Maximum Common Subgraph Guided Graph Retrieval: Late
and Early Interaction Networks
(Appendix)

A Potential limitations of our work

(1) In this paper, we have considered only the structural information encoded in the graphs. Con-
sequently, all the nodes and edges are assigned the same label. However, in practice the graph
nodes and edges may contain rich features, which must be taken into account when computing MCS
scores. For example, certain applications may prohibit matching of graph components with different
labels, which would potentially disallow many of the alignments currently proposed by our model.
Additionally, in many real world applications involving knowledge graphs, we observe hierarchical
relationships amongst entity types, which can further constraint the space of possible alignments.
While our current formulations do allow for the encoding of node and edge features, this is insufficient
as is to ensure such constraint-based matching.

(2) We consider MCS between two graphs. Some applications in chemical science [69] involve the
computation of maximum common subgraph between three or more graphs.

B Neural parameterizations of GNN and Sinkhorn

We have already described the GNN network GNNy which was used for early interaction model
(Section E]) Here, we describe the neural architecture of GNNy used in our late interaction models
(Section [2) and GS4 modules, used in both our late and early interaction models.

B.1 Neural parameterization of GNNj

Our GNN GNNy module is used in both LMCES and LMCCS. Given a graph G = (V, E) (G can
be either a query G4 and G.), it uses R = 5 recurrent propagation layers to encode the node and
edge embeddings. It consists of three modules, as follows.

(1) FEATUREENCODERy: This converts the input node features z,, into the initial node embeddings
h.,,. In this work, we have focused solely on the structural aspects of MCS scoring. Hence, all nodes
are assigned the same initial feature z,, = [1] (a single-element vector with a 1 — we want it to
be oblivious to local features). The initial features are mapped to a dim(h,,(0)) = 10 dimensional
embedding vector using a single R'*19 linear layer.

h,(0) = FEATUREENCODERy(z,) Vu eV (19)
Having computed the initial embedding h,,(0), it computes the embeddings {h,(r) | r € [R]} de-
scribed as follows:

(2) MESSAGEPASSINGy: Given a pair of node embedding vectors h,,(r), h,(r) as input, this gen-
erates a message vector 1, (r) of dimension 20 using a linear layer. A simple sum aggregation is
used on the incoming messages to any node, to obtain 7z, (7).

My (1) = MESSAGEPASSINGg (hy (1), hy(r)) ¥ (u,v) € E (20)

ﬁu(r) = EvEnbr(u) muv(r) VueV (21)

(3) UPDATEEMBEDDINGg: This uses the aggregated incoming messages 1, to update the current
node embedding using a Gated Recurrent Unit (GRU), as proposed in [[70]. Here, the current node
embeddings are treated as the hidden context of the GRU, which are updated using input m.

h,(r + 1) = UPDATEEMBEDDINGg(h,(r), T, (r)) YueV (22)

Furthermore, in our early cross interaction model XMCS, the cross graph signal A is concatenated
to the message aggregation 1, while being provided as GRU input. Given this framework, we
obtain the node embedding matrices H,(7), used in LMCES, by gathering all the node embeddings
h,(r)V u € V. Similarly, we obtain the edge embedding matrices M, (R), used in LMCCS, by
gathering the message vectors 1., (R)Y (u,v) € E.

16

B.2 Neural parameterization of GS,

The Gumbel-Sinkhorn network is used to generate soft-permutation matrices (or doubly stochastic
matrices) based on some input matrix. (One may regard the input as analogous to logits and the output
as analogous to a softmax.) In principle, the input matrix is driven by some neural network and then
it is fed into an iterative GUMBELSINKHORN operator. Given a matrix U, GUMBELSINKHORN(-)
returns a soft-permutation matrix using following differentiable iterative process:

GUMBELSINKHORN?(U) = exp(U /() (23)
GUMBELSINKHORN ™1 (U) = ColDivide (RowDivide (GUMBELSINKHORNt(U))) (24)

GUMBELSINKHORN(U) = tli}m GUMBELSINKHORN!(U) (25)

ColDivide and RowDivide depict the iterative (row and column) normalization across columns and
rows, Le., [ColDivide(X)]; ; = X;;/ >, Xir and [RowDivide(X)]; ; = X; ;/ >, Xk, ;. The
final output in Eq. (23) is also given by the solution of the following optimization problem:

GUMBELSINKHORN(U) = argmax (P, U) = ¢ Y _ P, jlog P ; (26)
PeB -
i,
where B is the set of doubly stochastic matrices lying in a Birkhoff polytope and (is the temperature
parameter. As ¢ — 0, one can show that GUMBELSINKHORN(C') approaches a hard-permutation
matrix.

We use GS,,(H,(r), H.(r)) = GUMBELSINKHORN(F Fy(H (1)) FFs(H_.(r))") in both our late
(Eqs. @). (9) and early interaction (Eq. (9)) models. Here, F'F} is linear-ReLU-linear network which
consists of a 10 x 16 linear layer, a ReLU activation function, and a final 16 x 10 linear layer. We
perform 20 iterations of row and column normalizations, with a temperature of (= 0.1.

C Additional details about experimental setup

In this section, we provide further details about the experimental setup, including the baseline models,
hyperparameters, datasets and computing resources.

C.1 Dataset generation

We obtain our seven datasets from the repository of graphs maintained by TUDatasets [71]], for the
purpose of benchmarking GNNs. Amongst them, MSRC is a computer vision dataset, DD is a
Bioinformatics dataset, and the remaining are Small Molecules datasets.

We sample the corpus graphs G, and some seed query graphs G; independently of each other using
the Breadth First Search (BFS) sampling strategy used in previous works [[72,[11]. To sample G or
G, we first randomly choose a starting node in a graph present in the dataset, drawn uniformly
at random. We implement a randomized BFS traversal to obtain node sets of size |V| € [10, 15]
in the vicinity of the starting node u. Finally, the subgraph induced by this set of nodes, gives
us the sampled seed query or corpus graph. Using this process we generate first generate 800 ,
corpus graphs. Subsequently, we sample 500 seed query graphs under the constraint that it should
be subgraph isomorphic to a fraction 7 of the available set of corpus graphs. We set n € [0.1,0.4]
similar to prior works [[72} [11]. Here we used the Networkx implementation of VF2 algorithm [73|]
for determining subgraph isomorphism. Subsequently, we augment the seed query graph G7,, with
randomly connected nodes and edges, which gives us the final query graph G, for MCS computation.
This procedure ensures that we have a significant variation in MCS sizes across the set of corpus
graphs, which is a desirable condition for any retrieval setup.

The corresponding ground truth MCS values for each of the 400000 query-corpus pairs, are generated
using the combinatorial formulations for exact MCCS and MCES, as described in Section 2.1} We
split the set of 500 query graphs into 60% training, 20% test and 20% validation splits.

17

C.2 Baseline Implementations

We use the available PyTorch implementations of all the baselines, viz., SimGNNB GraphSirrﬂ
GOTSinﬂ NeuroMatc GEI\E] and GMl\ﬂ In order to ensure a fair comparison between our models
and the baselines, we have ensured the following:

1. Across all models, the node embedding dimension is fixed to 10.

2. The exact same dataset is fed as input to all models, and the same early stopping mechanism used
for best model selection.

3. NeuroMatch uses anchor node annotations, which are excluded so as to ensure fair comparison
with other models.

4. GEN and GMN compute the Euclidean distance between the query and corpus graph vectors,
which is incompatible with MCS scoring. Therefore, we add an additional linear layer on top of
their outputs, so as to help them better predict the MCS ground truths.

Furthermore, SImGNN, GraphSim and GOTSim implement their neural scoring function on one
graph pair at a time. This is prohibitively slow during training. Therefore, similar to previous
work [1L1], we implement a batched version of the available implementations of these three baselines,
so as to achieve the requisite speedup.

C.3 Hyperparameter details

The node embedding size is specified as 10 across all models. During training our model and all the
baselines model use early stopping with patience parameter n,, = 50. This means that if the Mean
Squared Error (MSE) loss on the validation set does not decrease for 50 epochs, then the training
process is terminated and the model with the least validation MSE is returned. In all cases, we train
with a batch size of 128, using an Adam optimizer with learning rate 10~3 and weight decay 5x 104

For LMCCS computation as mentioned in Eq. (T0)), we tune the model across a range of temperature
values A € [0.05, 50] using cross-validation on the validation set. For each dataset, the temperatures
resulting in the best performance, are reported in Tables[6]

MCCS MM MR FM FR DD COX2 MSRC
A 07 01 08 14 10 1.1 1

Table 6: Values of best temperature \ for each dataset.

C.4 Evaluation Metrics

Given corpus graphs C={G.}, query graphs Q= {G,} and their gold MCES and MCCS values
{ymces(Gq, G¢)} and {ymccs(Gyq, G.)}. For each query graph, G, we compute three evaluation
metrics based on the model predictions {sa (G, G.)} with A being the set of trainable parameters
and the ground truth MCS scores {y(Gy, G.)} (y can be either ymces Or Ymccs)-

Mean Square Error (MSE): It evaluates how close the model predictions are to the ground truth,
and a lower MSE value indicates a better performing model.

1 1
MSE = — E — E (Q(qu Gc) - SA(qu GC>)2 (27)
@l 72,101 =

Kendall-Tau correlation (Ktau) [74]: Here, we track the number of concordant pairs N, ;r where

the model and ground truth rankings agree, and the number of discordant pairs N~ where they
disagree. A better performing model will have a larger number of concordant predictions, which

"nttps://github.com/benedekrozemberczki/SimGNN
https://github.com/khoadoan/GraphOTSim
*https://github.com/khoadoan/GraphOTSim
‘nttps://github.com/snap-stanford/neural-subgraph-learning-GNN
Shttps://github.com/Lin-Yijie/Graph-Matching-Networks
®https://github.com/Lin-Yijie/Graph-Matching-Networks

18

https://github.com/benedekrozemberczki/SimGNN
https://github.com/khoadoan/GraphOTSim
https://github.com/khoadoan/GraphOTSim
https://github.com/snap-stanford/neural-subgraph-learning-GNN
https://github.com/Lin-Yijie/Graph-Matching-Networks
https://github.com/Lin-Yijie/Graph-Matching-Networks

MSE (lower is better)
MCES MSRC MM FR MR FM COX DD
SimGNN 0.910+0.044 0.302£0.009 0.3554+0.021 0.337£0.015 0.331+0.014 0.281+0.012 1.2104+0.073
GraphSim 0.629+0.028 0.27440.010 0.282+0.012 0.27440.010 0.261+0.009 0.2494+0.009 0.881+0.081
o | GOTSim 0.496+0.020 0.343+0.046 0.326+0.020 0.3204+0.031 0.359+0.047 0.3284+0.015 0.628+0.037
E NeuroMatch | 0.582+0.082 0.308+0.059 0.28240.055 0.795+0.606 0.604+0.322 0.269+0.072 2.827+2.281
IsoNet 0.276+0.007 0.225+0.009 0.2204+0.008 0.209+0.007 0.253+0.017 0.182+0.007 0.33340.059
GEN | 0.426+0.020 0.311+0.017 0.2734+0.012 0.28440.013 0.32440.023 0.27740.021 0.568-+0.110
LMCES 0.2324+0.008 0.167£0.005 0.170+0.005 0.162+0.005 0.163+0.004 0.140+0.004 0.22340.006
Z [GMN 0.269+0.006 0.184-+0.004 0.181+0.005 0.178+0.004 0.189+0.005 0.155£0.006 0.27340.008
S XMCs 0.226+0.007 0.154+0.003 0.162+0.005 0.154+0.004 0.160+0.003 0.132+0.004 0.22040.005
~ MSE (lower is better)
MCES ‘ MSRC MM FR MR FM COX DD
SimGNN 0.100+£0.020 0.360+£0.032 0.337£0.036 0.233£0.026 0.316+0.033 0.289+£0.021 0.136+0.023
GraphSim 0.088+0.018 0.2834+0.023 0.290+0.029 0.2214+0.019 0.255+0.024 0.3254+0.027 0.123+0.020
» | GOTSim 0.165+0.025 0.416+0.044 0.340+0.034 0.3304+0.034 0.321+0.028 0.3184+0.023 0.202+0.027
E NeuroMatch | 0.352+0.088 0.376+0.052 0.326+0.042 0.351+0.191 0.295+0.085 0.984+0.689 0.624+0.205
IsoNet 0.086+0.015 0.237£0.016 0.244+0.019 0.191£0.017 0.218+0.018 0.253+0.018 0.124+0.019
GEN | 0.1714£0.025 0.366+0.029 0.34440.033 0.290+0.030 0.356+-0.030 0.309+0.022 0.197-+0.025
LMCCS 0.068+0.012 0.174+0.015 0.1794+0.016 0.134+0.012 0.173+0.017 0.177£0.012 0.097+0.016
‘_:{ GMN 0.101+0.015 0.200£0.015 0.2164+0.020 0.156+0.015 0.193+0.018 0.176£0.011 0.13740.016
S XMCS 0.071+0.014 0.168+0.014 0.163+0.018 0.131£0.013 0.168+0.017 0.153+0.009 0.10240.017

Table 7: Performance measured using mean square error (MSE) with standard error, of our models
and state-of-the-art baselines on 20% test set, for all seven datasets. Top-half and bottom-half report
results for MCES and MCCS respectively. Numbers in green (blue) indicate the best performers
among early (late) interaction models. Numbers in red1 (yellow) indicate second best performers for
early (late) interaction models.

results in a higher correlation score.
Nf—N-

KTau = — e g
&2, ()

In practice we use scipy implementation of KTau to report all the numbers in our paper.
Pairwise Ranking Reward (PairRank): Here, we track the number of concordant pairs, and nor-

malize by the maximum number of possible concordant ranking N,f ... in an ideal case. Hence, a
higher value of indicates a more accurate model, with a maximum achievable value of 1. The final

reported values are computed, across the set of query graphs Q= {G, }, as follows:

! | 28)

. 1 N, q+
PairRank = @ Z NF 29)
Gq €0 q,max

Furthermore, for each of the evaluation metrics, along with the average across query graphs, we also
report the standard error.

C.5 Hardware and Software details
We implement our models using Python 3.8.5 and PyTorch 1.10.2. Training of our models and the
baselines, was performed across servers containing Xeon E5-2620 2.10GHz CPUs, Nvidia Titan

Xp-12 GB GPUs, Nvidia T4-16 GB GPUs, and Nvidia Quadro RTX 6000-48 GB GPUs. Running
times are compared on the same GPU, averaged over 10 runs of each method.

C.6 License details

SimGNN repository is available under GNU license, while GEN, GMN and GOTSim are available
under MIT license.

D Additional experiments

D.1 Results on comparison with SOTA methods along with standard error

In Table E] in the main submission, we neither reported the result on DD dataset nor the standard error
due to space constraints. In Tables we report results with standard error on all seven datsets.
Here, the standard error is computed over the variation across all test queries. Moreover, in Table@],
we also report results of PairRank metric. They reveal similar observations as in Table

19

KTau (higher is better)
MCES MSRC MM FR MR FM COX DD

SimGNN 0.2324£0.003 0.368+0.007 0.358+£0.007 0.354£0.007 0.372+£0.005 0.394+£0.011 0.215+0.004
GraphSim 0.4614+0.004 0.432+0.008 0.458+0.006 0.454+0.005 0.500£0.006 0.40340.009 0.570+0.003
o | GOTSim 0.56440.004 0.464+0.009 0.448+0.007 0.516£0.006 0.496+0.006 0.37440.013 0.608+0.003
5 NeuroMatch | 0.63240.005 0.488+0.010 0.5163+0.007 0.5484+0.008 0.535+0.007 0.514%0.011 0.667+0.008
IsoNet 0.6694+0.004 0.506+0.010 0.504+0.008 0.537£0.007 0.532+0.007 0.52240.012 0.698+0.005
GEN 0.6274+0.005 0.416+0.013 0.468+0.011 0.456+0.012 0.456+0.015 0.4664+0.014 0.635+0.010
LMCES 0.69140.004 0.577£0.006 0.588+0.006 0.598+0.005 0.6104+0.004 0.57440.009 0.724+0.004
_.:= GMN 0.670+0.003 0.544£0.006 0.567+0.007 0.568+0.006 0.569+0.006 0.5554+0.009 0.701-£0.004
S XMCS 0.699+0.004 0.582£0.006 0.594+0.006 0.612+0.005 0.606+0.005 0.580+0.009 0.724:+0.004
KTau (higher is better)
MCES ‘ MSRC MM FR MR FM COX DD
SimGNN 0.1254+0.008 0.281+0.006 0.308+£0.007 0.313+0.008 0.299+0.006 0.36640.008 0.115+0.009
GraphSim 0.1534+0.009 0.336+0.008 0.337+£0.008 0.315+0.009 0.366+0.007 0.2924+0.006 0.146+0.010
o | GOTSim -0.088+0.007 0.320+0.008 0.327+0.008 0.307+0.009 0.380+0.008 0.4160.009 -0.092-0.007
E NeuroMatch | 0.125+£0.011 0.37640.010 0.365+0.009 0.370+£0.012 0.406+£0.010 0.440+0.009 0.1424+0.014
IsoNet 0.1854+0.013 0.381+£0.012 0.388+0.012 0.351+£0.014 0.402+0.011 0.406+0.009 0.168+0.015
GEN 0.1114+0.013 0.325+£0.011 0.332+£0.012 0.305+£0.011 0.326+0.011 0.3914+0.011 0.137+0.015
LMCCS 0.248+0.013 0.451+0.012 0.438+0.014 0.406+0.014 0.457+0.012 0.487+0.012 0.2124+0.015
—i‘ GMN 0.174+0.013 0.416£0.010 0.405+£0.012 0.379+0.013 0.4314+0.011 0.4794+0.011 0.173£0.014
S XMCS 0.1984+0.014 0.452£0.012 0.451£0.014 0.412+0.014 0.4534+0.012 0.50140.011 0.201+£0.015

Table 8: Performance measured using Kendall Tau Rank Correlation (KTau) with standard error,
of our models and state-of-the-art baselines on 20% test set, for all seven datasets. Top-half and
bottom-half report results for MCES and MCCS respectively. Numbers in green (blue) indicate the
best performers among early (late) interaction models. Numbers in red (yellow) indicate second best
performers for early (late) interaction models.

MCES PairRank (higher is better)
MSRC MM FR MR FM COX DD
SimGNN 0.644+0.002 0.768+£0.005 0.756+0.005 0.754+0.005 0.764+0.004 0.796+0.007 0.631+0.003
GraphSim 0.785+0.003 0.814+0.005 0.828+0.004 0.824-+0.003 0.852+0.004 0.803+0.005 0.846+0.002
o | GOTSim 0.848+0.002 0.837+0.006 0.821+0.005 0.868-+0.004 0.850+0.004 0.781+0.008 0.868+0.001
E NeuroMatch | 0.891+0.002 0.854+0.006 0.870+0.005 0.8904+0.005 0.8774+0.005 0.887+0.005 0.904+0.004
IsoNet 0.913+0.001 0.867+0.006 0.861+0.006 0.883+£0.004 0.875+0.005 0.893+0.007 0.9231+0.002
GEN 0.887+0.003 0.801+£0.009 0.835+0.008 0.825+0.008 0.821+0.010 0.851+0.009 0.885+0.005
LMCES 0.92740.001 0.921£0.003 0.9214+0.004 0.92740.003 0.9304+0.002 0.933+0.003 0.939+0.001
= [GMN 0.914£0.001 0.896+0.003 0.906+0.004 0.9054+0.003 0.901+0.004 0.919+0.004 0.9254+0.001
S XMCS 0.932+0.001 0.925+0.003 0.926+0.004 0.9374+0.002 0.927+0.002 0.938+0.003 0.939+0.001
PairRank (higher is better)
MCES ‘ MSRC MM FR MR FM COX DD
SimGNN 0.752+£0.016 0.772+£0.009 0.804+0.008 0.843+£0.008 0.791£0.009 0.812+0.008 0.698+0.015
GraphSim 0.810+0.017 0.810+0.007 0.828+0.007 0.841-+0.008 0.843+0.007 0.748+0.006 0.774+0.017
o | GOTSim 0.311+0.010 0.802+0.009 0.818+0.008 0.839-+0.010 0.855+0.007 0.850+0.007 0.312+0.012
E NeuroMatch | 0.716+£0.021 0.844+0.007 0.849+0.006 0.8924+0.007 0.8754+0.006 0.869+0.006 0.724+0.020
IsoNet 0.849+0.017 0.845+0.009 0.866+0.006 0.865+0.009 0.869+0.006 0.844+0.007 0.7754-0.020
GEN 0.667+0.020 0.801+£0.009 0.823+0.010 0.831£0.009 0.804+0.009 0.829+0.008 0.671+0.023
LMCCS 0.863+0.019 0.904+0.004 0.909+0.005 0.9154+0.005 0.9124+0.004 0.903+0.005 0.8314+0.018
.E’ GMN 0.818+0.017 0.878+0.006 0.881+0.006 0.895+0.006 0.893+0.005 0.898+0.005 0.805+0.017
S { XMCS 0.863+0.019 0.903+0.004 0.919+0.004 0.9254+0.005 0.9104+0.004 0.916+0.005 0.854+0.017

Table 9: Performance measured using Pairwise Ranking Reward (PairRank) with standard error,
of our models and state-of-the-art baselines on 20% test set, for all seven datasets. Top-half and
bottom-half report results for MCES and MCCS respectively. Numbers in green (blue) indicate the
best performers among early (late) interaction models. Numbers in red1 (yellow) indicate second
best performers for early (late) interaction models.

D.2 Effect of MCS layer

In Table2]in the main submission, we reported MSE on four datasets. In Tables[I0}-[IT]} we report
results with standard error, on all seven datsets, which probe the effect of substituting the general
purpose scoring layer with MCS customized scoring layer. Here, the standard error is computed over
the variation across all test queries. They reveal similar insights as in Table[2]

D.3 Ablation Study

In Table [3|in the main submission, we reported MSE for an ablation study on three datasets. In
Tables [[2HT3] we report results with standard error, on all seven datasets. Here, the standard error is
computed over the variation across all test queries. We make the following observations:

20

MSE (lower is better)

MCES ‘ MSRC MM FR MR FM COX DD

GEN 0.426+0.020 0.311+£0.017 0.273+£0.012 0.284+0.013 0.324+0.023 0.277£0.021 0.568+0.110
» | GEN (MCS) | 0.28440.008 0.181+0.005 0.179+0.005 0.16940.004 0.17740.004 0.153+0.006 0.298+0.008
3 IsoNet 0.276+0.007 0.2254+0.009 0.2204+0.008 0.209+0.007 0.2534+0.017 0.1824+0.007 0.333+0.059

IsoNet (MCS) | 0.260+0.011 0.1874+0.012 0.178+£0.005 0.173+£0.005 0.175+0.004 0.148+0.005 0.256+0.011

LMCES 0.2324+0.008 0.167+0.005 0.170£0.005 0.1624+0.005 0.163+0.004 0.140+0.004 0.223+0.006
2 (GMN 0.269+0.006 0.184+0.004 0.181£0.005 0.17840.004 0.189+0.005 0.155+0.006 0.273+0.008
5 { GMN (MCS) | 0.2284+0.005 0.155+0.003 0.158+0.004 0.15740.003 0.162+0.003 0.134+0.003 0.217+0.004
= | xXMcs 0.226+0.007 0.154+0.003 0.162+0.005 0.15440.004 0.160+0.003 0.132+0.004 0.220+0.005

MSE (lower is better)

MCES ‘ MSRC MM FR MR FM COX DD

GEN 0.171£0.025 0.366+£0.029 0.344+0.033 0.290+0.030 0.356+0.030 0.309+0.022 0.19740.025
» | GEN (MCS) | 0.076+0.014 0.226+0.020 0.195+0.018 0.1614+0.014 0.204+0.021 0.180+0.012 0.108+0.019
3 IsoNet 0.086+0.015 0.237+0.016 0.244+0.019 0.1914+0.017 0.218+0.018 0.253+0.018 0.124+0.019

IsoNet (MCS) | 0.088+0.016 0.2304+0.020 0.225+0.019 0.161+£0.014 0.2064+0.021 0.1954+0.014 0.119+0.018

LMCCS 0.068+0.012 0.1744+0.015 0.1794+0.016 0.1344+0.012 0.1734+0.017 0.1774+0.012 0.0974+0.016
2 (GMN 0.101+0.015 0.200+£0.015 0.216+0.020 0.156+0.015 0.193+0.018 0.176+£0.011 0.137+0.016
H { GMN (MCS) | 0.070+0.014 0.178+0.016 0.173+£0.018 0.1254+0.011 0.164+0.018 0.154+0.011 0.098+0.016
M | xMCs 0.0714+0.014 0.1684+0.014 0.163+0.018 0.1314+0.013 0.1684+0.017 0.1534+0.009 0.102+0.017

Table 10: Performance measured using mean square error (MSE) with standard error, showing
effect of replacing the general-purpose scoring layers with new layers customized to MCS on most
competitive baselines, viz., GEN and IsoNet (late interaction models) and GMN, across all seven
datasets. Numbers in green (red) indicate the best (second best) performers for early interaction
models. Numbers in blue (yellow) indicate the best (second best) performers for late interaction
models. The proposed modification improves performance of all baselines. However our models

outperform them, even after modifying their layers, in most cases.

KTau (higher is better)

MCES ‘ MSRC MM FR MR FM COX DD

GEN 0.6274+0.005 0.4164+0.013 0.468+0.011 0.456+0.012 0.456+0.015 0.466+0.014 0.635+0.010
» | GEN (MCS) | 0.666+0.004 0.5564+0.006 0.5654+0.007 0.58440.006 0.590+0.005 0.5554+0.010 0.690+0.004
3 IsoNet 0.6694+0.004 0.5064+0.010 0.5044+0.008 0.5374+0.007 0.5324+0.007 0.5224+0.012 0.698+0.005

IsoNet (MCS) | 0.677+0.004 0.569+0.006 0.570+£0.007 0.585+0.005 0.589+0.005 0.565+0.009 0.708+0.004

LMCES 0.691+0.004 0.5774+0.006 0.588+0.006 0.5984+0.005 0.6104+0.004 0.5744+0.009 0.7244-0.004
2 (GMN 0.670£0.003 0.5444+0.006 0.567+0.007 0.568+0.006 0.569+0.006 0.555+0.009 0.701+0.004
5 { GMN (MCS) | 0.693£0.004 0.583£0.006 0.592+0.006 0.598+0.005 0.606+0.005 0.573+£0.010 0.727+0.004
M | XMCSs 0.699+0.004 0.5824+0.006 0.5944+0.006 0.6124+0.005 0.6064+0.005 0.5804+0.009 0.72440.004

KTau (higher is better)

MCES ‘ MSRC MM FR MR FM COX DD

GEN 0.1114£0.013 0.3254+0.011 0.332+0.012 0.305+0.011 0.326+0.011 0.391+0.011 0.137+0.015
o | GEN(MCS) | 0.223+0.013 0.4214+0.011 0.418+0.013 0.385+0.014 0.4244+0.011 0.477+0.010 0.218+0.015
3 IsoNet 0.1854+0.013 0.3814+0.012 0.388+0.012 0.3514+0.014 0.4024+0.011 0.406+0.009 0.168+0.015

IsoNet (MCS) | 0.187+0.013 0.440+0.011 0.404+0.011 0.386+0.013 0.434+0.011 0.480+0.011 0.182+0.014

LMCCS 0.2484+0.013 0.4514+0.012 0.4384+0.014 0.406+0.014 0.4574+0.012 0.4874+0.012 0.2124+0.015
2 (GMN 0.1744+0.013 0.4164+0.010 0.405+0.012 0.379+0.013 0.431+0.011 0.479+0.011 0.173+0.014
5 { GMN (MCS) | 0.192+0.014 0.450+0.011 0.443+0.014 0.408+0.014 0.458+0.012 0.499+0.011 0.198+0.016
= | xXMcCs 0.1984+0.014 0.4524+0.012 0.4514+0.014 0.4124+0.014 0.453+0.012 0.501+0.011 0.201+0.015

Table 11: Performance measured using Kendall Tau Rank Correlation (KTau) with standard error,
showing effect of replacing the general-purpose scoring layers with new layers customized to MCS
on most competitive baselines, viz., GEN and IsoNet (late interaction models) and GMN, across all
seven datasets. Numbers in green (red) indicate the best (second best) performers for early interaction
models. Numbers in blue (yellow) indicate the best (second best) performers for late interaction
models. The proposed modification improves performance of all baselines. However our models
outperform them, even after modifying their layers, in most cases.

. LMCES (final layer), where the relevance score is computed using only the embeddings of the

R™ layer, is outperformed by LMCES in 12 out of 14 cases across MSE and KTau.

LMCCS (no gossip), where we remove the gossip network and compute s(G4,G.) =
i min(A, © My, P®A.© MCP(R))W-, is consistently the worst performed amongst all

three MCCS late interaction variants.

. LMCCS (no NOISE FILTER) where we set 7, = 0 in Eq. (T0), is outperformed by LMCES in 12

out of 14 cases across MSE and KTau.

There is no clear winner between XMCS, and XMCS (all layers) where we compute the relevance

score in Eq. using embeddings from all R layers. We observe that the performance scores of

21

MSE (lower is better)

MCES ‘ MSRC MM FR MR FM COX DD

% LMCES (final layer) 0.237£0.008 0.175£0.005 0.170£0.005 0.166+0.004 0.167+£0.004 0.140+0.004 0.226+0.005
— | LMCES 0.232+0.008 0.1674+0.005 0.170£0.005 0.162+0.005 0.163+0.004 0.140-£0.004 0.223+0.006
.-E‘{ XMCS (all layers) 0.224+0.008 0.154+0.004 0.165+0.004 0.152+£0.004 0.155+£0.003 0.128+0.003 0.223+0.004
3 XMCS 0.226+0.007 0.154+0.003 0.162+0.005 0.15440.004 0.160+0.003 0.132+0.004 0.220+0.005
MSE (lower is better)
MCES ‘ MSRC MM FR MR FM COX DD
o (LMCCS (no gossip) 0.166+0.017 0.241£0.017 0.240+0.017 0.187+0.014 0.2374+0.019 0.224+0.015 0.293+0.027
E { LMCCS (no NOISE FILTER) | 0.068+0.012 0.194+0.016 0.206£0.024 0.140+0.013 0.177£0.016 0.205+0.018 0.104+0.018
LMCCS 0.068+0.012 0.174+0.015 0.179+0.016 0.1344+0.012 0.173+0.017 0.177£0.012 0.097+0.016
Z [XMCS (all layers) 0.069+£0.014 0.181+£0.016 0.171£0.016 0.129£0.013 0.172+£0.017 0.156£0.010 0.103+0.017
3 XMCS 0.071£0.014 0.168+0.014 0.163+0.018 0.1314+0.013 0.168+0.017 0.153+£0.009 0.102+0.017

Table 12: Performance measured using mean square error (MSE) with standard error, on the four
variants of our models considered for Ablation study. (i) LMCES (final layer) where the relevance
score is computed using only the embeddings of the R™ layer, (ii) LMCCS (no gossip), where we
remove the gossip network and compute s(Gq, G.) = 3, - min(A, © My, PP A, © M PW), ;,
(iii) LMCCS (no NOISE FILTER) where we set 7; = 0 in Eq. (I0) and (iv) XMCS (all layers)
where we compute the relevance score in Eq. using embeddings from all R layers. Numbers in
green (red) indicate the best (second best) performers for early interaction models. Numbers in blue
(yellow) indicate the best (second best) performers for late interaction models.

KTau (higher is better)
MCES ‘ MSRC MM FR MR FM COX DD
g LMCES (final layer) 0.692£0.004 0.562+0.006 0.581+0.006 0.594£0.005 0.599+0.005 0.566+0.009 0.720+0.004
= | LMCES 0.691+£0.004 0.577+0.006 0.588+0.006 0.5984+0.005 0.610+0.004 0.574+0.009 0.724+0.004
Z [XMCS (all Iayers) 0.700£0.004 0.587+0.006 0.580+0.006 0.6104+0.005 0.613+0.005 0.582+0.010 0.722+0.004
S| XMCs 0.699+0.004 0.582+0.006 0.594+0.006 0.61240.005 0.606+0.005 0.580+0.009 0.724+0.004
KTau (higher is better)
MCES ‘ MSRC MM FR MR FM COX DD
o (LMCCS (no gossip) 0.132+0.011 0.418£0.011 0.380+0.012 0.360+0.013 0.415+0.011 0.476+£0.011 0.091-£0.008
3 { LMCCS (no NOISE FILTER) | 0.2414+0.013 0.436+0.011 0.433+0.013 0.3924+0.014 0.446+0.011 0.477+0.011 0.213+0.015
LMCCS 0.248+0.013 0.451+0.012 0.438+0.014 0.4064+0.014 0.457+0.012 0.487+0.012 0.212+0.015
Z [XMCS (all layers) 0.201£0.014 0.455+0.012 0.448+0.014 0.4104+0.015 0.453+0.012 0.500£0.011 0.196+0.015
S| XMCs 0.198+0.014 0.452+0.012 0.451+£0.014 0.412+0.014 0.453+0.012 0.501+0.011 0.201+0.015

Table 13: Performance measured using Kendall Tau correlation (KTau) with standard error, on
the four variants of our models considered for Ablation study mentioned in Table|[12] Numbers in
green (red) indicate the best (second best) performers for early interaction models. Numbers in blue
(yellow) indicate the best (second best) performers for late interaction models.

both variants are quite close to each other in most cases, with XMCS gaining a slight edge over
XMCS (all layers) in 14 out of 28 cases.

D.4 Interpretabilty

For both MCES and MCES, our models propose a soft alignment between the nodes of the query-
corpus pair. We use the Hungarian algorithm on top of it to obtain an injective mapping P, which
is depicted by matching node colors in the example graph pairs in Figure [2] and Figure [3] Sub-
sequently, we compute the adjacency matrix of the MCS graph under the proposed alignment as
min(A,, PA.PT). For LMCES, we indicate the edges of the proposed MCS graph in thick black.
For LMCCS, we further apply TARJANSCC, to identify the largest connected component, whose
edges are again indicated in thick black. In Figure 2| we present one example each, of the proposed
alignments in the MCES and MCCS settings. For MCES, there are 10 overlapping edges under the
proposed node alignment, which are in two disconnected components of 7 and 3 edges. For MCCS,
the proposed node alignment identifies a set of connected 8 connected nodes, common to both graphs,
which are connected by thick black edges.

In Figure[3] we present an example graph pair, where XMCS is able to identify a larger common
connected component, as compared to LMCCS. In the alignment shown on the left, we see that there
are 6 nodes in the connected component, identified under the node alignment proposed by LMCCS.
On the other hand, on the right we observe that XMCS is able to propose a node alignment, which
leads to the emergence of a connected component with 10 nodes.

22

N

e

(a) LMCES (b) LMCCS
Figure 2: Example graph pairs with node colors indicating the proposed alignments by our models.
In Panel (a), we show MCES setup. Here, Nodes are aligned to maximize the number of overlapping
edges (indicated as thick black edges). We observe two disconnected components in the MCES

setup. In Panel (b), we show MCCS setup. Here, Nodes are aligned to identify largest connected
component (identified by thick black edges).

Q))
P oe ‘\’ o
» a/7
:—‘ . i
® ®
(2) LMCCS (b) XMCS

Figure 3: Example graph pairs with node colors indicating the proposed alignments by our models
LMCCS and XMCS, for the MCCS setup. In Panel (a), LMCCS proposes an alignment which
results in an MCCS score of 6. In Panel (b), XMCS proposes an alignment on the same query-corpus
pair, which results in an MCCS score of 10. The connected nodes in both cases are identified by
thick black edges.

D.5 Training and inference times

Here, we report both the training and inference time (in seconds). The training time is computed for
each batch of size 128 (which is the fixed hyperparameter used for the numbers reported in the paper).
Inference time is computed for the entire test set of 100 query graphs and 800 corpus graphs, with the
maximum possible batch size allowed by our GPU - Nvidia TITAN X (Pascal).

Method Training Time per batch (in secs) | Inference time on test(in secs)
GEN 0.037 5.937
SimGNN 0.073 24.671
GraphSim 0.125 23.284
NeuroMatch | 0.027 6.532
GOTSim 0.259 72.590
IsoNet 0.069 13.956
GMN 0.426 99.542
LMCES 0.109 28.129
LMCCS 0.074 13.776
XMCS 0.159 31.101

Table 14: Training and inference time

We observe that: (1) Among the late interaction models, both LMCCS and LMCES are significantly
faster than GOTSim. This is because GOTSim uses a combinatorial solver, which does not allow
for batched processing and results in significant slowdown. (2) LMCES is comparable to GraphSim
and SimGNN, in both training and inference times, while affording significantly better performance.
(3) LMCCS is comparable to IsoNet in training and inference times, and is significantly faster than
SimGNN, GraphSim and GOTSim. (4) GEN and NeuroMatch are significantly faster than all late
interaction models in terms of training and inference times. However, as shown in Table 1 of the
main paper, both these models are outperformed by LMCCS,LMCES and IsoNet in most of the
datasets. (5) Among the early interaction models, XMCS is 3X faster than GMN. The reason for this
is explained in lines 338-344 in our main paper.

23

It is true that we performed experiments on graphs of size < 20, driven by the needs of practical graph
retrieval applications like molecular fingerprint detection, object detection in images, etc. However,
our method can easily scale beyond |V | = 20, as follows:

Inference Time (in sec) | Current Size | [V][=30 | [V]|=50 | [V][=70 | |[V] =100
LMCES 0.036 0.048 0.052 0.071 0.106
LMCCS 0.022 0.031 0.039 0.042 0.064
XMCS 0.067 0.071 0.085 0.095 0.131

Table 15: Scalability for large graphs

24

