RN (u)− infu∈∆(B)RN (u) ≤
√

2X ln(B).

Now, combining the above lemmas with the general optimistic FTRL lemma, we get the following
central regret theorem for optimistic FTRL with separator perturbation-based regularizers for our
results:

Theorem 53. Suppose X is a separator set for B, Optimistic FTRL (Algorithm 6) with R = RN
achieves regret

LRegN ≤
√

2X ln(B)

η
+

N∑
n=1

(ηXA‖gn − ĝn‖2∞ −
1

4ηXA
‖∇R∗N (−Θ̂n)−∇R∗N (−Θn−1)‖21).

Furthermore, if ĝn = 0 for all n,

LRegN ≤
√

2X ln(B)

η
+ ηXA

N∑
n=1

‖gn‖2∞.

Proof. Since RN is
√

π
8

1
AX -strongly convex by Lemma 48, by the regret guarantee of Optimistic

FTRL in Theorem 42,

LRegN ≤
supw∈ΩR(w)− infw∈ΩR(w)

η

+

N∑
n=1

(

√
2

π
ηXA‖gn − ĝn‖2∞ −

√
π

32

1

ηXA
‖∇R∗N (−Θ̂n)−∇R∗N (−Θn−1)‖21).

By bringing in supu∈∆(B)RN (u) − infu∈∆(B)RN (u) ≤
√

2X ln(B) proved by Lemma 52 and

using the simple facts that
√

2
π ≤ 1 and

√
π
32 ≥

1
4 , we conclude the proof of the first inequality.

Specifically, when ĝn = 0 for all n, by Algorithm 6 we have that Θ̂n = Θn−1 and

LRegN ≤
√

2X ln(B)

η
+ ηXA

N∑
n=1

‖gn‖2∞.

Lemma 54. Let R : Rd → R ∪ {+∞} be a closed and α-strongly convex function with respect to
‖ · ‖, then, for Θ,Θ′ ∈ Rd,

DR∗(Θ,Θ
′) ≥ α

2
‖∇R∗(Θ)−∇R∗(Θ)‖2.

Proof. Since R is closed and α-strongly convex, by item 1,4 of Fact 40 and Proposition 41, R∗ is
closed, convex, differentiable, and dom(R∗) = Rd. By item 3 of Fact 40, ∀Θ,Θ′ ∈ RB ,{

R∗(Θ) =
〈
Θ,∇R∗(Θ)

〉
−R(∇R∗(Θ)),

R∗(Θ′) =
〈
Θ′,∇R∗(Θ′)

〉
−R(∇R∗(Θ′)).

51

As a consequence, both ∇R∗(Θ) and ∇R∗(Θ′) are in dom(R). Furthermore, by item 3 of Fact 40,
Θ ∈ ∂R(∇R∗(Θ)) and the definition of Bregman divergence, we have

DR∗(Θ
′,Θ) =R∗(Θ′)−R∗(Θ)−

〈
Θ′ −Θ,∇R∗(Θ′)

〉
=
〈
Θ,∇R∗(Θ)

〉
−R(∇R∗(Θ))−

〈
Θ′,∇R∗(Θ′)

〉
+R(∇R∗(Θ′))

−
〈
Θ′ −Θ,∇R∗(Θ′)

〉
=R(∇R∗(Θ′))−R(∇R∗(Θ))−

〈
Θ,∇R∗(Θ′)−∇R∗(Θ)

〉
≥α

2
‖∇R∗(Θ)−∇R∗(Θ)‖2,

where the last inequality uses the α-strong convexity of R, as well as Θ ∈ ∂R(∇R∗(Θ)).

H Auxiliary Lemmas

Lemma 55. For two stationary policies π and πE : S → ∆(A), we have

J(π)− J(πE) = H · Es∼dπEa∼π(·|s)

[
AE(s, a)

]
,

where AE(s, a) := QπE (s, a) − VπE (s), VπE (s) := E
[∑H

t=Step(s) c(st, at) | s, πE
]
, and

QπE (s, a) := c(s, a) + E
[∑H

t=Step(s)+1 c(st, at) | s, a, πE
]
.

The proof can be found at e.g. [55, Lemma 4.3] .
Lemma 56. For benchmark policy class B that contains B deterministic policies h : S → A,
consider separator set X 1 with X = |X |, A = |A|. Then,

X ≥ logA(B).

Proof. Define BX =
{

(h(x1), . . . , h(xX))
}
h∈B, where (h(x1), . . . , h(xX)) ∈ AX . First, note that

BX ⊂ AX , which implies that |BX | ≤ |AX | = AX .

Secondly, by the definition of separator set X , ∀h, h′ ∈ B, ∃x ∈ X = {x1, · · · , xX} , s.t. h(x) 6=
h′(x). This implies ∀h, h′ ∈ B, (h(x1), . . . , h(xX)) 6= (h′(x1), . . . , h′(xX)), and every h in B
induces unique (h(x1), . . . , h(xX)); this implies that |BX | = |B| = B.

Combining the above two observations, we conclude B = |BX | ≤ AX , thus X ≥ logA(B).

52

