
APPENDIX

A Preprocessing and tokenization details

A.1 Search space primitives

Below are the exact descriptions of the hyperparameter primitives used to define a given X (d).

• Double: Specifies a continuous range of possible values in the closed interval [xmin, xmax]
for some real values xmin ≤ xmax.

• Integer: Specifies an integer range of possible values in [xmin, xmax] ∈ Z for some
integers xmin ≤ xmax.

• Discrete: Specifies a finite, ordered set of values from R.
• Categorical: Specifies an unordered list of strings.

A.2 Data preprocessing and tokenization

We list out the full set of preprocessing steps (from Section 4.1) below:

• Omit parameter and metric names in all trials, remove redundant keywords ("parameter",
"trial", etc.), order trial parameters according to those in metadata m, and add key-
words (e.g., "name", "algorithm") and enumerating types (e.g. "DOUBLE") in the tokenizer
vocabulary so that the original keywords are encoded into single tokens.

– List of keywords: name, metric, goal, type, algorithm, min_value, max_value,
scale_type, categories.

– Enumerating values for the parameter type: DOUBLE, INTEGER, DISCRETE, CAT-
EGORICAL.

– Enumerating values for the scale_type: LINEAR, LOG.
• Insert short separator symbols, e.g. ? between parameter/metrics in a trial, "|" between trials,

and "&" between experiment description and parameter configurations in metadata.
• Convert all values in history h to single integers.

– Represent discrete and categorical parameters with their index in the set of values.

– Normalize float and integer parameter values in x(d)
t with their value range and the

function values yt with their minimum and maximum seen values in the entire study.
Then quantize the normalized values to an integer, e.g., “0.12345"→ "123" with a
quantization level of Q = 1000. More formally, we apply the following transformation
q(·):

q(z) = int[znorm ∗Q], where znorm = (z − zmin)/(zmax − zmin) (11)

The shortened text string is then converted to a sequence of tokens via the SentencePiece tokenizer
[44] with a vocabulary of 33000 words. Quantized numbers in h are always converted into single
tokens. As long asQ is sufficiently large, there is no concern from the loss of precision over numerical
quantizations, and thus the serialized study contains nearly the same amount of information as the
original data. For comparison, the naive tokenization for the example of Table 1 with t = 100 trials
will produce 8221 tokens which can overload GPU memory, while our proposed tokenization will
only produce 584 tokens, a 14x reduction.
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B Algorithm and baseline details

B.1 Dataset algorithms

Grid Search: DOUBLE parameters are first log-transformed if specified. They are then converted
into DISCRETE parameters by discretizing their ranges into 100 equidistant points. Suggestions
are outputted using lexicographic ordering from the cartesian product over all parameters’ feasible
points. The traversal order follows the alphabetical ordering of parameter names. That is, given
two parameters "Foo" and "Bar", both in [0,1] range, the sequence of trials looks like: {"Foo":
0, "Bar":0} , {"Foo": 0, "Bar":0.01}, ..., {"Foo": 0, "Bar":1},
{"Foo": 0.01, "Bar":0}, {"Foo": 0.01, "Bar":0.01}, ....

Shuffled Grid Search: Shuffled grid search is the same as Grid Search in how it handles DOUBLE
parameters. Instead of traversing the grid in a deterministic order, it selects without replacement a
random point from the grid at each iteration.

Regularized Evolution [49]: In summary, this algorithm at every iteration randomly selects a
tournament subset from the current population, and mutates the argmax member of the tournament.
When inserting a new trial, the oldest trial will be removed. We use a population size of 25 and
tournament size of 5. The mutation operation uniformly at random selects one of the parameters
x(r) from x, and mutates x(r) based on the following: for DOUBLE, INTEGER, the new value is
uniformly sampled from

[
x

(r)
min, x

(r)
max

]
, while for DISCRETE, CATEGORICAL, the new value is

uniformly sampled from the feasible list.

Hill Climbing: This is a naive implementation, where at every iteration t, the current xpivot

is mutated (using the same operation as Regularized Evolution) to xmutated, and evaluated. If
f(xmutated) > f(xpivot), then we reassign xpivot to be the mutated xmutated. An extension of this
method can be "batched", as seen in [66], although we not include this for the sake of clarity and
presentation.

Eagle Strategy [50]: Eagle strategy is a metaheuristics algorithm that is a slight variation of Particle
Swarm Optimization [67].

The algorithm is originally formulated for continuous search spaces only. The reason is that it involves
a subroutine (move step) where we take a convex combination of a particle (called firefly in [50]) and
another particle that has a better objective value. Mathematically, given two particle vectors x and x′

and the coefficient c ∈ [0, 1], the move step generates cx + (1− c)x′.
The algorithm is extended to support DISCRETE and CATEGORICAL parameters by applying a
separate move operation for each non-continuous dimension d:

move(x(d), x′(d), c, α) =


x(d) with probability (1− α)c

x′(d) with probability (1− α)(1− c)
random value with probability α

where α is a small perturbation coefficient that decreases in the dimension of the search space.

Vizier [2]: Vizier’s default algorithm is available via Google Cloud as Vertex Vizier. We have
contacted the authors of the algorithm and received the the following details on its implementation.

In summary, the algorithm uses a particular implementation of GP-UCB with trust regions. The GP
regressor model consists of the following:

• α ∼ TruncatedLogNormal controls the amplitude of Matern5/2 kernel.
• λi ∼ TruncatedLogNormal (i.i.d. for each dimension i) controls the length scale for the
i-th dimension.

• σ ∼ TruncatedLogNormal controls the Gaussian noise.
• z ∼ Normal(0, σ) is the observation noise.
• f ∼ GP(λ, α) is the function.
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• y(x) ∼ f(x) + z is the noisy function.

where the prior distribution parameters are chosen depending on the user’s estimate of the observation
noise.

The algorithm then uses gradient descent with line search for step sizes to obtain the MAP estimate
of α, λ and σ. Furthermore, the algorithm uses a variation of Eagle Strategy (explained above) to
optimize the UCB acquisition function with coefficient of 1.8. In order to prevent overexploration
that may result from the large UCB coefficient, the algorithm optimizes acquisition functions inside
trust region. The trust region is the union of L∞-norm balls around explored points. The radius of
the L∞-norm ball grows in the number of explored points. The algorithm also starts at the center of
the search space (unless user specifies an alternative initial batch).

GP-UCB: It is the same as Vizier’s GP-UCB, except for the model definition. We used the model
definition from the github repository of the authors of "Heteroscedastic and Evolutionary Bayesian
Optimisation solver" (HEBO) [68], the winner of 2020 Blackbox Optimization challenge [51]. It is
worth noting that HEBO uses multi-dimensional acquisition functions derived from the GP model.
The priors over hyperparameters are thus not tuned to optimize the performance of GP-UCB algorithm,
which explains its suboptimal performance.

B.2 Gaussian Process for uncertainty estimation

We use the same GP model as GP-UCB.

When comparing the function prediction performance with the OPTFORMER, we choose [ymin, ymax]
to normalize function value token based on the range of observed value in the sampled sequence
(x1, y1, . . .xt, yt), and therefore the real value of yt always resides in the prediction support of the
OPTFORMER.

To compensate for the fact that GP’s distribution is wider than the real support used by the Transformer,
we truncate the GP’s prediction into [ymin, ymax] for a fairer comparison.

B.3 Transfer learning baselines

We use the following methods as transfer-learning baselines for the HPO-B dataset from Section 6.3:

ABLR [12, 56]: BO with multi-task adaptive Bayesian linear regression. Our implementation of
ABLR is equivalent to a GP with 0 mean and a dot-product kernel with learned basis functions.
We use a neural net (NN) with (128, 128) hidden layers and tanh activation as the basis functions.
We then train ABLR by optimizing the negative log likelihood (NLL) over NN weights θ as well
covariance matrix SS> and bias parameters δ2 that define the dot-product kernel k, i.e.

k(x, x′) = φϑ(x)>SS>φϑ(x′) + δ2, (12)

where matrix S ∈ R128×256, basis function φθ is parameterized by NN weights ϑ and δ ∈ R.

FSBO [7]: Bare-bone few-shot BO. We did not include data-driven initialization due to lack of
reproducing details. Following [7], our implementation of FSBO is equivalent to BO using a GP
with 0 mean and a squared-exponential kernel on top of a NN with (128, 128) hidden layers and tanh
activation functions. We train the NN weights as well as the parameters in the squared-exponential
kernel.

HyperBO [57, 58]: BO with pre-trained GPs. Following [58], we pre-train a GP with Matérn32
kernel on top of a NN with one hidden layer of width 2×D and tanh activation functions. Here D is
the input dimension of the search space.

For training, we use the Adam optimizer with learning rate 0.001 and batch size 50 for all the
transfer-learning baselines. Notice that these transfer-learning methods require “pre-training” a GP
on the same search space. We sample 10000 random data points on each HPO-B surrogate functions
from each search space. We train a separate GP for each search space.
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C Data details

C.1 Dataset details

RealWorldData dataset: The RealWorldData dataset contains a total of 750K studies collected
from Google Vizier users over a span of 5 years (starting from 2017), and each study has a variable
number of trials. Since some user studies can potentially have an excessive number of trials (e.g.
10K+), for all studies we only consider the first 300 trials for experiments. Since the dataset also
includes Google employee usernames, we made sure to anonymize every study first.

We split the dataset in temporal order to avoid information leak, use most studies for training, and
select 16 studies generated by a different set of users for testing. All training studies were generated
before Feb 2020. The test studies were created by users who started to use the hyperparameter tuning
service after that date. To bootstrap these studies into actual functions to be evaluated, we fit a GP
for each study and output the function value as the GP’s median function (due to the use of output
warping).

HPO-B dataset: For HPO-B dataset, a tuning task is identified with a (search space id, dataset id)
pair, which refers to tuning the hyperparameters defined in a search space for some machine learning
model trained on a dataset. we use the "v3-augmented" meta-training/validation/test splits that
includes all the 16 test search spaces as well as less frequent search spaces in the meta-training split.
There are uniquely 1730, 91, and 86 tasks for training, validation and testing respectively. For every
tuning task, [5] fits an XGBoost model to the trial data of every tuning task as the objective function.

Similar to the BBOB dataset, we generate 10M, 500K studies for training and validation respec-
tively, along with the same set of controlled algorithms. For each of the test tuning task, we run 5
optimizations each with a different initial set of observations provided in [5].

The HPO-B uses the Apache 2.0 open-source license.

BBOB dataset: The BBOB dataset contains a total of 10M studies for training, each containing
exactly 300 trials. An additional 500K studies (using different randomization seeds) are used for
validation. While the number of studies can be freely generated and effectively unlimited, we found
that 10M studies were sufficient for the Transformer to train properly.

The functions we use for data are from [48], and consist of separable functions (Sphere,
Ellipsoid Separable, Rastrigin Separable, Bueche Rastrigin,
{Linear Slope}), moderately conditioned, potentially multi-modal functions (Attractive
Sector, Step Elllipsoid, {Rosenbrock Rotated}), ill-conditioned functions
(Discus, Bent Cigar, Sharp Ridge, {Sum of Powers}), multi-modal functions
(Weierstrass, Schaffers F7, Schaffers F7 Illconditioned, {Greiwank
Rosenbrock}), and functions with weak global structures (Schwefel, Gallagher 21,
Gallagher 101, Katsuura, {Lunacek}). The functions noted with the extra "{}" are for
testing and excluded from the training data. We apply significant randomization over the functions
for both the training dataset and test-time evaluation. In order, we randomize the following:

• Function dimension D, which is uniformly selected from a range. For training data genera-
tion, this range is [1, 20].

• Orthonormal rotation matrix Γ, which is applied to the input first, i.e. producing a new
function f ′(x) = f(Γx).

• Shift vector xshift which is also applied to the input first, i.e. producing a new function
f ′(x) = f(x− xshift), where xshift has all of its coordinate-wise entries sampled from
[−4, 4], while the domain is [−5, 5].

• Discretization, in which the parameter space X (d) is uniformly at random chosen to be either
a DOUBLE, DISCRETE, CATEGORICAL parameter. The DOUBLE parameter "discretiza-
tion" is actually a no-op, as it allows the original continuous space X (d) ⊂ R. Otherwise, a
number L of feasible points is uniformly selected from the range [2, 8], and used to divide
the original [−5, 5] range into L equally-spaced points. If DISCRETE was chosen, then the
ordering of the grid points is preserved, otherwise if CATEGORICAL was chosen, then all
of the gridpoints become effectively unordered strings.
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• Noise Type, in which one of 10 noise settings (including no noise) is uniformly chosen.
Noise consists of either Gaussian (multiplier sampled from a random Gaussian of varying
scale is applied), Uniform (multiplier sampled from uniform distribution of varying scale is
applied), or Cauchy (additive noise which only occurs at a probabilistic frequency, with a
varying fixed strength is applied).

For evaluation, we randomly sample 100 configurations for each of the five test functions, resulting
in 500 optimization trajectories in total.

For BBOB, as all parameters are named as "x_i" with i ∈ [0, D) and always have value range in
[−5, 5], significantly different from the other two datasets, we omit their parameter names and value
in the metadata m and only keep parameter type information.
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Table 5: Example of studies in RealWorldData (left), BBOB (middle) and HPO-B (right).
"name": "gan1d 500 iters -
"2022-05-18"
"parameter": {
"name": "learning_rate",
"min_value": 1e-06,
"max_value": 0.01,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "modifier",
"min_value": 0.1,
"max_value": 1000000.0,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "weight_init_std",
"min_value": 0.01,
"max_value": 2.0,
"type": "DOUBLE",

}
"parameter": {
"name": "optimizer",
"type": "CATEGORICAL",
"categories": "sgd",
"categories": "adam",
"categories": "rmsprop",

}
"goal": "MINIMIZE",
"max_num_trials": 500,
"metric": "",
"observation_noise": "HIGH",
"trial": {
"parameter": {

"learning_rate": 0.0001,
"modifier":

316.2277660168381,
"optimizer": "sgd",
"weight_init_std": 1.005,

}
"metric": {

"": -0.946908021738347,
}
}
"trial": {
"parameter": {

"learning_rate": 0.000504,
"modifier":

12.346786652749216,
"optimizer": "rmsprop",
"weight_init_std":

1.2192566347109868,
}
"metric": {

"": -1.5144472008077585,
}
}
...

"name": "SCHAFFERS_F7",
"algorithm": "gp",
"parameter": {
"name": "x0",
"type": "CATEGORICAL",
"categories": ["0.0", "5.0",

"-5.0"],
},
"parameter": {
"name": "x1",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

},
"parameter": {
"name": "x2",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

},
"parameter": {
"name": "x3",
"type": DISCRETE,
"values": [-5.0, 5.0],

},
"parameter": {
"name": "x4",
"type": CATEGORICAL,
"categories": ["5.0",

"-1.66666666667",
"-5.0",

"1.666666666667"],
},
"parameter": {
"name": "x5",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

}
"metric": "",
"goal": MAXIMIZE,
"observation_noise": HIGH
"trial": {
"parameter": {

"x0": "0.0",
"x1": 0.0,
"x2": 0.0,
"x3": 5.0,
"x4": "-5.0",
"x5": 0.0,

}
"metric": {

"": -334.4782223514127,
}
}
"trial": {
"parameter": {

"x0": "5.0",
"x1": -1.9867479768748013,
"x2": -1.7665621302793095,
"x3": -5.0,
"x4": "1.666666666666667",
"x5": -1.7634306558106605,

}
"metric": {

"": -323.84900527589326,
}
}
...

"name": "5859_145853",
"algorithm": "GP UCB",
"parameter": {
"name": "minsplit",
"max_value": 60.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {,
"name": "minsplit.na",
"max_value": 1.0,
"type": "DOUBLE",

}
"parameter": {
"name": "minbucket",
"min_value": 1.0,
"max_value": 60.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {
"name": "cp",
"min_value": 0.000100788830221,
"max_value": 1.000092678873241,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "maxdepth",
"max_value": 29.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {
"name": "maxdepth.na",
"max_value": 1.0,
"type": "DOUBLE",

}
"observation_noise": AUTOMATIC,
"metric": "objective_value",
"goal": "MAXIMIZE"
"trial": {
"parameter": {
"minsplit": 4.0,
"minsplit.na": 0.0,
"minbucket": 18.0,
"cp": 0.7342895964927976,
"maxdepth": 3.0,
"maxdepth.na": 0.0,

}
"metric": {
"objective_value": 0.500024080276,

}
}
"trial": {
"parameter": {
"minsplit": 8.0,
"minsplit.na": 0.0,
"minbucket": 32.0,
"cp": 0.30972302652187583,
"maxdepth": 4.0,
"maxdepth.na": 0.0,

}
"metric": {
"objective_value": 0.50002408028,

}
}
...
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D Model and training details

The open-sourced T5 model codebase we use can be found at https://github.com/
google-research/t5x.

D.1 Conditional probability decomposition

From Section 4.2, the joint distribution of the optimization history h conditioned on metadata m can
be written using the chain rule as

P (h̄|m̄) = P
(
x̄

(1)
1 , x̄

(2)
1 , . . . , x̄

(D)
1 , ?, ȳ1, "|", . . . , x̄(1)

T , x̄
(2)
T , . . . , x̄

(D)
T , ?, ȳT |m̄

)
=

T∏
t=1

(
D∏
d=1

P
(
x̄

(d)
t |m̄, h̄t−1, x̄

(1:d−1)
t

))
P
(
?|m̄, h̄t−1, x̄t

)
P
(
ȳt|m̄, h̄t−1, x̄t

)
P
(
"|"|m̄, h̄t

)
(13)

We note that this correctly formalizes the prediction of objects we are most interested in, which are
parameter values P

(
x̄

(d)
t |m̄, h̄t−1, x̄

(1:d−1)
t

)
and function values P

(
ȳt|m̄, h̄t−1, x̄t

)
.

D.2 Training

During training, the encoder (denoted as Eθ) input sequence length is selected to be the maximum
length of the tokenized metadata m̄ from a dataset, ranging from 256 to 1024. The decoder (denoted
as Dθ) input sequence is fixed at 1024, which means it can model up to 1024//(D + 3) trials where
D is the number of parameters per trial. We use Adam optimizer with a rsqrt learning rate schedule
and a mini-batch size of 256, and train each model up to 1M steps, with early stopping according to
the validation loss. Each model is trained with a 4x4 TPU-v3 slice.

Thus the prediction for h̄(n) is:

Pθ

(
h̄(n)

∣∣∣m, h̄(1:n−1)
)

= SoftMax
[
Dθ(Eθ(m̄), h̄(1:n−1))

]
(14)

D.3 Data augmentation

We adopt the following three data augmentations to reduce overfitting to the offline datasets:

1. In order for the model to be invariant to parameter ordering, we apply random parameter
permutations over metadata m̄ and every suggestion x̄t.

2. In order for the model to be robust to a different normalization range given a new function,
we apply random scaling and shifting to the normalized function value ynorm = (y −
ymin)/(ymax − ymin) before quantization:

y′norm = ynorm ∗ s+ c, s ∼ Uniform[0.3, 1], c ∼ Uniform[0, 1− s] (15)

and thus y′norm ∈ [c, c+ s] ⊆ [0, 1] after transformation.

3. Randomly drop textual and parameter value range information in metadata.

D.4 Inference

At inference time, we choose the decoder input sequence length according to the maximum number of
trials to run. E.g. to optimize a function with 18 parameters (highest possible dimension D over our
test functions) over 105 trials, we set the input sequence length to be at least (18 + 3) ∗ 105 = 2205.

We compute the (ymin, ymax) range for function value normalization in the tokenization process with
the current minimal and maximum observations. We set c = 0.2, s = 0.6 so that all normalized
observations fall in the range of y′norm ∈ [0.2, 0.8], and the model’s y value predicted distribution
support, [0, 1], is sufficiently large.
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We also use a softmax temperature hyperparameter when predicting function values. We choose the
temperature to maximize the log-likelihood of the validation split of each dataset seperately. On
RealWorldData, the function prediction temperature is set as 1.1 and on HPO-B it is 1.5. The policy
prediction temperature is always set to be 1.
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E Additional experimental results

We provide additional experimental results in this section.

E.1 Imitating HPO policies
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Figure 7: Best normalized function value with std, averaged over 5 test functions each with 100 runs.
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Figure 8: Best normalized function value of LINEAR SLOPE with std, averaged over 100 runs.
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Figure 9: Best normalized function value of ROSENBROCK ROTATED with std, averaged over 100
runs.
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Figure 10: Best normalized function value of SUM OF POWERS with std, averaged over 100 runs.
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Figure 11: Best normalized function value of GRIEWANK ROSENBROCK with std, averaged over
100 runs.
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Figure 12: Best normalized function value for LUNACEK with std, averaged over 100 runs.
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E.2 Learning priors for hyperparameter response functions

We apply the same goodness-of-fit analysis on function prediction from Section 6.2 to the test split of
HPO-B. The results are shown in Fig. 13.
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Figure 13: Fitness of predicted CDF(y) on HPO-B test set.

The ECE metric is defined for a classification model. To obtain a similar measurement for a continuous
regression model, we convert the continuous regression problem into a multi-class classification
problem by discretizing the range [ymin, ymax] for each study into 100 equal intervals. Then, we
follow the definition of ECE in [27] and estimate the metric using 10 confidence bins.

E.3 Augmenting a prior policy with function prediction

Transfer learning results on HPO-B Fig. 4 shows the best normalized function values observed
so far at each trial. Though HyperBO uses a smaller NN for feature extraction, HyperBO has a
flexible mean function, which captures important information that benefits BO in beginning trials.
While we implemented a bare-bone FSBO, its performance is still better than ABLR in part thanks to
FSBO’s use of a squared exponential kernel instead of a dot-product one. Compared to a dot-product
kernel with a finite feature space, a squared exponential kernel introduces infinite features.

In Fig. 14 and Fig. 15, we show the performance profiles of all compared methods over 2 different
metrics: outperforming 90% of the best function value obtained by all methods at the 50th iteration,
and outperforming the median of the best function values obtained by each method at the 50th
iteration.

Performance profiling is a performance evaluation tool to compare optimization methods, which is
widely used in optimization [69]. In our case, the y-axis is the fraction of tasks that each method
succeeds in at different BO iterations (x-axis). The criteria of success depends on the problem itself,
and we present performance profiles based on 2 different metrics: outperforming 90% of the best
function value obtained by all methods at the 50th iteration, and outperforming the median of the
best function values obtained by each method at the 50th iteration.

Despite the relatively better performance of HyperBO, FSBO, and ABLR especially during earlier
trials as shown by Fig. 4, these methods do not achieve a high percentage success rate on the 86
HPO-B test functions as reflected by Fig. 15. As pointed out by Wang et al. [58], ABLR, FSBO can
be viewed as special cases of HyperBO with specific settings of kernel and mean functions. These
methods have guarantees only if each function (corresponding to each task) is an i.i.d. sample from
the same GP. However, for some search spaces in HPO-B, there exist surrogate functions that return
constant values. The constant surrogate function is unlikely to be an i.i.d. sample from the same
GP as other surrogates in the same search space. This means ABLR, FSBO, and HyperBO can be
sensitive to how the data is generated and outliers in the training data.

Summarizing the results in Fig. 4, Fig. 14 and Fig. 15, HyperBO is able to achieve very good overall
performance on a subset of all search spaces, which leads to a better averaged best normalized
function values. It is likely that these search spaces have surrogate functions that meet the i.i.d
function sample assumption from Wang et al. [58]. However, if we only look at the fraction of tasks
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Figure 14: Performance profile on RealWorldData and HPO-B test functions with success threshold:
90% best function value at 50th iteration.

0 20 40 60 80 100
BO Iters needed to outperform median

best function value at the 50th iter.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 ta

sk
s

RealWorldData

0 20 40 60 80 100
BO Iters needed to outperform median

best function value at the 50th iter.

0.2

0.4

0.6

0.8
Fr

ac
tio

n 
of

 ta
sk

s
HPO-B

Random Search
GP-UCB
Vizier
GP *
DGP *
ABLR
FSBO
HyperBO
OptFormer
OptFormer (EI)

Figure 15: Performance profile on RealWorldData and HPO-B test functions with success threshold:
median best function value at 50th iteration.

each method surpasses a success metric, HyperBO may not be a method with superior performance
that is comparable to the OPTFORMER. This reveals another benefit of the OPTFORMER: robustness
to function outliers.

HPO-B plotting We further compare the augmented policies from Section 6.3 to the provided
baselines for HPO-B in [5], using the same plotting format from [5] for fair comparison.

Figure 16: (Lower is better) Aggregated comparisons of normalized regret and mean ranks across all
search spaces on the continuous search spaces of HPO-B-v3.

E.4 Ablation on acquisition functions

We provide additional ablations on acquisition function choices on both the RealWorldData and
HPO-B datasets.
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Figure 17: Ablation on the choice of acquisition functions. The plot shows the best normalized
function values averaged over HPO-B test functions. Ablation curves are shown with© markers.
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Figure 18: Ablation on the choice of acquisition functions. The plot shows the performance profile
metric with success threshold: median best function value at 50th iteration.

In Fig. 17, we compare the Expected Improvement (EI) used in the main body with Thompson
Sampling (TS), Probability of Improvement (PI), and Upper Confidence Bound (UCB) with a
confidence level of 0.9. We also include the best performing standalone baseline, Vizier, and transfer
learning baseline, HyperBO, for reference. We observe that the prior policy is improved by all the
acquisition functions. Particularly, OPTFORMER (EI) is the best among all acquisition functions
and clearly outperforms all the baseline methods (HyperBO and Vizier) on both datasets across all
trial steps. OPTFORMER (UCB) finds good parameter settings as quickly as EI initially, but then
becomes saturated early, suggesting a less exploratory behavoir than EI. The performance of PI and
TS increases more slowly, but keeps improving compared to UCB.

To further bolster this hypothesis, we also compare using performance profiles. As this metric
depends on the set of methods being compared, we include all baselines from the main body. As we
can see, Fig. 18 demonstrates that augmented OPTFORMER policies, especially OPTFORMER (EI),
produce superior performance compared to other baselines.
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E.5 Out-of-Distribution functions

Fig. 19 compares the optimization trajectories of the prior policy OPTFORMER, augmented policies
with EI (OPTFORMER (EI)) and Thompson Sampling (OPTFORMER (TS)), against Vizier and
Random Search on 5 hold-out test function families from the BBOB benchmark. This assesses
their performance on a few commonly used test functions for general black-box optimization. Both
variants of the augmented policy obtain comparable or better performance than Vizier on most test
functions except OPTFORMER (TS) on the family of Linear Slope functions.

Figure 19: Best normalized function value of a test function in BBOB averaged over 100 runs with
std of the mean estimate.
In Fig. 20 and Fig. 21, we further ablate the OptFormer on two machine learning tuning tasks: neural
architecture search via NASBench-201 [70] and tuning the learning rate schedule hyperparameters
over a live CIFAR-10 training setup using a ResNet-50 from the init2winit benchmark 1. This assesses
their performance on out-of-domain machine learning HPO tasks from the training datasets. Again,
OPTFORMER (EI) and OPTFORMER (TS) perform comparably or even better than Vizier. This
demonstrate their robust generalization performance over unseen tasks.

1https://github.com/google/init2winit
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Figure 20: Best normalized function value of NASBench averaged over 10 runs with std of the mean
estimate.

Figure 21: Best CIFAR10 validation accuracy averaged over 10 runs with 25/50/75th percentiles
shown.
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